Основной характеристикой электромагнитного спектра представляющего совокупность диапазонов частот является волновой процесс. В результате электромагнитный спектр можно определить по его длине волны и частоте.

Частота - как быстро волна вибрирует или идет вверх и вниз. Длина волны - это расстояние между двумя пиками. Частота и длина обратно связаны, что означает, что волны низкой частоты имеют длиннее колебания и наоборот.

Человек может видеть свет в определенном диапазоне длин колебаний и частот. Этот диапазон называется видимым спектром. Частотный диапазон видимого спектра составляет от 405 терагерц до 790 терагерц.

Типы волн и электромагнитный спектр

Электромагнитный спектр включает широкий спектр волн, который люди не могут видеть. Невидимые типы волн представляют радиоволны, инфракрасные и рентгеновские лучи. Эти типы колебаний широко применяются в различных областях науки и техники.

Если бы у человека глаза были как у гремучей змеи или совы он мог бы хорошо видеть ночью. Для того чтобы помочь пилотам увидеть в темноте или при плохой погоде в кабине устанавливается радар, обнаруживающий отражение радиоволн. И если бы глаза человека были чувствительны как лучи рентгеновской камеры люди могли бы даже видеть через органы или здания!

Свет, который могут видеть люди, это только одна часть всей электрической и магнитной энергии вокруг нашего мира. Радиоволны, Х-лучи, гамма-лучи и световые волны работают аналогичным образом. Вся вместе эта энергия называется электромагнитным спектром.

В видимом спектре цвет света зависит от частоты. представляет сложную комбинацию состоящую из многих длин. Если пропустить видимый спектр через призму создастся «радуга» путем перенаправления каждой длины волны под несколько иным углом. Порядок цветов красный, оранжевый, желтый, зеленый, синий, индиго (темно синий) и фиолетовый.

Цвета света

Что мы видим, когда наблюдаем отраженный свет от объекта. Когда свет попадает на объект несколько длин колебаний поглощаются этим объектом, а некоторые отражаются. Свет различных длин волн выглядит как разные цвета. Когда мы видим объект определенного цвета, что означает, что свет этого цвета отражается от объекта. Например, когда вы видите красную рубашку, рубашка поглощает все цвета света, за исключением красного. Частота света, который мы видим, является отражение красного и мы видим эту рубашку как красную.

Черный и белый немного отличается от других цветов. Белый — это сочетание всех цветов, поэтому когда мы видим белый, объект отражает все цвета света. Черный является противоположностью. Когда мы видим черный объект, то это означает, что почти все цвета света поглощаются.

Аддитивные цвета

Аддитивность –целое значение величины равно сумме значений его составный частей.

Аддитивные основные цвета могут быть объединены, чтобы сделать любой другой цвет. Это три цвета красный, синий и зеленый. Этот факт используется все время в технологиях, таких как компьютерные экраны и телевизоры. Объединяя только три основных вида света различными способами, можно сделать любой цвет.

Субтрактивные цвета

Субтрактивный – вычитание из равномерного белого составляющих.

Если есть белый свет и хотите вычесть цвета, чтобы получить любой другой цвет, то необходимо использовать основные субтрактивные цвета для фильтрации или удаления света определенных цветов. Первичные субтрактивные цвета - голубой, пурпурный и желтый.

Что такое электромагнитное излучение?

Световые волны и другие виды энергии, которые излучаются вызывают электромагнитное излучение. Вместе они составляют то, что называется электромагнитный спектр . Наши глаза могут видеть только ограниченную часть электромагнитного спектра - красочные радуги мы видим в солнечный, но дождливый день, когда невероятно узкая часть электромагнитного излучения преломляется в капельках дождя. Это энергия видимого света, и как радиоволны и все остальное состоит из электромагнитных волн.

Эти волнообразные формы модели электричества и магнетизма на скорости 300000 км в секунду распространяются вокруг.

Свет, который видят люди тянется в спектре от красного (самая низкая частота и большая длина волны, которую глаза могут зарегистрировать) далее оранжевый, желтый, зеленый, синий и индиго (темно синий) и фиолетовый.

Как электромагнитная волна двигается

Если бы мы могли заглянуть внутрь светового луча (или других электромагнитных волн), что можно увидеть: электрическая волна вибрирует в одном направлении, а магнитная вибрирует в перпендикулярном. Две волны вибрируют в идеальной зависимости, перпендикулярном направлении путешествуете всегда вместе.

С XIX века ученые понимают, что электричество и магнетизм являются равноправными партнерами, которые работают вместе, близко во все времена.

Какие виды энергии составляют электромагнитный спектр?

Другие виды электромагнитного излучения, которые испускают объекты

  • Радиоволны : если бы наши глаза могут видеть радиоволны, мы бы могли (в теории) смотреть ТВ программы просто глядя на небо! Длина радиоволны: 30 см – 500 м. Радиоволны охватывают огромную полосу частот варьируемой от десятков сантиметров высокой частоты до сотен метров в низкочастотном диапазоне. Электромагнитная волна больше, чем СВЧ радиоволна микроволновой печи.
  • СВЧ : такие радиоволны используются не только для приготовления пищи в микроволновой печи, но и для передачи информации в радиолокационной технике. Типичный размер: 15 см (длина карандаша).
  • Инфракрасное : просто с частотой немного короче чем красный цвет. Есть своего рода невидимый «горячий свет» называемый ИК. Хотя мы не можем видеть излучение, мы можем почувствовать путем потепления кожи, когда он попадает на наше лицо — это то, что мы думаем как излучаемое тепло. Если бы глаза человека были бы как у гремучих змей человек бы видел инфракрасное излучение, как линзы ночного видения, встроенные в наших головах. Типичная длина колебания: 0,01 мм
  • Видимый спектр о котором пояснено выше.
  • Ультрафиолетовое : это выше частоты фиолетового света, который наши глаза могут обнаружить. Солнце передает мощное ультрафиолетовое излучение, которое человек не может видеть. Вот почему человек получает загар, даже когда плавает в море или в пасмурные дни. Вот почему так важен солнцезащитный крем. Типичная длина колебания: 500 Нм (как большая бактерия).
  • Рентгеновские лучи : очень полезный тип высокочастотных волн, широко используются в медицине и безопасности. Типичный размер: 0,1 Нм (ширина атома).
  • Гамма лучи : излучаются радиоактивными веществами и опасны для жизни. Типичный размер: 0,02 Нм (ядро атома).

Спектр электромагнитных волн.

Электромагнитные волны классифицируются по длине волны лямбда или связанной с ней частотой волны f. Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в данном томе, а во втором - квантовыми законами, изучаемыми в томе 5 настоящего пособия.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

1) Радиоволны;

2) Инфракрасное излучение;

3) Световое излучение;

4) Рентгеновское излучение;

5) Гамма излучение.

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

Рассмотрим спектр электромагнитных волн более подробно.

Радиоволны.

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм(частота меньше 3 10 12 гц = 3000 Ггц).

Радиоволны делятся на:

1. Сверхдлинные волны с длиной волны больше 10км(частота меньше 3 10 4 гц=30кгц);

2. Длинные волны в интервале длин от10км до 1км(частота в диапазоне 3 10 4 гц - 3 10 5 гц=300кгц);

3. Средние волны в интервале длин от1км до 100м(частота в диапазоне 3 10 5 гц -310 6 гц=3мгц);

4. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);

5. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).

Ультракороткие волны в свою очередь делятся на:

а) метровые волны;

б) сантиметровые волны;

в) миллиметровые волны;

г) субмиллиметровые или микрометровые.

Волны с длиной волны меньше, чем 1м(частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).

Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла. Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.

Инфракрасное и световое излучения.

Инфракрасное , световое , включая ультрафиолетовое , излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов.

Оптический спектр занимает диапазон длин электромагнитных волн в интервале от 210 -6 м= 2мкм до 10 -8 м=10нм (по частоте от1.510 14 гц до 310 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Рис. 1.14.

Ширина оптического диапазона по частоте составляет примерно 18 октав 1 , из которых на оптический диапазон приходится примерно одна октава(); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Рентгеновское и гамма излучение.

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.

Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии 2 , соответствующего данной частоте излучения.

Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.

Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света.

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.

Гармонические электромагнитные волны светового диапазона называются монохроматическими . Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:

где - вектор Пойнтинга.

Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:

где - коэффициент преломления среды; - волновое сопротивление вакуума.

Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим . Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.

Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.

В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .

Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.

Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.

Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала , а в аналитической механике как уравнение Гамильтона - Якоби :

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.

В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений дуализма света, приведшего, как известно, к формулировке основных принципов квантовой механики.

Шкала электромагнитных волн

Наименование

Длина, м

Частота, Гц

Сверхдлинные

3*10 2 - 3*10 4

Длинные (радиоволны)

3*10 4 - 3*10 5

Средние(радиоволны)

3*10 5 - 3*10 6

Короткие(радиоволны)

3*10 6 - 3*10 7

Ультракороткие

3*10 7 - 3*10 9

Телевидение (СВЧ)

3*10 9 - 3*10 10

Радиолокация (СВЧ)

3*10 10 - 3*10 11

Инфракрасное излучение

3*10 11 - 3*10 14

Видимый свет

3*10 14 - 3*10 15

Ультрафиолетовое излучение

3*10 15 - 3*10 17

Рентгеновское излучение(мягкое)

3*10 17 - 3*10 20

Гамма-излучение (жесткое)

3*10 20 - 3*10 22

Космические лучи

Практически всё, что мы знаем о космосе (и микромире), известно нам благодаря электромагнитному излучению, то есть колебаниям электрического и магнитного полей, которые распространяются в вакууме со скоростью света. Собственно, свет - это и есть особый вид электромагнитных волн, воспринимаемый человеческим глазом.

Точное описание электромагнитных волн и их распространения дают уравнения Максвелла. Однако качественно этот процесс можно объяснить без всякой математики. Возьмем покоящийся электрон - почти точечный отрицательный электрический заряд. Вокруг себя он создает электростатическое поле, которое влияет на другие заряды. На отрицательные заряды действует сила отталкивания, на положительные - сила притяжения, причем все эти силы направлены строго по радиусам, идущим от нашего электрона. С расстоянием влияние электрона на другие заряды ослабевает, но никогда не падает до нуля. Иначе говоря, во всем бесконечном пространстве вокруг себя электрон создает радиальное силовое поле (это верно лишь для электрона, который вечно покоится в одной точке).

Допустим, некая сила (не будем уточнять ее природу) неожиданно нарушила покой электрона и заставила его сдвинуться немного в сторону. Теперь силовые линии должны расходиться из нового центра, куда переместился электрон. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может. На достаточно большом расстоянии силовые линии еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки электрического поля, которая распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено, а кое-что в нем даже просто неверно, но оно дает первое впечатление о том, как распространяются электромагнитные волны.

Неверно же в этом описании вот что. Описанный процесс на самом деле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас есть, а вот колебаний нет. Но этот недостаток очень легко поправить. Заставим ту же силу, которая вывела электрон из первоначального положения, сразу же вернуть его на место. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение дел. Пусть теперь электрон периодически повторяет это движение, и тогда по радиальным силовым линиям электрического поля во все стороны побегут настоящие волны. Эта картина уже много лучше первой. Впрочем, она тоже не вполне верна - волны получаются чисто электрическими, а не электромагнитными.

Тут самое время вспомнить о законе электромагнитной индукции: изменяющееся электрическое поле порождает магнитное, а изменяющееся магнитное - электрическое. Эти два поля как бы сцеплены друг с другом. Как только мы создаем волнообразное изменение электрического поля, так сразу же к нему добавляется и магнитная волна. Разделить эту пару волн невозможно - это единое электромагнитное явление.

Можно и дальше уточнять описание, постепенно избавляясь от неточностей и грубых приближений. Если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но давайте остановимся на полпути, потому что для нас пока важно лишь качественное понимание вопроса, а все основные моменты уже ясны из нашей модели. Главный из них - независимость распространения электромагнитной волны от ее источника.

В самом деле, волны электрического и магнитного полей, хотя и возникли благодаря колебаниям заряда, но вдали от него распространяются совершенно самостоятельно. Что бы ни случилось с зарядом-источником, сигнал об этом не догонит уходящую электромагнитную волну - ведь он будет распространяться не быстрее света. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.

Материал из Википедии - свободной энциклопедии

К:Википедия:Страницы на КУЛ (тип: не указан)

Длина волны - частота - энергия фотона

В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

  • Частоту колебаний - шкала частот приведена в отдельной статье;
  • Энергию фотона (кванта электромагнитного поля).

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа .

Ультрафиолетовое излучение

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

Оптическое излучение

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

  • от 30 ГГц до 300 ГГц - микроволны .
  • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
  • от 300 МГц до 3 ГГц - дециметровые волны .
  • от 30 МГц до 300 МГц - метровые волны .
  • от 3 МГц до 30 МГц - короткие волны .
  • от 300 кГц до 3 МГц - средние волны .
  • от 30 кГц до 300 кГц - длинные волны .
  • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

См. также

Напишите отзыв о статье "Электромагнитный спектр"

Примечания

Отрывок, характеризующий Электромагнитный спектр

– Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
– Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.
Кутузов занимал небольшой дворянский замок около Остралиц. В большой гостиной, сделавшейся кабинетом главнокомандующего, собрались: сам Кутузов, Вейротер и члены военного совета. Они пили чай. Ожидали только князя Багратиона, чтобы приступить к военному совету. В 8 м часу приехал ординарец Багратиона с известием, что князь быть не может. Князь Андрей пришел доложить о том главнокомандующему и, пользуясь прежде данным ему Кутузовым позволением присутствовать при совете, остался в комнате.
– Так как князь Багратион не будет, то мы можем начинать, – сказал Вейротер, поспешно вставая с своего места и приближаясь к столу, на котором была разложена огромная карта окрестностей Брюнна.
Кутузов в расстегнутом мундире, из которого, как бы освободившись, выплыла на воротник его жирная шея, сидел в вольтеровском кресле, положив симметрично пухлые старческие руки на подлокотники, и почти спал. На звук голоса Вейротера он с усилием открыл единственный глаз.
– Да, да, пожалуйста, а то поздно, – проговорил он и, кивнув головой, опустил ее и опять закрыл глаза.
Ежели первое время члены совета думали, что Кутузов притворялся спящим, то звуки, которые он издавал носом во время последующего чтения, доказывали, что в эту минуту для главнокомандующего дело шло о гораздо важнейшем, чем о желании выказать свое презрение к диспозиции или к чему бы то ни было: дело шло для него о неудержимом удовлетворении человеческой потребности – .сна. Он действительно спал. Вейротер с движением человека, слишком занятого для того, чтобы терять хоть одну минуту времени, взглянул на Кутузова и, убедившись, что он спит, взял бумагу и громким однообразным тоном начал читать диспозицию будущего сражения под заглавием, которое он тоже прочел:
«Диспозиция к атаке неприятельской позиции позади Кобельница и Сокольница, 20 ноября 1805 года».
Диспозиция была очень сложная и трудная. В оригинальной диспозиции значилось:
Da der Feind mit seinerien linken Fluegel an die mit Wald bedeckten Berge lehnt und sich mit seinerien rechten Fluegel laengs Kobeinitz und Sokolienitz hinter die dort befindIichen Teiche zieht, wir im Gegentheil mit unserem linken Fluegel seinen rechten sehr debordiren, so ist es vortheilhaft letzteren Fluegel des Feindes zu attakiren, besondere wenn wir die Doerfer Sokolienitz und Kobelienitz im Besitze haben, wodurch wir dem Feind zugleich in die Flanke fallen und ihn auf der Flaeche zwischen Schlapanitz und dem Thuerassa Walde verfolgen koennen, indem wir dem Defileen von Schlapanitz und Bellowitz ausweichen, welche die feindliche Front decken. Zu dieserien Endzwecke ist es noethig… Die erste Kolonne Marieschirt… die zweite Kolonne Marieschirt… die dritte Kolonne Marieschirt… [Так как неприятель опирается левым крылом своим на покрытые лесом горы, а правым крылом тянется вдоль Кобельница и Сокольница позади находящихся там прудов, а мы, напротив, превосходим нашим левым крылом его правое, то выгодно нам атаковать сие последнее неприятельское крыло, особливо если мы займем деревни Сокольниц и Кобельниц, будучи поставлены в возможность нападать на фланг неприятеля и преследовать его в равнине между Шлапаницем и лесом Тюрасским, избегая вместе с тем дефилеи между Шлапаницем и Беловицем, которою прикрыт неприятельский фронт. Для этой цели необходимо… Первая колонна марширует… вторая колонна марширует… третья колонна марширует…] и т. д., читал Вейротер. Генералы, казалось, неохотно слушали трудную диспозицию. Белокурый высокий генерал Буксгевден стоял, прислонившись спиною к стене, и, остановив свои глаза на горевшей свече, казалось, не слушал и даже не хотел, чтобы думали, что он слушает. Прямо против Вейротера, устремив на него свои блестящие открытые глаза, в воинственной позе, оперев руки с вытянутыми наружу локтями на колени, сидел румяный Милорадович с приподнятыми усами и плечами. Он упорно молчал, глядя в лицо Вейротера, и спускал с него глаза только в то время, когда австрийский начальник штаба замолкал. В это время Милорадович значительно оглядывался на других генералов. Но по значению этого значительного взгляда нельзя было понять, был ли он согласен или несогласен, доволен или недоволен диспозицией. Ближе всех к Вейротеру сидел граф Ланжерон и с тонкой улыбкой южного французского лица, не покидавшей его во всё время чтения, глядел на свои тонкие пальцы, быстро перевертывавшие за углы золотую табакерку с портретом. В середине одного из длиннейших периодов он остановил вращательное движение табакерки, поднял голову и с неприятною учтивостью на самых концах тонких губ перебил Вейротера и хотел сказать что то; но австрийский генерал, не прерывая чтения, сердито нахмурился и замахал локтями, как бы говоря: потом, потом вы мне скажете свои мысли, теперь извольте смотреть на карту и слушать. Ланжерон поднял глаза кверху с выражением недоумения, оглянулся на Милорадовича, как бы ища объяснения, но, встретив значительный, ничего не значущий взгляд Милорадовича, грустно опустил глаза и опять принялся вертеть табакерку.
– Une lecon de geographie, [Урок из географии,] – проговорил он как бы про себя, но довольно громко, чтобы его слышали.
Пржебышевский с почтительной, но достойной учтивостью пригнул рукой ухо к Вейротеру, имея вид человека, поглощенного вниманием. Маленький ростом Дохтуров сидел прямо против Вейротера с старательным и скромным видом и, нагнувшись над разложенною картой, добросовестно изучал диспозиции и неизвестную ему местность. Он несколько раз просил Вейротера повторять нехорошо расслышанные им слова и трудные наименования деревень. Вейротер исполнял его желание, и Дохтуров записывал.
Когда чтение, продолжавшееся более часу, было кончено, Ланжерон, опять остановив табакерку и не глядя на Вейротера и ни на кого особенно, начал говорить о том, как трудно было исполнить такую диспозицию, где положение неприятеля предполагается известным, тогда как положение это может быть нам неизвестно, так как неприятель находится в движении. Возражения Ланжерона были основательны, но было очевидно, что цель этих возражений состояла преимущественно в желании дать почувствовать генералу Вейротеру, столь самоуверенно, как школьникам ученикам, читавшему свою диспозицию, что он имел дело не с одними дураками, а с людьми, которые могли и его поучить в военном деле. Когда замолк однообразный звук голоса Вейротера, Кутузов открыл глава, как мельник, который просыпается при перерыве усыпительного звука мельничных колес, прислушался к тому, что говорил Ланжерон, и, как будто говоря: «а вы всё еще про эти глупости!» поспешно закрыл глаза и еще ниже опустил голову.
Стараясь как можно язвительнее оскорбить Вейротера в его авторском военном самолюбии, Ланжерон доказывал, что Бонапарте легко может атаковать, вместо того, чтобы быть атакованным, и вследствие того сделать всю эту диспозицию совершенно бесполезною. Вейротер на все возражения отвечал твердой презрительной улыбкой, очевидно вперед приготовленной для всякого возражения, независимо от того, что бы ему ни говорили.

Совокупность всех частот (длин волн) электромагнитного излучения называют электромагнитным спектром. Интервал длин волн от 10 -10 до 10 -1 м разбивают на области (рис. 2): ультрафиолетовая (УФ) область охватывает диапазон ~10 - 380 нм; инфракрасная (ИК) область 750-10 5 нм; видимый свет, используемый в наиболее распространенных методах ана­лиза, занимает узкую область 380 -750 нм.

Поток фотонов с одинаковой частотой называют монохро­матическим , с разными частотами-полихроматическим. Обыч­ный наблюдаемый поток излучения от раскаленных тел, в ча­стности солнечный свет, является полихроматическим.

Рис. 2. Области электромагнитного спектра

2. Строение вещества и происхождение спектров

Из всего многообразия вопросов, связанных со строением вещества (структура кристаллических и некристаллических тел, теория химической связи, строение атомов, молекул и ядер), остановимся лишь на тех, которые имеют непосредственное отношение к спектроскопическим методам анализа,- это строение атомов и молекул.

2.1. Строение атома и происхождение атомных спектров

Атом-дискретная частица вещества размером ~10 -8 см, состоящая из положительно заряженного ядра радиусом ~10 -12 см и движущихся вокруг него отрицательно заряженных электронов. Скорость электрона столь велика, что в атоме доминируют его волновые свойства. Длина волны движущегося электрона ~10 -8 см соизмерима с атомными размерами, по­этому электрон нельзя представить в виде дискретного объекта, как это делается в классической физике, например при движении электронов в газоразрядной трубке. Электрон как бы размазан по атому в виде волны, и можно говорить лишь о вероятности его пребывания в какой-то точке внутри атома или о рас­пределении плотности отрицательного заряда вокруг ядра, ко­торое может быть достаточно сложным.

Области с максимальной плотностью заряда называют эле­ктронными орбиталями или энергетическими уровнями , поскольку каждая орбиталь характеризуется определенной энергией. Энер­гетическое состояние всего атома определяется в основном энергией электронных орбиталей.

Каждый электрон и атом, а следовательно, энергетический уровень описывают набором четырех квантовых чисел: главного, побочного, магнитного и спинового.

Главное квантовое число п характеризует удаленность электрона от ядра и принимает значения 1, 2, 3, .... Чем больше n, тем дальше от ядра находится электронная орбиталь.

Побочное квантовое число l определяет форму орбитали и принимает значения 0, 1, 2, 3, ..., которые обозначают буквами s , р, d , f , .... Движущийся электрон обладает моментом количества движения. При l = 0 момент количества движения равен нулю и электрический заряд размазан по сфере, при l = 1 орбиталь имеет форму гантели.

Магнитное квантовое число т характеризует расположение орбитали в про­странстве и принимает значения от –l до l . При l = 0 магнитное квантовое число равно нулю, при l = 1 оно принимает значения -1, 0, +1, и орбитали, имеющие форму гантели, располагаются вдоль осей прямоугольной системы координат.

Спиновое квантовое число m s , равное -1/2 и +1/2, отражает собственный момент импульса электрона.

По принципу Паули в атоме не может быть двух электронов с одинаковым набором квантовых чисел (хотя бы одно число должно отличаться). В противном случае силы отталкивания «вытолкнули» бы один из них на другую орбиталь. Поэтому многоэлектронный атом имеет сложную структуру: электроны с один­аковыми главными квантовыми числами образуют электронные слои-оболочки (уровни), обозначаемые буквами К, L, М, ... для /1 = 1, 2, 3, ... соответственно, а электроны с одинаковыми побочными квантовыми числами -подоболочки (подуровни) в пределах одной оболочки. Электроны с разными значениями l и т, но с одинаковым п могут оказаться равными по энергии (вырожденными), однако при воздействии какого-либо внешнего поля (электрического, магнитного и др.) вырождение снимается.

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа №39

Семинар по теме:

«Спектр электромагнитных излучений»

«Кругом нас, в нас самих, всюду и везде, вечно сменяясь, совпадая и сталкиваясь, идут излучения разной длины волны… Лик Земли ими меняется, ими в значительной мере лепится»

В.И.Вернадский

Клочкова Н.Ф. – учитель физики

Г.Воронеж – 2013г.

Обучающие цели урока:

1.Усвоить следующие элементы неполного опыта учащихся в рамках отдельного урока:

2.Низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи; их применение в жизнедеятельности человека.

3.Систематизировать и обобщить знания об электромагнитных волнах.

Развивающие цели урока:

1.продолжить формирование научного мировоззрения на основе знаний об электромагнитных волнах.

2.показать комплексное решение проблем на основе знаний физики и информатики.

3.способствовать развитию аналитико-синтетического и образного мышления, для чего побуждать учащихся к осмыслению и нахождению причинно-следственных связей. 4.формировать и развивать ключевые компетенции: информационную, организационную, самоорганизационную, коммуникационную.

5.При работе в паре и в группе сформировать такие важные качества и умения школьника, как: желание участвовать в совместной деятельности, уверенность в успехе, ощущение положительных эмоций от совместной деятельности;

умение презентовать себя и свою работу;

умение строить деловые отношения в совместной деятельности на уроке (принимать цель совместной деятельности и сопроводительные указания к ней, разделять обязанности, согласовывать способы достижения результата предложенной цели);

анализировать и оценивать полученный опыт взаимодействия.

Воспитательные цели урока:

1.развивать вкус, акцентируя внимание на оригинальном дизайне презентации с эффектами анимации.

2.воспитывать культуру восприятия теоретического материала с помощью компьютера для получения знаний об истории открытия, свойствах и применении электромагнитных волн

3. воспитание чувства гордости за свою Родину, за отечественных ученых, которые работали в области электромагнитных волн, применили их в жизнедеятельности человека.

Оборудование:

Ноутбук, проектор, электронная библиотека «Просвещение» диск 1 (10-11класс), материалы из интернета.

План урока:

1 . Вступительное слово учителя.

2.Изучение нового материала .

1)Низкочастотное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

2)Радиоволны: история открытия, источники и приемники, свойства и применение.

3)Инфракрасное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

4)Видимое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

5)Ультрафиолетовое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.

6)Рентгеновское излучение: история открытия, источники и приемники, свойства и применение.

7)Гамма - излучение: история открытия, источники и приемники, свойства и применение.

Каждая группа дома готовила таблицу:

История открытия

Источники и приемники

Свойства

Применение

Историк изучал и записывал в свою таблицу историю открытия излучения,

Конструктор изучал источники и приемники различных типов излучений,

Теоретик-эрудит изучал характерные свойстваэлектромагнитных волн,

Практик изучал практическое применение электромагнитных излучений в различных сферах деятельности человека.

Каждый учащийся к уроку чертил 7 таблиц, одна из которых дома заполнялась им.

Учитель: Шкала ЭМ излучений имеет два раздела:

1 раздел – излучение вибраторов;

2 раздел – излучение молекул, атомов, ядер.

1 раздел делится на 2 части (диапазона): низкочастотное излучение и радиоволны.

2 раздел содержит 5 диапазонов: инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи.

Мы начинаем изучение с низкочастотных электромагнитных волн, координатору группы 1 предоставляется слово.

Координатор 1:

Низкочастотное электромагнитное излучение -

это электромагнитные волны с длиной волны 10 7 - 10 5 м

,

История открытия:

Впервые обратил внимание на низкочастотные

электромагнитные волны советский физик Вологдин В.П., создатель современной высокочастотной электротехники. Он обнаружил, что при работе индукционных генераторов повышенной частоты возникали электромагнитные волны длиной от 500 метров до 30 км.

Вологдин В.П.

Источники и приемники

Электрические колебания низкой частоты создаются генераторами в электрических сетях частотой 50 Гц, магнитными генераторами повышенной частоты до 200 Гц, а также в телефонных сетях частотой 5000 Гц.

Электромагнитные волны более 10 км называют низкочастотными волнами. С помощью колебательного контура можно получить электромагнитные волны (радиоволны). Это доказывает, что резкой границы между НЧ и РВ нет. НЧ волны генерируются электрическими машинами и колебательными контурами.

Свойства

Отражение, преломление, поглощение, интерференция, дифракция, поперечность (волны с определённым направлением колебаний Е и В называются поляризованными),

Быстрое затухание;

В веществе, которое пронизывает НЧ волны, индуцируются вихревые токи, вызывая глубокое прогревание этого вещества.

Применение

Низкочастотное электромагнитное поле индуцирует вихревые токи, вызывая глубокое нагревание – это индуктотермия. НЧ используется на электростанциях, в двигателях, в медицине.

Учитель: Расскажите о низкочастотном электромагнитном излучении.

Ученики рассказывают.

Учитель: Следующий диапазон – радиоволны, слово предоставляется координатору 2 .

Координатор 2:

Радиоволны

Радиоволны - это электромагнитные волны с длиной волны от нескольких км до нескольких мм и частотой от 10 5 -10 12 Гц.

История открытия

О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма.

В 1896 году Генрих Герц экспериментально подтвердил

теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров.

В 1895году 7 мая А.С.Попов доложил Русскому физико-химическому обществу об изобретении прибора, могущего улавливать и регистрировать электрические разряды.

24марта 1896года, используя эти волны, он передал на расстояние 250м первую в мире радиограмму из двух слов «Генрих Герц».

В 1924г. А.А. Глаголева-Аркадьева с помощью созданного ею массового излучателя получила еще более короткие ЭМ волны, заходящие в область ИКИ излучения.

М.А.Левитская, профессор Воронежского Государственного Университета в качестве излучающих вибраторов брала металлические шарики и маленькие проволочки, наклеенные на стекла. Ею получены ЭМ волны с длиной волны 30мкм.

М.В. Шулейкин разработал математический анализ процессов радиосвязи.

Б.А.Введенский разработал теорию огибания радиоволнами земли.

О.В.Лосев открыл свойство кристаллического детектора генерировать незатухающие колебания.

Источники и приёмники

РВ излучаются вибраторами (антеннами, соединёнными с ламповыми или полупроводниковыми генераторами. В зависимости от назначения генераторы и вибраторы могут иметь разную конструкцию, но всегда антенна преобразует подводимые к ней ЭМ волны.

В природе существуют естественные источники РВ во всех частотных диапазонах. Это звёзды, Солнце, галактики, метагалактики.

РВ генерируются и при некоторых процессах, происходящих в земной атмосфере, например при разряде молний.

Принимаются РВ также антеннами, которые преобразуют падающие на них ЭМ волны, в электромагнитные колебания, воздействующие затем на приёмник (телевизор, радиоприёмник, ЭВМ и др.)

Свойства радиоволн:

Отражение, преломление, интерференция, дифракция, поляризация, поглощение, короткие волны хорошо отражаются от ионосферы, ультракороткие проникают через ионосферу.

Влияние на здоровье человека

Как отмечают медики, наиболее чувствительными системами организма человека к электромагнитным излучениям являются: нервная, иммунная, эндокринная и половая.

Исследование воздействия радиоизлучения от мобильных телефонов на людей дает первые неутешительные результаты.

Еще в начале 90-х годов американский ученый Кларк обратила внимание, что здоровье улучшают …. радиоволны!

В медицине существует даже направление - магнитотерапия, а некоторые ученые, например, доктор медицинских наук, профессор В.А. Иванченко, использует работающие на этом принципе свои медицинские приборы в лечебных целях.

Кажется невероятным, но найдены частоты, губительные для сотен микроорганизмов и простейших, а на определенных частотах идет восстановление организма стоит на несколько минут включить прибор и, в зависимости от определенной частоты, органы, отмеченные как больные, восстанавливают свои функции, приходят в диапазон нормы.

Защита от негативного воздействия

Далеко не последнюю роль могут играть средства индивидуальной защиты на основе текстильных материалов.
Многие зарубежные фирмы создали ткани, позволяющие эффективно защищать организм человека от большинства видов электромагнитного излучения

Применение радиоволн

Телескоп – гигант позволяет вести радиоизмерения.

Комплекс «Спектр-М» позволяет анализировать в какой угодно области спектра любые образцы: твердые, жидкие, газообразные.

Уникальный микроэндоскоп повышает точность диагноза.

Радиотелескоп субмиллиметрового диапазона регистрирует излучение из части Вселенной, которая закрыта слоем космической пыли.

Компактная камера. Преимущество: возможность стирать снимки.

Радиотехнические методы и устройства применяются в автоматике, вычислительной технике, астрономии, физике, химии, биологии, медицине и т. д.

Микроволновое излучение используют для быстрого приготовления пищи в СВЧ-печах.

Воронеж – город радиоэлектроники. Магнитофоны и телевизоры, радиоприемники и радиостанции, телефон и телеграф, радио и телевидение.

Учитель: Расскажите о радиоволнах. Сравните свойства низкочастотного излучения со свойствами радиоволн.

    Ученики рассказывают. Короткие волны хорошо отражаются от ионосферы. Ультракороткие проникают через ионосферу.

Учитель: Следующий диапазон – инфракрасное излучение, слово предоставляется координатору 3 .

Координатор 3:

Инфракрасное излучение

Частотный диапазон инфракрасных излучений

3 . 10 11 – 4 . 10 14 Гц

История открытия

Инфракрасное излучение было обнаружено английским астрономом и физиком Уильямом Гершелем в 1800 году.

Расщепив солнечный свет призмой, Гершель поместил термометр сразу за красной полосой видимого спектра и обнаружил, что температура термометра повышается. Следовательно, на термометр воздействует излучение, недоступное человеческому взгляду.

Источники инфракрасного излучения

ИК волны излучают нагретые тела, молекулы которых движутся интенсивно. Это излучение называют тепловым: электрическая дуга, квантовые генераторы(лазеры), тело человека.

50 % энергии Солнца излучается в инфракрасном диапазоне, самый мощный источник ИКИ.

Основная часть излучения лампы накаливания лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. КПД этих ламп только15 %.

Приемники инфракрасного излучения

Их действие основано на преобразовании энергии ИКИ в другие виды энергии, измеряющиеся обычными методами.

Это термоэлементы, болометры, фотоэлементы, фоторезисторы, чувствительные к ИКИ.

Свойства

1.Все свойства электромагнитных волн (отражение, преломление, интерференция, дифракция, поглощение и др.)

2.Характерной особенностью ИКИ является тепловое воздействие, а также способность сильно поглощаться некоторыми веществами.

3.Проходя через земную атмосферу, ИКИ ослабляется в результате рассеивания азотом и кислородом и поглощения парами воды.

4.Наличие в атмосфере взвешенных частиц пыли, дыма, капель воды приводит к «парниковому эффекту».

5.Химическое действие.

6.Невидимое.

Применение ИК излучения

Для сушки лакокрасочных покрытий, овощей, фруктов.

Преимущества:

Быстрый нагрев изделий и материалов до заданной температуры,

Небольшая длительность ИК-сушки для ряда лакокрасочных материалов по сравнению с конвективным способом сушки;

Возможность нагрева части изделия (зонный нагрев).

Инфракрасное излучение применяется в медицине, т.к. оказывает болеутоляющее, антиспазматическое, противовоспалительное, циркуляторное, стимулирующее и отвлекающее действие.

В приборах ночного видения:

биноклях,

очках,

прицелах для стрелкового оружия,

ночных фото- и видеокамер.

Здесь невидимое глазом инфракрасное изображение объекта преобразуется в видимое.

Тепловизор - устройство для наблюдения за распределением температуры исследуемой поверхности. Распределение температуры отображается на дисплее как цветовое поле, где определённой температуре соответствует определённый цвет.

Термограмма - изображения в инфракрасных лучах, показывающего картину распределения температурных полей.


Тепловизоры применяют на предприятиях, где необходим контроль за тепловым состоянием объектов, и в организациях, занимающихся поиском неисправностей сетей различного назначения.

Так, сканирование тепловизором может показать место отхода контактов в системах электропроводки

Тепловизоры используют в строительстве при оценке теплоизоляционных свойств конструкций. С их помощью можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

Тепловизионный снимок кирпичного фасада для оценки потерь тепла

Термограммы используют в медицине для диагностики заболеваний.

Так, инфракрасные снимки вен позволяют обнаруживать места закупорки сосудов, места локализации тромбов или злокачественных опухолей, даже если их температура превышает окружающую температуру на сотые доли градуса.

Термограмма тела человека

В телефонной связи, фотографирование в ИК лучах позволяют обнаруживать невидимые глазу звезды и слабо нагретые туманности, для сортировки материалов, обнаружения невидимых пятен, подписей, повреждений и для изучения тонких структур.

Радиоспектроскопия – наука, использующая методы радиофизики для изучения электромагнитных волн сантиметрового и миллиметрового диапазона.

Дистанционное управление телевизором или видеомагнитофоном осуществляется с помощью ИК излучения. В пультах дистанционного управления пучок инфракрасного излучения испускает светодиод.

Учитель: Расскажите об инфракрасном излучении. Сравните свойства инфракрасного излучения со свойствами радиоволн.

Ученики рассказывают.

Учитель: Следующий диапазон – видимое излучение, слово предоставляется координатору 4 .

Координатор 4:

Видимое излучение

Длина волн приблизительно от 380нм (фиолетовый) до 780 нм (красный).

История открытия

В работах Пифогора, Аристотеля, Платона и Евклида рассматриваются вопросы природы и распространения света, но только в средние века был заложен действительно научный фундамент учения о свете. В его основе работы Ньютона, Ломоносова, Гюйгенса, Гримальди и др. Именно в 16-17веке была обнаружена дифракция, дисперсия, поляризация света, изучены отражение и преломление света, измерена его скорость, построены первые телескопы и микроскопы. Ломоносов был крупным специалистом в области теоретической оптики.

В 1756г. Он выступил на собрании Академии наук с речью «Слово о происхождении света». В ней он высказал предположение о волновой природе света. Впервые указал на единую природу тепловых и световых лучей, изложил основы цветовидения.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах. Физики 20 века показали, что для света характерна двойственность свойств. В зависимости от условий свет проявляет волновые или квантовые свойств.

Ньютон Гете Бэкон

Источники излучения

Солнце

Звезды

Электролампы

Люминесцентные лампы

Электрическая дуга

Лазеры

Полярное сияние

Свойства световых волн

Отражение

Преломление


Световые волны преломляются сильнее, чем радиоволны, но меньше инфракрасных излучений.

Дисперсия

Интерференция

Дифракция


Поляризация

Свойства световых волн

Воздействует на глаз,

Делает видимым окружающие предметы,

Способствует появлению свободных электронов,

Вызывает фотоэффект,

Обладает способностью оказывать:

Фотохимическое и

Биологическое действие .

Применение видимого излучения

Освещение


3) Геометрическая оптика в медицинских приборах

Очки- простейший медицинский прибор.


Лазерное излучение

является особым видом светового излучения электромагнитной природы, получаемое с помощью оптических квантовых генераторов - лазеров.

Микроскопы

Применяют для получения больших увеличений.

Телескопы

Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Телескопы бывают линзовые и

зеркальные.

Учитель: Расскажите о видимом излучении. Сравните свойства видимого излучения со свойствами инфракрасного излучения. Ученики рассказывают . Видимое излучение дает возможность познания окружающего мира.

Учитель: Следующий диапазон – ультрафиолетовое излучение, слово предоставляется координатору 5 .

Координатор 5:

Ультрафиолетовое излучение

Ультрафиолетовое излучение это электромагнитные волны с длиной волны 3,8*10 -7 – 10 -8 м.

История открытия

Английский врач Волластон и немецкий ученый Иоганн Риттер воспользовались фотопластинкой (фотохимическим действием электромагнитного излучения).

Они установили, что за фиолетовым концом видимого спектра пленка засвечивается гораздо сильнее, чем за фиолетовыми лучами.

Так как спектр они получили, разлагая белый свет, тот стало ясно, что в состав солнечного излучения входит более коротковолновое, чем фиолетовый свет, излучение.

Оно получило название ультрафиолетового излучения.


Иоганн Вильгельм Риттер и

Волластон Уильям Хайд(1801)

Источники и приемники

Источники: Все тела, нагретые до 3000 градусов Цельсия (Солнце, звезды, высокотемпературная плазма, электрическая дуга, газоразрядные лампы: ртутные, ксеноновые, водородные и др.)

Солнце Ртутно-кварцевые лампы

Приемники: Для регистрации ультрафиолетового излучения используют обычные фотоматериалы. Ультрафиолетовое излучение обнаруживается с помощью фотоэлементов, фотоумножителей, люминофоров, светящихся под действием ультрафиолетовых лучей

Свойства

Невидимое

Проявляет все свойства электромагнитных волн: отражение, преломление, поглощение, интерференция, дифракция, поперечность и др.)

Оказывает сильное биологическое действие (убивает болезнетворные микробы, влияет на ЦНС)

Ионизирует воздух

Оказывает химическое действие (на люминисцентный экран, фотобумагу и др.)

Для УФИ кварц прозрачен, стекло непрозрачно)

УФИ в малых дозах:

повышает тонус живого организма;

активирует защитные механизмы;

повышает уровень иммунитета, а также увеличивает секрецию ряда гормонов;

образуются вещества, которые обладают сосудорасширяющим действием, повышают проницаемость кожных сосудов;

изменяется углеводный и белковый обмен веществ в организме;

изменяет легочную вентиляцию - частоту и ритм дыхания; повышается газообмен;

образуется в организме витамин D 2, укрепляющий костно-мышечную систему и обладающий антирахитным действием;

убивает бактерии.

УФИ в больших количествах :

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к .

Длительное действие ультрафиолета способствует развитию , различных видов кожи, ускоряет старение и появление морщин.

Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза , несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.

Применение

Медицина: бактерицидные лампы

Промышленность: строительство, ртутные лампы, специальная фотография и др.

Наука: астрономия, химия, дефектоскопия и др.

Сельское хозяйство: сушка овощей, зерна и др

Люминесцентные лампы Солярий Кварцевание инструмент в лаборатории

Учитель: Расскажите об ультрафиолетовом излучении. Сравните свойства ультрафиолетового излучения со свойствами видимого излучения.

Ученики рассказывают .

Учитель: Следующий диапазон – рентгеновское излучение, слово предоставляется координатору 6 .

Рентгеновское излучение

Рентгеновское излучение составляют электромагнитные волны с длиной

от 50 нм до 10 -3 нм и

частотой 3·10 17 - 3·10 20 Гц

Первооткрыватели

Рентгеновское излучение было открыто немецким физиком В.Рентгеном (1845-1923). В1895году. Его имя увековечено и в некоторых других физических терминах, связанных с этим излучением.


Источники рентгеновского излучения

В 1895 г. Вильгельм много экспериментировал с газоразрядными трубками, изучал катодные лучи. При этом обнаружил свечение люминесцентного экрана, расположенного вблизи трубки. Поместив трубку в коробку из черного картона, к своему удивлению, не заметил никакого уменьшения яркости свечения, более того, свечение можно было обнаружить даже тогда, когда экран был удален на 2 м.

Рентген понял, что открыл новый вид излучения.

Он назвал его Х-лучами и принялся за изучение свойств открытого излучения.

Источники и приемники рентгеновского излучения

Источником РИ является рентгеновская трубка, в которой ускоренные электрическим полем электроны бомбардируют металлический анод.

При резком торможении заряженных частиц возникает РИ.

Источником РИ являются некоторые радиоактивные изотопы.

Действие приемников РИ основано на их сильном химическом ионизирующем воздействии, а также способности вызывать люминесценцию.

Приемники рентгеновского излучения

Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

В любой современной физической лаборатории, занимающейся проблемами ядерной физики или изучении космических лучей, можно увидеть прибор, носящий имя его изобретателя, - камера Вильсона

Свойства рентгеновского излучения

Рентген установил, что открытые им лучи обладают:

огромной проникающей способностью,

оказывает фотохимическое действие,

открытые им лучи не отклонялись ни в магнитном, ни в электрическом полях,

вызывали люминесценцию излучения света источниками за счет поступления к ним энергии в результате различных процессов,

РИ поглощается веществом, степень поглощения пропорциональна плотности вещества,

обладает всеми свойствами электромагнитных волн(отражение, преломление и др.),

невидимое.

Влияние на здоровье человека

Облучение в больших количествах вызывает лучевую болезнь

Способы защиты от отрицательного воздействия рентгеновского излучения

Экранами могут защищаться оконные проемы и стены зданий и сооружений, находящихся под воздействием электромагнитного излучения (ЭМИ).

Врачи, работающие у рентгеновских аппаратов, стали защищаться свинцовым экраном: свинец - это как бы защитная броня, он не пропускает рентгеновских лучей.

Медицина: рентгенограммы

Техника: рентгеновская дефектоскопия

Наука: изучение структуры кристаллов и белковых молекул, рентгеновская спектроскопия, рентгеновский микроскоп и др.

Аппарат для флюорографии Маммограф

Применение рентгеновского излучения

Медицина и культура

Диагностика болезней(переломы, опухоли и др.)

Лечение болезней

Определение дефектов картин

Отделение поддельных бриллиантов от настоящих


Томограф Снимок в рентгеновских лучах

Применение рентгеновского излучения

Наука и техника

Рентгеновский микроскоп: изучение биологических объектов(клетки, их составляющие и др.)

Рентгеноструктурный анализ: определение дефектов в кристаллах, изучение структуры вещества

Рентгенодефектоскопия: определение трещин,раковин, толщины швов и др.

Рентгеновская спектроскопия: изучение строения и свойств атомов

Рентгеновская голография объектов

Рентгеновский телескоп : изучение звезд, определение их координат и др.

Аппараты для проведения рентгеноструктурного анализа вещества


Учитель: Расскажите о рентгеновском излучении. Сравните свойства рентгеновского излучения со свойствами ультрафиолетового излучения.

Ученики рассказывают . Учитель: Следующий диапазон – гамма-излучение, слово предоставляется координатору7

Гамма - излучение

Длина волны - < 5·10 −3 нм

История открытия

Гамма-излучение было открыто французским физиком Полем Виллардом в 1900 году при исследовании излучения радия.

Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью.

Источники гамма- излучения

Атомные ядра, изменяющие энергетическое состояние.

Ускоренно движущиеся заряженные частицы.

Звезды, галактики.

Ядерные реакции, радиоактивный распад ядер.


Свойства гамма-излучения

Большая проникающая способность.

Высокая химическая активность.

Является ионизирующим, вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.

Применение

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Уровнемеры.

Гамма-каротаж в геологии.

Гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Все свойства электромагнитных волн.

Учитель: Расскажите о гамма-излучении. Сравните свойства гамма-излучения со свойствами рентгеновского излучения.

Ученики рассказывают . Выводы

Различные виды электромагнитных излучений имеют ряд общих свойств, что позволяет рассматривать их как составные части единой шкалы электромагнитных излучений.

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны .

Учитель: Существуют ли четкие границы между отдельными диапазонами?

Учащиеся: Нет. Между отдельными видами излучений нет принципиального отличия. Работы Левитской, Вологдина и др. показали, излучения граничных частот могут быть получены двумя способами: и как низкочастотные и как высокочастотные, да и свойства их сходны.

Всё говорит об условности границ между отдельными областями спектра /шкалы/электромагнитных излучени, но каждый вид излучения имеет своё характерное свойство, обусловленное частотой излучения.
Учитель: Кончается ли шкала электромагнитных излучений с длиной волны λ =10-13см?

Учащиеся: Шкала не имеет границ, ибо нет пределов познания природы. Ученые, безусловно, найдут еще методы получения еще более коротких волн.

Пройдем по свойствам волн, начиная с радиоволн.

Инфракрасное излучение обладает тепловыми свойствами.

С помощью видимого излучения человек познаёт окружающий мир.

Ультрафиолетовое излучение обладает бактерицидными и ионизирующими свойствами.

Рентгеновы лучи обладают большой проникающей способностью и биологической активностью.

Гамма – лучи обладают еще более проникающей способностью и биологической активностью.

Вывод 1 Количественные характеристики волн: длина и частота определяют их качество.

Пройдем снова по свойствам волн слева направо. При этом переходе (длина волны уменьшается, а частота увеличивается) нарастают квантовые свойства, а уменьшаются волновые.

Вывод 2. Все излучения объединяют, казалось бы, противоположные свойства: волновые и квантовые.

Здесь четко выражен дуализм в природе, единство и борьба двух противоположностей

(чем короче длина волны, тем четче выражены квантовые свойства).

Учитель: Мы видим на уроке подтверждение двух законов диалектики: закона перехода количественных изменений в качественные на примере свойств НИ, РВ, ИКИ, ВИ, УФИ, РИ, гамма-излучения и закона единства и борьбы двух противоположностей на основе волновых и квантовых свойств света.

Задание на дом.

1.записи в тетрадях, дополнить записи.

2.§84-86 Г.Я. Мякишев Б.Б. Буховцев В.М. Чаругин

Литература:

1.Учебник физики-11 Г.Я. Мякишев Б.Б. Буховцев В.М. Чаругин

2.Резников Л.И. «Физическая оптика в средней школе»

3.Орехов В.П. «Колебания и волны в курсе физики средней школы»

4.А.Луизов, Н.Теребинская «Свет без тепла»

5. Материалы Интернета

и другие.