Эмпирически определяют, изучая стоячие волны, которые получают, например, в цепи, которая изображена на рис. 1, где выход генератора соединен с проводами линии через конденсаторы. Когда генератор работает, между проводами появляются колебания напряжения, а, значит, существуют колебания электрического поля, то есть возникает электромагнитная волна .

Рисунок 1.

Для понимания об интенсивности колебаний в различных точках линии включают лампы накаливания . В таких опытах можно показать, что стоячие волны в линии появляются только при определенной частоте генератора, когда она совпадает с частотой собственных колебаний линии.

Измеряя расстояния ($\triangle x$) между соседними узлами или пучностями в стоячей волне, определяется $\frac{1}{2}$ длины волны ($\lambda $). При этом, известно, что:

где $\nu $ -- частота генератора. Измерив $\nu $, легко найти скорость распространения электромагнитной волны. Опыты показали, что скорость электромагнитной волны ($v$) совпадает со скоростью света. В воздухе она приблизительно равна $v=c=3\cdot {10}^8\frac{м}{с}.$

Вывод скорости распространения электромагнитных волн из теории Максвелла

Раньше, чем электромагнитные волны были получены в экспериментах, Максвелл вычислил скорость этих волн, используя свою теорию поля. Рассмотри плоскую электромагнитную волну (одномерная задача, означающая, что $\overrightarrow{E\ }и\ \overrightarrow{H\ }зависят\ только\ от\ одной\ координаты,\ допустим\ x$), которая распространяется в однородной среде ($j_x=j_y=j_z=0,\ при\ \varepsilon =const,\ \mu =const$). В таком случае система уравнений Максвелла в скалярном виде будет записана как:

Исключим из уравнений Максвелла электрическое поле. С этой целью используем формулу, связывающую индукцию магнитного поля и его напряженность:

и продифференцируем второе уравнение системы (2) по времени, получим:

Первое уравнение системы (2) продифференцируем по $x$, и используем уравнение:

в результате имеем:

Сравним уравнения (4) и (6), запишем:

Уравнение (7) есть волновое уравнение, следовательно, коэффициент, который стоит при $\frac{{\partial }^2H}{\partial x^2}$ - квадрат скорости распространения электромагнитной волны:

$c$- скорость света. В вакууме скорость электромагнитных волн будет выражена как:

Замечание

Теория Максвелла предсказала, что скорость распространения электромагнитных волн в вакууме равна скорости света - этот факт доказывает, что свет имеет электромагнитную природу.

Замечание 1

Основные процессы при распространении волн в проводах происходят не внутри проводов, а в окружающей их среде. Следовательно, если среда вне провода изменится, то скорость электромагнитных волн будет другой, длина волны при неизменной частоте генератора станет другой.

В справедливости формулы (8) легко убедиться на опыте, если часть двухпроводной линии, которая первоначально была в воздухе погрузить в воду. Для воды $\mu \approx 1,\ \varepsilon >1,$ следовательно, скорость электромагнитных волн в воде меньше, чем в воздухе, значит расстояние между соседними узлами (пучностями) станет меньше.

Следует учитывать, что $\mu \ и\ \ \varepsilon $ зависят от частоты. Поэтому при нахождении скорости применяя формулу (8) следует использовать их значения, соответствующие частоте колебаний в электромагнитной волне.

Пример 1

Задание: Параллельные провода (рис.2) находятся в некотором веществе, магнитная проницаемость которого равна $1$, диэлектрическая проницаемость не равна $1$. Они посредством индуктивности соединены с генератором. При высокой частоте колебаний $\nu $ в системе устанавливаются стоячие электромагнитные волны. Вдоль проводов перемещают газоразрядную трубку $А$, по интенсивности ее свечения определили положения пучностей напряженности электрического поля, расстояние между которыми оказались равны $\triangle x$. Какова диэлектрическая проницаемость вещества?

Рисунок 2.

Решение:

Стоячие электромагнитные волны появляются как результат интерференции волн, которые распространяются по двухпроводной линии от генератора в прямом направлении с волнами, которые отражаются концами линии. При высокой частоте электромагнитных колебаний основные процессы, которые связаны с распространением волн, происходят в среде, которая окружает провода.

В соответствии с теорией Максвелла скорость электромагнитных волн в среде равна:

По условию задачи для данного вещества $\mu =1$, диэлектрическая проницаемость выразится из (1.1) как:

\[\varepsilon =\frac{c^2}{v^2}\left(1.2\right).\]

Скорость электромагнитных волн связана с длинной волны как:

Расстояние между соседними пучностями в стоячей волне равно половине длины волны ($\triangle x=\frac{1}{2}\lambda $), в таком случае имеем:

\[\varepsilon =\frac{c^2}{{(\lambda \nu)}^2}=\frac{c^2}{{4\triangle x^2\nu }^2}.\]

Ответ: $\varepsilon =\frac{c^2}{{4\triangle x^2\nu }^2}.$

Пример 2

Задание: Какова скорость распространения электромагнитной волны в концентрическом кабеле, в котором пространство между внешним и внутренним проводами заполнено диэлектриком с проницаемостью $\varepsilon ?$ Считайте, что потерями в кабеле можно пренебречь.

Решение:

Согласно теории Максвелла, скорость распространения электромагнитных волн в веществе равна:

Ответ: $v=\frac{c}{\sqrt{\varepsilon }}.$

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

1) зависит от частоты

2) зависит от длины волны

3) зависит от амплитуды электрических и магнитных полей

4) является постоянной величиной

5. При распространении электромагнитных волн в вакууме происходит перенос

1) энергии 2) импульса 3) энергии и импульса 4) ни энергии, ни импульса

6. В колебательном контуре радиоприемника возникает резонанс, когда

1) реактивное и активное сопротивления колебательного контура равны

2) частота принимаемых электромагнитных волн больше собственной частоты контура

3) частота принимаемых электромагнитных волн равна собственной частоте контура

4) частота принимаемых электромагнитных волн меньше собственной частоты контура

7. Чтобы настроить колебательный контур на прием более длинных волн, надо:

1) сблизить пластины конденсатора

2) раздвинуть пластины конденсатора

3) увеличить заряд на конденсаторе

4) уменьшить заряд на конденсаторе

8. Между условиями распространения радиоволн на Земле и Луне

1) есть различия, т.к. у Луны нет магнитного поля

2) есть различия, т.к. на Луне нет ионосферы

3) есть различия, т.к. ускорение свободного падения на Луне меньше

4) нет различий

9. Радиостанция работает на частоте 1,5 кГц. Длина радиоволны (в км) равна....

10. Укажите правильный ответ. В электромагнитной волне вектор Е …

А. параллелен В;

Б. антипараллелен В;

В. Направлен перпендикулярно В.

11. Электромагнитная волна представляет собой взаимосвязанные колебания …

А. электронов;

Б. вектора напряженности электрического поля Е и вектора индукции магнитного поля;

В. протонов.

12. Электромагнитная волна является …

А. продольной; Б. поперечной;

В. в воздухе продольной, а в твердых телах поперечной;

Г. в воздухе поперечной, а в твердых телах продольной.

13. Определите частоту колебаний вектора напряженности Е электромагнитной волны в воздухе, длина которой равна 2 см.

А. 1,5*10 10 Гц; Б. 1,5*10 8 Гц; В. 6*10 6 Гц; Г. 10 8 Гц.

14. Радиопередатчик, установленный на корабле-спутнике «Восток», работал на частоте 20 МГц. На какой длине волны он работал?

А. 60 м; Б. 120 м; В. 15 м; Г. 1,5 м.

15. Определите период электрических колебаний в контуре, излучающем электромагнитные волны длиной 450 м.

16. 150 мкс; Б. 15 мкс; В. 135 мкс; Г. 1,5 мкс.

17. Входной колебательный контур радиоприемника состоит из конденсатора емкостью 25 нФ и катушки, индуктивность которой 0,1 мкГн. На какую длину волны настроен радиоприемник?

А. 94,2 м; Б. 31,2 м; В. 31,2 мм; Г. 942 м.

18. Электромагнитное взаимодействие в вакууме распространяется

со скоростью … (с = 3*10 8 м/с)

19. Укажите ошибочный ответ. В электромагнитной волне …

А. вектор Е колеблется, перпендикулярен В и v;

Б. вектор В колеблется, перпендикулярен Е и v;

В. вектор Е колеблется параллельно В и перпендикулярен v.

20. При каких условиях движущийся электрический заряд излучает электромагнитные волны?

А. Только при гармонических колебаниях;

Б. Только при движении по окружности;

В. При любом движении с большой скоростью;

Г. При любом движении с ускорением.

21. Чему равна длина электромагнитной волны, распространяющейся в воздухе, если период колебаний Т = 0,01 мкс?

А. 1 м; Б. 3 м; В. 100 м; Г. 300 м.

22. На какой частоте корабли передают сигналы бедствия SOS, если по Международному соглашению длина радиоволн должна быть равна 600 м?

А. 2 МГц; Б. 0,5 МГц; В. 1,5 МГц; Г. 6 МГц.

23. В открытом электромагнитном контуре электрические колебания происходят с частотой 150 кГц. Определите длину электромагнитной волны, излучаемой этим контуром.

Создал теория электромагнитного поля (теория максвелла). Предсказал существование электромагнитных волн и их распространение в пространстве со скоростью света.

Заряд, согласно Максвеллу любой электрический заряд должен излучать электромагнитные волны. Покоящийся заряд (а также равномерно и прямолинейно движущийся) электромагнитных волн не излучает.

Источники электромагнитных волн. Волновое уравнение.

Источники электромагнитных волн

Проводник с током. Магнит. Электрическое поле (переменное).

Вокруг проводника, через которых проходит ток и он постоянен. При изменении силы тока индукция этого поля тоже изменится. Возникнет возмущение электромагнитного поля. Переменное магнитное поле создаст переменное электрическое поле, которое в свою очередь создаст переменное магнитное и т.д.

Волновое уравнение.

Закон Био-Савара-Лапласа

где
– элемент тока

I – сила тока в проводнике

– вектор, равный по модулю длине dl проводника и совпадающий по направлению с направлением тока

– магнитная проницаемость среды (для вакуума=1)

Гн/м – магнитная постоянная

– радиус-вектор, проведенный от середины элемента проводника к точке, в которой определяется магнитная индукция.

Полный ток равен сумме токов проводимости и смещения

- вектор напряжённости магнитного поля (описывает поле макротоков).

Обобщённая теорема о циркуляции

Уравнение Максвелла для электромагнитного поля

1) Электромагнитное поле может быть как так и, тогда напряжённость суммарного равна

Циркуляция вектора напряжённости суммарного поля

(первое уравнение Максвелла)

Показывает, что исп могут быть не только заряды, но и меняющиеся во времени магнитные поля.

Обобщённая теорема о циркуляции

2)
(- плотность тока)

Показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями

3) Теорема Гаусса для электромагнитного поля в диэлектрике

(- эл. смещение.)

если заряд распространяется внутри замкнутой поверхности с пост. , то эта формула записывается в виде

(второе уравнение Максвелла)

4) теорема Гаусса для

Этот результат является математическим выражением того, что в природе нет магнитных зарядов – есть магнитные поля, на которых начинались бы или заканчивались линии магнитной индукции.

Величины, входящие в уравнение Максвелла связаны соотношениям и

(
)

(
)

(- удельная проводимость вещества)

Уравнения Максвелла не симметричны относительно электрических и магнитных полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (
и
)

уравнения Максвелла примут вид:


Скорость распространения электромагнитных волн.

Скорость электромагнитных волн в вакууме является фундаментальной физической константой для всех систем отсчёта

Связь со скоростью света в вакууме.

скорость электромагнитных волн в веществе в
раз меньше, чем в вакууме:

- диэлектрическая проницаемость среды.

- магнитная проницаемость среды.

Свойства электромагнитных волн: поперечность, синфазность колебаний векторов напряженностей электрического и магнитного полей.

Поперечность . электромагнитные волны являются поперечными.

Электромагнитной волной называется распространяющееся в пространстве переменное электромагнитное поле. Электромагнитная волна характеризуется векторами напряженности электрического и индукциимагнитного полей.

Возможность существования электромагнитных волн обусловлена тем, что существует связь между переменными электрическим и магнитным полями. Переменное магнитное поле создает вихревое электрическое поле. Существует и обратное явление: переменное во времени электрическое поле порождает вихревое магнитное поле.

Электромагнитные волны в зависимости от длины волны (или частоты колебаний
) разделены условно на следующие основные диапазоны: радиоволны, инфракрасные волны, рентгеновские лучи, видимый спектр, ультрафиолетовые волны и гамма - лучи. Такое разделение электромагнитных волн основано на различии их свойств при излучении, распространении и взаимодействии с веществом.

Несмотря на то, что свойства электромагнитных волн различных диапазонов могут резко отличаться друг от друга, все они имеют единую волновую природу и описываются системой уравнений Максвелла. Величины ив электромагнитной волне в простейшем случае меняются по гармоническому закону. Уравнениями плоской электромагнитной волны, распространяющейся в направленииZ , являются:

где
- циклическая частота,-частота,
- волновое число,начальная фаза колебаний.