Многие закономерности волновых процессов имеют универсальный характер и в равной мере справедливы для волн различной природы: механических волн в упругой среде, волн на поверхности воды, в натянутой струне и т. д. Не являются исключением и электромагнитные волны, представляющие собой процесс распространения колебаний электромагнитного поля. Но в отличие от других видов волн, распространение которых происходит в какой-то материальной среде, электромагнитные волны могут распространяться в пустоте: никакой материальной среды для распространения электрического и магнитного полей не требуется. Однако электромагнитные волны могут существовать не только в вакууме, но и в веществе.

Предсказание электромагнитных волн. Существование электромагнитных волн было теоретически предсказано Максвеллом в результате анализа предложенной им системы уравнений, описывающих электромагнитное поле. Максвелл показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью см/с, в которых векторы электрического и магнитного полей в каждый момент времени в каждой точке пространства перпендикулярны друг другу и перпендикулярны направлению распространения волн.

Экспериментально электромагнитные волны были открыты и изучены Герцем только спустя 10 лет после смерти Максвелла.

Открытый вибратор. Чтобы понять, каким образом можно получить электромагнитные волны на опыте, рассмотрим «открытый» колебательный контур, у которого обкладки конденсатора раздвинуты (рис. 176) и поэтому электрическое поле занимает большую область пространства. При увеличении расстояния между обкладками емкость С конденсатора убывает и в соответствии с формулой Томсона возрастает частота собственных колебаний. Если еще и катушку индуктивности заменить отрезком провода, то уменьшится индуктивность а частота собственных колебаний возрастет еще больше. При этом не только электрическое, но и магнитное поле, которое раньше было заключено внутри катушки, теперь займет большую область пространства, охватывающую этот провод.

Увеличение частоты колебаний в контуре, как и увеличение его линейных размеров, приводит к тому, что период собственных

колебаний становится сравнимым со временем распространения электромагнитного поля вдоль всего контура. Это означает, что процессы собственных электромагнитных колебаний в таком открытом контуре уже нельзя считать квазистационарными.

Рис. 176. Переход от колебательного контура к открытому вибратору

Сила тока в разных его местах в один и тот же момент времени разная: на концах контура она всегда равна нулю, а в середине (там, где прежде была катушка) она осциллирует с максимальной амплитудой.

В предельном случае, когда колебательный контур превратился просто в отрезок прямого провода, распределение силы тока вдоль контура в некоторый момент времени показано на рис. 177а. В тот момент, когда сила тока в таком вибраторе максимальна, охватывающее его магнитное поле также достигает максимума, а электрическое поле вблизи вибратора отсутствует. Через четверть периода обращается в нуль сила тока, а вместе с ней и магнитное поле вблизи вибратора; электрические заряды сосредоточиваются вблизи концов вибратора, а их распределение имеет вид, показанный на рис. 1776. Электрическое поле вблизи вибратора в этот момент максимально.

Рис. 177. Распределение вдоль открытого вибратора силы тока в момент, когда она максимальна (а), и распределение зарядов спустя четверть периода (б)

Эти колебания заряда и тока, т. е. электромагнитные колебания в открытом вибраторе, вполне аналогичны механическим колебаниям, которые могут происходить в пружине осциллятора, если убрать присоединенное к ней массивное тело. В этом случае придется учитывать массу отдельных частей пружины и рассматривать ее как распределенную систему, у которой каждый элемент обладает как упругими, так и инертными свойствами. В случае открытого электромагнитного вибратора каждый его элемент также одновременно обладает и индуктивностью, и емкостью.

Электрическое и магнитное поля вибратора. Неквазистационарный характер колебаний в открытом вибраторе приводит к тому, что создаваемые отдельными его участками поля на некотором расстоянии от вибратора уже не компенсируют друг друга, как это имеет место для «закрытого» колебательного контура с сосредоточенными параметрами, где колебания квазистационарны, электрическое поле целиком сосредоточено внутри конденсатора, а магнитное - внутри катушки. Из-за такого пространственного разделения электрического и магнитного полей они непосредственно не связаны друг с другом: их взаимное превращение обусловлено только током - переносом заряда по контуру.

У открытого вибратора, где электрическое и магнитное поля перекрываются в пространстве, происходит их взаимное влияние: изменяющееся магнитное поле порождает вихревое электрическое поле, а изменяющееся электрическое поле порождает магнитное поле. В результате оказывается возможным существование таких «самоподдерживающихся» и распространяющихся в свободном пространстве полей на большом расстоянии от вибратора. Это и есть излучаемые вибратором электромагнитные волны.

Опыты Герца. Вибратор, с помощью которого Г. Герцем в 1888 г. впервые были экспериментально получены электромагнитные волны, представлял собой прямолинейный проводник с небольшим воздушным промежутком посредине (рис. 178а). Благодаря такому промежутку можно было сообщить двум половинам вибратора значительные заряды. Когда разность потенциалов достигала определенного предельного значения, в воздушном зазоре возникал пробой (проскакивала искра) и электрические заряды через ионизированный воздух могли перетекать с одной половины вибратора на другую. Б открытом контуре возникали электромагнитные колебания. Чтобы быстропеременные токи существовали только в вибраторе и не замыкались через источник питания, между вибратором и источником включались дроссели (см. рис. 178а).

Рис. 178. Вибратор Герца

Высокочастотные колебания в вибраторе существуют, пока искра замыкает промежуток между его половинами. Затухание таких колебаний в вибраторе происходит в основном не за счет джоулевых потерь на сопротивлении (как в закрытом колебательном контуре), а за счет излучения электромагнитных волн.

Для обнаружения электромагнитных волн Герц применял второй (приемный) вибратор (рис. 1786). Под действием переменного электрического поля приходящей от излучателя волны электроны в приемном вибраторе совершают вынужденные колебания, т. е. в вибраторе возбуждается быстропеременный ток. Если размеры приемного вибратора такие же, как и у излучающего, то частоты собственных электромагнитных колебаний в них совпадают и вынужденные колебания в приемном вибраторе достигают заметной величины вследствие резонанса. Эти колебания Герц обнаруживал по проскакиванию искры в микроскопическом зазоре в середине приемного вибратора или по свечению миниатюрной газоразрядной трубки Г, включенной между половинами вибратора.

Герц не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства - поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света.

Совпадение скорости электромагнитных волн с измеренной задолго до их открытия скоростью света послужило отправным пунктом для отождествления света с электромагнитными волнами и создания электромагнитной теории света.

Электромагнитная волна существует без источников полей в том смысле, что после ее излучения электромагнитное поле волны не связано с источником. Этим электромагнитная волна отличается от статических электрического и магнитного полей, которые не существуют в отрыве от источника.

Механизм излучения электромагнитных волн. Излучение электромагнитных волн происходит при ускоренном движении электрических зарядов. Понять, каким образом поперечное электрическое поле волны возникает из радиального кулоновского поля точечного заряда, можно с помощью следующего простого рассуждения, предложенного Дж. Томсоном.

Рис. 179. Поле неподвижного точечного заряда

Рассмотрим электрическое поле, создаваемое точечным зарядом Если заряд покоится, то его электростатическое поле изображается радиальными силовыми линиями, выходящими из заряда (рис. 179). Пусть в момент времени заряд под действием какой-то внешней силы начинает двигаться с ускорением а, а спустя некоторое время действие этой силы прекращается, так что дальше заряд движется равномерно со скоростью График скорости движения заряда показан на рис. 180.

Представим себе картину линий электрического поля, создаваемого этим зарядом, спустя большой промежуток времени Поскольку электрическое поле распространяется со скоростью света с,

то до точек, лежащих за пределами сферы радиуса изменение электрического поля, вызванное движением заряда, дойти не могло: за пределами этой сферы поле такое же, каким оно было при неподвижном заряде (рис. 181). Напряженность этого поля (в гауссовой системе единиц) равна

Все изменение электрического поля, вызванное ускоренным движением заряда в течение времени в момент времени находится внутри тонкого шарового слоя толщины наружный радиус которого равен а внутренний - Это показано на рис. 181. Внутри сферы радиуса электрическое поле - это поле равномерно движущегося заряда.

Рис. 180. График скорости заряда

Рис. 181. Линии напряженности электрического поля заряда, движущегося согласно графику на рис. 180

Рис. 182. К выводу формулы для напряженности поля излучения ускоренно движущегося заряда

Если скорость заряда много меньше скорости света с, то это поле в момент времени совпадает с полем неподвижного точечного заряда находящегося на расстоянии от начала (рис. 181): поле медленно движущегося с постоянной скоростью заряда перемещается вместе с ним, а пройденное зарядом за время расстояние, как видно из рис. 180, можно считать равным если г»т.

Картину электрического поля внутри шарового слоя легко найти, учитывая непрерывность силовых линий. Для этого нужно соединить соответствующие радиальные силовые линии (рис. 181). Вызванный ускоренным движением заряда излом силовых линий «убегает» от заряда со скоростью с. Излом на силовых линиях между

сферами это и есть интересующее нас поле излучения, распространяющееся со скоростью с.

Чтобы найти поле излучения, рассмотрим одну из линий напряженности, составляющую некоторый угол с направлением движения заряда (рис. 182). Разложим вектор напряженности электрического поля в изломе Е на две составляющие: радиальную и поперечную Радиальная составляющая - это напряженность электростатического поля, создаваемого зарядом на расстоянии от него:

Поперечная составляющая - это напряженность электрического поля в волне, излученной зарядом при ускоренном движении. Так как эта волна бежит по радиусу, то вектор перпендикулярен направлению распространения волны. Из рис. 182 видно, что

Подставляя сюда из (2), находим

Учитывая, что а отношение есть ускорение а, с которым двигался заряд в течение промежутка времени от 0 до перепишем это выражение в виде

Прежде всего обратим внимание на то, что напряженность электрического поля волны убывает обратно пропорционально расстоянию от центра, в отличие от напряженности электростатического поля которая пропорциональна Такой зависимости от расстояния и следовало ожидать, если принять во внимание закон сохранения энергии. Так как при распространении волны в пустоте поглощения энергии не происходит, то количество энергии, прошедшее через сферу любого радиуса, одинаково. Поскольку площадь поверхности сферы пропорциональна квадрату ее радиуса, то поток энергии через единицу ее поверхности должен быть обратно пропорционален квадрату радиуса. Учитывая, что плотность энергии электрического поля волны равна приходим к выводу, что

Далее отметим, что напряженность поля волны в формуле (4) в момент времени зависит от ускорения заряда а в момент времени волна, излученная в момент достигает точки, находящейся на расстоянии спустя время, равное

Излучение осциллирующего заряда. Предположим теперь, что заряд все время движется вдоль прямой с некоторым переменным ускорением вблизи начала координат, например совершает гармонические колебания. Тоща он будет излучать электромагнитные волны непрерывно. Напряженность электрического поля волны в точке, находящейся на расстоянии от начала координат, по-прежнему определяется формулой (4), причем поле в момент времени зависит от ускорения заряда а в более ранний момент

Пусть движение заряда представляет собой гармоническое колебание вблизи начала координат с некоторой амплитудой А и частотой со:

Ускорение заряда при таком движении дается выражением

Подставляя ускорение заряда в формулу (5), получаем

Изменение электрического поля в любой точке при прохождении такой волны представляет собой гармоническое колебание с частотой , т. е. осциллирующий заряд излучает монохроматическую волну. Разумеется, формула (8) справедлива на расстояниях больших по сравнению с амплитудой колебаний заряда А.

Энергия электромагнитной волны. Плотность энергии электрического поля монохроматической волны, излучаемой зарядом, можно найти с помощью формулы (8):

Плотность энергии пропорциональна квадрату амплитуды колебаний заряда и четвертой степени частоты.

Любое колебание связано с периодическими переходами энергии из одного вида в другой и обратно. Например, колебания механического осциллятора сопровождаются взаимными превращениями кинетической энергии и потенциальной энергии упругой деформации. При изучении электромагнитных колебаний в контуре мы видели, что аналогом потенциальной энергии механического осциллятора является энергия электрического поля в конденсаторе, а аналогом кинетической энергии - энергия магнитного поля катушки. Эта аналогия справедлива не только для локализованных колебаний, но и для волновых процессов.

В монохроматической волне, бегущей в упругой среде, плотности кинетической и потенциальной энергий в каждой точке совершают гармоническое колебание с удвоенной частотой, причем так, что их значения совпадают в любой момент времени. Так же и в бегущей монохроматической электромагнитной волне: плотности энергии электрического и магнитного полей, совершая гармоническое колебание с частотой равны друг другу в каждой точке в любой момент времени.

Плотность энергии магнитного поля выражается через индукцию В следующим образом:

Приравнивая плотности энергии электрического и магнитного полей в бегущей электромагнитной волне, убеждаемся, что индукция магнитного поля в такой волне зависит от координат и времени точно так же, как напряженность электрического поля. Другими словами, в бегущей волне индукция магнитного поля и напряженность электрического поля равны друг другу в любой точке в любой момент времени (в гауссовой системе единиц):

Поток энергии электромагнитной волны. Полная плотность энергии электромагнитного поля в бегущей волне вдвое больше плотности энергии электрического поля (9). Плотность потока энергии у, переносимой волной, равна произведению плотности энергии на скорость распространения волны . С помощью формулы (9) можно увидеть, что поток энергии через любую поверхность осциллирует с частотой Для нахождения среднего значения плотности потока энергии необходимо усреднить по времени выражение (9). Так как среднее значение равно 1/2, то для получаем

Рис. 183. Угловое распределение энергии» излучаемой осциллирующим зарядом

Плотность потока энергии в волне зависит от направления: в том направлении, по которому происходят колебания заряда, энергия вовсе не излучается Наибольшее количество энергии излучается в плоскости, перпендикулярной этому направлению Угловое распределение излучаемой осциллирующим зарядом энергии показано на рис. 183. Заряд совершает колебания вдоль оси Из начала координат проводятся отрезки, длина которых пропорциональна излучаемой в данном

направлении энергии, т. е. На диаграмме показана линия, соединяющая концы этих отрезков.

Распределение энергии по направлениям в пространстве характеризуется поверхностью, которая получается вращением диаграммы вокруг оси

Поляризация электромагнитных волн. Волна, порождаемая вибратором при гармонических колебаниях, называется монохроматической. Монохроматическая волна характеризуется определенной частотой со и длиной волны X. Длина волны и частота связаны через скорость распространения волны с:

Электромагнитная волна в вакууме является поперечной: вектор напряженности электромагнитного поля волны, как это видно из приведенных выше рассуждений, перпендикулярен направлению распространения волны. Проведем через точку наблюдения Р на рис. 184 сферу с центром в начале координат, около которого вдоль оси совершает колебания излучающий заряд. Проведем на ней параллели и меридианы. Тогда вектор Е поля волны будет направлен по касательной к меридиану, а вектор В перпендикулярен вектору Е и направлен по касательной к параллели.

Чтобы убедиться в этом, рассмотрим подробнее взаимосвязь электрического и магнитного полей в бегущей волне. Эти поля после излучения волны уже не связаны с источником. При изменении электрического поля волны возникает магнитное поле, силовые линии которого, как мы видели при изучении тока смещения, перпендикулярны силовым линиям электрического поля. Это переменное магнитное поле, изменяясь, в свою очередь приводит к появлению вихревого электрического поля, которое перпендикулярно породившему его магнитному полю. Таким образом, при распространении волны электрическое и магнитное поля поддерживают друг друга, оставаясь все время взаимно перпендикулярными. Так как в бегущей волне изменение электрического и магнитного полей происходит в фазе друг с другом, то мгновенный «портрет» волны (векторы Е и В в разных точках линии вдоль направления распространения) имеет вид, показанный на рис. 185. Такая волна называется линейно поляризованной. Совершающий гармоническое колебание заряд излучает по всем направлениям линейно поляризованные волны. В бегущей по любому направлению линейно поляризованной волне вектор Е все время находится в одной плоскости.

Так как в линейном электромагнитном вибраторе заряды совершают именно такое осциллирующее движение, то излучаемая вибратором электромагнитная волна поляризована линейно. В этом легко убедиться на опыте, изменяя ориентацию приемного вибратора относительно излучающего.

Рис. 185. Электрическое и магнитное поля в бегущей линейно поляризованной волне

Сигнал имеет наибольшую величину, когда приемный вибратор параллелен излучающему (см. рис. 178). Если приемный вибратор повернуть перпендикулярно излучающему, то сигнал пропадает. Электрические колебания в приемном вибраторе могут появиться только благодаря составляющей электрического поля волны, направленной вдоль вибратора. Поэтому такой опыт свидетельствует о том, что электрическое поле в волне параллельно излучающему вибратору.

Возможны и другие виды поляризации поперечных электромагнитных волн. Если, например, вектор Е в некоторой точке при прохождении волны равномерно вращается вокруг направления распространения, оставаясь неизменным по модулю, то волна называется циркулярно поляризованной или поляризованной по кругу. Мгновенный «портрет» электрического поля такой электромагнитной волны показан на рис. 186.

Рис. 186. Электрическое поле в бегущей циркулярно поляризованной волне

Волну круговой поляризации можно получить при сложении двух распространяющихся в одном направлении линейно поляризованных волн одинаковой частоты и амплитуды, векторы электрического поля в которых взаимно перпендикулярны. В каждой из волн вектор электрического поля в каждой точке совершает гармоническое колебание. Чтобы при сложении таких взаимно перпендикулярных колебаний получилось вращение результирующего вектора, необходим сдвиг фаз на Другими словами, складываемые линейно поляризованные волны должны быть сдвинуты на четверть длины волны одна относительно другой.

Импульс волны и давление света. Наряду с энергией электромагнитная волна обладает и импульсом. Если волна поглощается, то ее импульс передается тому объекту, который ее поглощает. Отсюда следует, что при поглощении электромагнитная волна оказывает давление на преграду. Объяснить происхождение давления волны и найти величину этого давления можно следующим образом.

Направлены по одной прямой. Тогда поглощаемая зарядом мощность Р равна

Будем считать, что вся энергия падающей волны поглощается преградой. Так как на единицу площади поверхности преграды в единицу времени волна приносит энергию то оказываемое волной при нормальном падении давление равно плотности энергии волны Сила давления поглощаемой электромагнитной волны сообщает преграде в единицу времени импульс, равный согласно формуле (15) поглощенной энергии, деленной на скорость света с. А это означает, что поглощенная электромагнитная волна обладала импульсом, который равен энергии, деленной на скорость света.

Впервые давление электромагнитных волн экспериментально было обнаружено П. Н. Лебедевым в 1900 г. в исключительно тонких опытах.

Чем отличаются квазистационарные электромагнитные колебания в закрытом колебательном контуре от высокочастотных колебаний в открытом вибраторе? Приведите механическую аналогию.

Поясните, почему при электромагнитных квазистационарных колебаниях в закрытом контуре не происходит излучение электромагнитных волн. Почему излучение происходит при электромагнитных колебаниях в открытом вибраторе?

Опишите и объясните опыты Герца по возбуждению и обнаружению электромагнитных волн. Какую роль играет искровой промежуток в передающем и приемном вибраторах?

Поясните, каким образом при ускоренном движении электрического заряда продольное электростатическое поле превращается в поперечное электрическое поле излучаемой им электромагнитной волны.

Исходя из энергетических соображений, покажите, что напряженность электрического поля сферической волны, излучаемой вибратором, убывает как 1 1г (в отличие от для электростатического поля).

Что такое монохроматическая электромагнитная волна? Что такое длина волны? Как она связана с частотой? В чем заключается свойство поперечности электромагнитных волн?

Что называется поляризацией электромагнитной волны? Какие виды поляризации вам известны?

Какие доводы вы можете привести для обоснования того, что электромагнитная волна обладает импульсом?

Объясните роль силы Лоренца в возникновении силы давления электромагнитной волны на преграду.

Электромагнитные волны (таблица которых будет приведена ниже) представляют собой возмущения магнитных и электрических полей, распределяющиеся в пространстве. Их существует несколько типов. Изучением этих возмущений занимается физика. Электромагнитные волны образуются из-за того, что электрическое переменное поле порождает магнитное, а оно, в свою очередь, порождает электрическое.

История исследований

Первые теории, которые можно считать самыми старыми вариантами гипотез об электромагнитных волнах, относятся как минимум к временам Гюйгенса. В тот период предположения достигли выраженного количественного развития. Гюйгенс в 1678-м году выпустил в некотором роде "набросок" теории - "Трактат о свете". В 1690-м он же издал другой замечательный труд. В нем была изложена качественная теория отражения, лучепреломления в том виде, в котором она и сегодня представлена в школьных учебниках ("Электромагнитные волны", 9 класс).

Вместе с этим был сформулирован принцип Гюйгенса. С его помощью появилась возможность изучать движение фронта волны. Этот принцип впоследствии нашел свое развитие в трудах Френеля. Принцип Гюйгенса-Френеля имел особую значимость в теории дифракции и волновой теории света.

В 1660-1670-е годы большой экспериментальный и теоретический вклад внесли в исследования Гук и Ньютон. Кто открыл электромагнитные волны? Кем были проведены опыты, доказывающие их существование? Какие существуют виды электромагнитных волн? Об этом далее.

Обоснование Максвелла

Прежде чем говорить о том, кто открыл электромагнитные волны, следует сказать, что первым ученым, который вообще предсказал их существование, стал Фарадей. Свою гипотезу он выдвинул в 1832-м году. Построением теории впоследствии занимался Максвелл. К 1865-му году он завершил эту работу. В результате Максвелл строго оформил теорию математически, обосновав существование рассматриваемых явлений. Им же была определена скорость распространения электромагнитных волн, совпадавшая с применявшимся тогда значением световой скорости. Это, в свою очередь, позволило ему обосновать гипотезу о том, что свет является одним из типов рассматриваемых излучений.

Экспериментальное обнаружение

Теория Максвелла нашла свое подтверждение в опытах Герца в 1888-м году. Здесь следует сказать, что немецкий физик проводил свои эксперименты, чтобы опровергнуть теорию, несмотря на ее математическое обоснование. Однако благодаря своим опытам Герц стал первым, кто открыл электромагнитные волны практически. Кроме того, в ходе своих экспериментов ученый выявил свойства и характеристики излучений.

Электромагнитные колебания и волны Герц получал за счет возбуждения серии импульсов быстропеременного потока в вибраторе при помощи источника повышенного напряжения. Высокочастотные потоки можно обнаружить при помощи контура. Частота колебаний при этом будет тем выше, чем выше его емкость и индуктивность. Но при этом большая частота не является гарантией интенсивного потока. Для проведения своих опытов Герц применил достаточно простое устройство, которое сегодня так и называют - "вибратор Герца". Приспособление представляет собой колебательный контур открытого типа.

Схема опыта Герца

Регистрация излучений осуществлялась при помощи приемного вибратора. Это устройство имело такую же конструкцию, что и излучающий прибор. Под влиянием электромагнитной волны электрического переменного поля в приемном устройстве происходило возбуждение токового колебания. Если в этом приборе его собственная частота и частота потока совпадали, то появлялся резонанс. В результате возмущения в приемном устройстве происходили с большей амплитудой. Обнаруживал их исследователь, наблюдая искорки между проводниками в небольшом промежутке.

Таким образом, Герц стал первым, кто открыл электромагнитные волны, доказал их способность хорошо отражаться от проводников. Им было практически обосновано образование стоячего излучения. Кроме того, Герц определил скорость распространения электромагнитных волн в воздухе.

Изучение характеристик

Электромагнитные волны распространяются почти во всех средах. В пространстве, которое заполнено веществом, излучения могут в ряде случаев распределяться достаточно хорошо. Но при этом они несколько изменяют свое поведение.

Электромагнитные волны в вакууме определяются без затуханий. Они распределяются на любое, сколь угодно большое расстояние. К основным характеристикам волн относят поляризацию, частоту и длину. Описание свойств осуществляется в рамках электродинамики. Однако характеристиками излучений некоторых областей спектра занимаются более конкретные разделы физики. К ним, например, можно отнести оптику.

Исследованием жесткого электромагнитного излучения коротковолнового спектрального конца занимается раздел высоких энергий. С учетом современных представлений динамика перестает являться самостоятельной дисциплиной и объединяется со в одной теории.

Теории, применяемые при изучении свойств

Сегодня существуют различные методы, способствующие моделированию и исследованию проявлений и свойств колебаний. Наиболее фундаментальной из проверенных и завершенных теорий считается квантовая электродинамика. Из нее посредством тех или других упрощений становится возможным получить перечисленные ниже методики, которые широко используются в различных сферах.

Описание относительно низкочастотного излучения в макроскопической среде осуществляется при помощи классической электродинамики. Она основана на уравнениях Максвелла. При этом в прикладных применениях существуют упрощения. При оптическом изучении используется оптика. Волновая теория применяется в случаях, когда некоторые части оптической системы по размерам приближены к длинам волн. Квантовая оптика используется, когда существенными являются процессы рассеяния, поглощения фотонов.

Геометрическая оптическая теория - предельный случай, при котором допускается пренебрежение длиной волны. Также существует несколько прикладных и фундаментальных разделов. К ним, к примеру, относят астрофизику, биологию зрительного восприятия и фотосинтеза, фотохимию. Как классифицируются электромагнитные волны? Таблица, наглядно изображающая распределение на группы, представлена далее.

Классификация

Существуют частотные диапазоны электромагнитных волн. Между ними не существует резких переходов, иногда они перекрывают друг друга. Границы между ними достаточно условны. В связи с тем, что поток распределяется непрерывно, частота жестко связывается с длиной. Ниже представлены диапазоны электромагнитных волн.

Ультракороткие излучения принято разделять на микрометровые (субмиллиметровые), миллиметровые, сантиметровые, дециметровые, метровые. Если электромагнитного излучения меньше метра, то ее принято называть колебанием сверхвысокой частоты (СВЧ).

Виды электромагнитных волн

Выше представлены диапазоны электромагнитных волн. Какие существуют виды потоков? Группа включает в себя гамма- и рентгеновские лучи. При этом следует сказать, что ионизировать атомы способен и ультрафиолет, и даже видимый свет. Границы, в которых находятся гамма- и рентгеновские потоки, определяются весьма условно. В качестве общей ориентировки принимаются пределы 20 эВ - 0.1 Мэв. Гамма-потоки в узком смысле испускаются ядром, рентгеновские - электронной атомной оболочкой в процессе выбивания с низколежащих орбит электронов. Однако данная классификация неприменима к жестким излучениям, генерируемым без участия ядер и атомов.

Рентгеновские потоки формируются при замедлении заряженных быстрых частиц (протонов, электронов и прочих) и вследствие процессов, которые происходят внутри атомных электронных оболочек. Гамма-колебания возникают в результате процессов внутри ядер атомов и при превращении элементарных частиц.

Радиопотоки

За счет большого значения длин рассмотрение этих волн допускается осуществлять, не учитывая атомистическое строение среды. В качестве исключения выступают лишь самые короткие потоки, которые примыкают к инфракрасной области спектра. В радиодиапазоне квантовые свойства колебаний проявляются достаточно слабо. Тем не менее их необходимо учитывать, например, при анализе молекулярных стандартов времени и частоты во время охлаждения аппаратуры до температуры в несколько кельвинов.

Квантовые свойства принимаются во внимание и при описании генераторов и усилителей миллиметрового и сантиметрового диапазонов. Радиопоток формируется во время движения переменного тока по проводникам соответствующей частоты. А проходящая электромагнитная волна в пространстве возбуждает соответствующий ей. Данное свойство применяется при конструировании антенн в радиотехнике.

Видимые потоки

Ультрафиолетовое и инфракрасное видимое излучение составляет в широком смысле слова так называемый оптический участок спектра. Выделение этой области обуславливается не только близостью соответствующих зон, но и аналогичностью приборов, используемых при исследовании и разработанных преимущественно во время изучения видимого света. К ним, в частности, относятся зеркала и линзы для фокусирования излучений, дифракционные решетки, призмы и прочие.

Частоты оптических волн сравнимы с таковыми у молекул и атомов, а длины их - с межмолекулярными расстояниями и молекулярными размерами. Поэтому существенными в этой области становятся явления, которые обусловлены атомистической структурой вещества. По той же причине свет вместе с волновыми обладает и квантовыми свойствами.

Возникновение оптических потоков

Самым известным источником является Солнце. Поверхность звезды (фотосфера) имеет температуру 6000° по Кельвину и излучает ярко-белый свет. Наивысшее значение непрерывного спектра располагается в "зеленой" зоне - 550 нм. Там же находится максимум зрительной чувствительности. Колебания оптического диапазона возникают при нагревании тел. Инфракрасные потоки поэтому также именуют тепловыми.

Чем сильнее происходит нагревание тела, тем выше частота, где располагается максимум спектра. При определенном повышении температуры наблюдается каление (свечение в видимом диапазоне). При этом сначала появляется красный цвет, затем желтый и далее. Создание и регистрация оптических потоков может происходить в биологических и химических реакциях, одна из которых применяется в фотографии. Для большинства существ, живущих на Земле, в качестве источника энергии выступает фотосинтез. Эта биологическая реакция протекает в растениях под влиянием оптического солнечного излучения.

Особенности электромагнитных волн

Свойства среды и источник оказывают влияние на характеристики потоков. Так устанавливается, в частности, временная зависимость полей, которая определяет тип потока. К примеру, при изменении расстояния от вибратора (при увеличении) радиус кривизны становится больше. В результате образуется плоская электромагнитная волна. Взаимодействие с веществом также происходит по-разному.

Процессы поглощения и излучения потоков, как правило, можно описывать при помощи классических электродинамических соотношений. Для волн оптической области и для жестких лучей тем более следует принимать во внимание их квантовую природу.

Источники потоков

Несмотря на физическую разницу, везде - в радиоактивном веществе, телевизионном передатчике, лампе накаливания - электромагнитные волны возбуждаются электрическими зарядами, которые движутся с ускорением. Существует два основных типа источников: микроскопические и макроскопические. В первых происходит скачкообразный переход заряженных частиц с одного на другой уровень внутри молекул либо атомов.

Микроскопические источники испускают рентгеновское, гамма, ультрафиолетовое, инфракрасное, видимое, а в ряде случаев и длинноволновое излучение. В качестве примера последнего можно привести линию спектра водорода, которая соответствует волне в 21 см. Это явление имеет особое значение в радиоастрономии.

Источники макроскопического типа представляют собой излучатели, в которых свободными электронами проводников совершаются периодические синхронные колебания. В системах данной категории происходит генерация потоков от миллиметровых до самых длинных (в линиях электропередач).

Структура и сила потоков

С ускорением и изменяющиеся периодически токи оказывают воздействие друг на друга с определенными силами. Направление и их величина находятся в зависимости от таких факторов, как размеры и конфигурация области, в которой содержатся токи и заряды, их относительное направление и величина. Существенное влияние оказывают и электрические характеристики конкретной среды, а также изменения концентрации зарядов и распределения токов источника.

В связи с общей сложностью постановки задачи представить закон сил в виде единой формулы нельзя. Структура, называемая электромагнитным полем и рассматриваемая при необходимости в качестве математического объекта, определяется распределением зарядов и токов. Оно, в свою очередь, создается заданным источником при учете граничных условий. Условия определяются формой зоны взаимодействия и характеристиками материала. Если речь ведется о неограниченном пространстве, указанные обстоятельства дополняются. В качестве особого дополнительного условия в таких случаях выступает условие излучения. За счет него гарантируется "правильность" поведения поля на бесконечности.

Хронология изучения

Ломоносова в некоторых своих положениях предвосхищает отдельные постулаты теории электромагнитного поля: "коловратное" (вращательное) движение частиц, "зыблющаяся" (волновая) теория света, ее общность с природой электричества и т. д. Инфракрасные потоки были обнаружены в 1800 году Гершелем (английским ученым), а в следующем, 1801-м, Риттером был описан ультрафиолет. Излучение более короткого, нежели ультрафиолетовое, диапазона было открыто Рентгеном в 1895-м году, 8 ноября. Впоследствии оно получило название рентгеновского.

Влияние электромагнитных волн изучалось многими учеными. Однако первым, кто исследовал возможности потоков, сферу их применения, стал Наркевич-Иодко (белорусский научный деятель). Он изучил свойства потоков применительно к практической медицине. Гамма-излучение было открыто Полем Виллардом в 1900-м году. В этот же период Планк проводил теоретические исследования свойств черного тела. В процессе изучения им была открыта квантовость процесса. Его труд стал началом развития Впоследствии было опубликовано несколько работ Планка и Эйнштейна. Их исследования привели к формированию такого понятия, как фотон. Это, в свою очередь, положило начало созданию квантовой теории электромагнитных потоков. Ее развитие продолжилось в трудах ведущих научных деятелей ХХ столетия.

Дальнейшие исследования и работы по квантовой теории электромагнитного излучения и взаимодействия его с веществом привели в итоге к образованию квантовой электродинамики в том виде, в котором она существует и сегодня. Среди выдающихся ученых, занимавшихся изучением данного вопроса, следует назвать, кроме Эйнштейна и Планка, Бора, Бозе, Дирака, де Бройля, Гейзенберга, Томонагу, Швингера, Фейнмана.

Заключение

Значение физики в современном мире достаточно велико. Практически все, что применяется сегодня в жизни человека, появилось благодаря практическому использованию исследований великих ученых. Открытие электромагнитных волн и их изучение, в частности, привели к созданию обычных, а впоследствии и мобильных телефонов, радиопередатчиков. Особое значение практическое применение таких теоретических знаний имеет в области медицины, промышленности, техники.

Такое широкое использование объясняется количественным характером науки. Все физические эксперименты опираются на измерения, сравнение свойств изучаемых явлений с имеющимися эталонами. Именно для этой цели в рамках дисциплины развит комплекс измерительных приборов и единиц. Ряд закономерностей является общим для всех существующих материальных систем. Так, например, законы сохранения энергии считаются общими физическими законами.

Науку в целом называют во многих случаях фундаментальной. Это связано, прежде всего, с тем, что прочие дисциплины дают описания, которые, в свою очередь, подчиняются законам физики. Так, в химии изучаются атомы, вещества, образованные из них, и превращения. Но химические свойства тел определяются физическими характеристиками молекул и атомов. Эти свойства описывают такие разделы физики, как электромагнетизм, термодинамика и прочие.

Электромагнитной волной называют возмущение электромагнитного поля, которое передается в пространстве. Ее скорость совпадает со скоростью света

2. Опишите опыт Герца по обнаружению электромагнитных волн

В опыте Герца источником электромагнитного возмущения были электромагнитные колебания, которые возникали в вибраторе (проводник с воздушным промежутком посередине). К этому промежутку подавалось высокое напряжение, оно вызывало искровой разряд. Через мгновение искровой разряд возникал в резонаторе (аналогичный вибратор). Самая интенсивная искра возникала в резонаторе, который был расположен параллельно вибратору.

3. Объясните результаты опыта Герца с помощью теории Максвелла. Почему электромагнитная волна является поперечной?

Ток через разрядный промежуток создает вокруг себя индукцию, магнитный поток возрастает, возникает индукционный ток смещения. Напряженность в точке 1 (рис. 155, б учебника) направлена против часовой стрелки в плоскости чертежа, в точке 2 ток направлен вверх и вызывает индукцию в точке 3, напряженность направлена вверх. Если величина напряженности достаточна для электрического пробоя воздуха в промежутке, то возникает искра и в резонаторе протекает ток.

Потому что направления векторов индукции магнитного поля и напряженности электрического поля перпендикулярны друг другу и направлению волны.

4. Почему излучение электромагнитных волн возникает при ускоренном движении электрических зарядов? Как напряженность электрического поля в излучаемой электромагнитной волне зависит от ускорения излучающей заряженной частицы?

Сила тока пропорциональна скорости движения заряженных частиц, поэтому электромагнитная волна возникает только если скорость движения этих частиц зависит от времени. Напряженность в излучаемой электромагнитной волне прямо пропорциональна ускорению излучающей заряженной частицы.

5. Как зависит плотность энергии электромагнитного поля от напряженности электрического поля?

Плотность энергии электромагнитного поля прямо пропорциональна квадрату напряженности электрического поля. это процесс распространения электромагнитного взаимодействия в пространстве.
Электромагнитные волны описываются общими для электромагнитных явлений уравнениями Максвелла. Даже в случае отсутствия в пространстве электрических зарядов и токов уравнения Максвелла имеют отличные от нуля решения. Эти решения описывают электромагнитные волны.
В случае отсутствия зарядов и токов уравнения Максвелла набирают следующего вида:

,

Применяя операцию rot к первым двум уравнений можно получить отдельные уравнения для определения напряженности электрического и магнитного полей

Эти уравнения имеют типичную форму волновых уравнений. Их развязками есть суперпозиция выражений следующего типа

Где – Определенный вектор, который называется волновым вектором, ? – число, которое называется циклической частотой, ? – фаза. Величины и есть амплитудами электрической и магнитной компоненты электромагнитной волны. Они взаимно перпендикулярны и равны по абсолютной величине. Физическая интерпретация каждой из введенных величин дается ниже.
В вакууме электромагнитная волна распространяется в скоростью, которая называется скоростью света. Скорость света является фундаментальной физической константой, которая обозначается латинской буквой c. Согласно основным постулатом теории относительности скорость света является максимально возможной скоростью передачи информации или движения тела. Эта скорость составляет 299 792 458 м / с.
Электромагнитная волна характеризуется частотой. Различают линейную частоту? и циклическую частоту? = 2??. В зависимости от частоты электромагнитные волны относятся к одному из спектральных диапазонов.
Другой характетистика электромагнитной волны волновой вектор . Волновой вектор определяет направление распространения электромагнитной волны, а также ее длину. Абсолютное значение хвильoвого вектора называют волновым числом.
Длина электромагнитной волны? = 2? / k, где k – волновое число.
Длина электромагнитной волны связана с частотой через закон дисперсии. В пустоте эта связь прост:

?? = c.

Часто данное соотношение записывают в виде

? = c k.

Электромагнитные волны с одинаковой частотой и волновым вектором могут различаться фазой.
В пустоте векторы напряженности электрического и магнитного полей Електомагнитна волны обязательно перпендикулярны направлению распространения волны. Такие волны называются поперечными волнами. Математически это описывается уравнениями и . Кроме того, напряженности елекричного и магнитного полей перпендикулярны друг к другу и всегда в любой точке пространства равные по абсолютной величине: E = H. Если выбрать систему координат таким образом, чтобы ось z совпадала с направлением распространения электромагнитной волны, существовать две различные возможности для направлений векторов напряженности электрического поля. Если эклектичное поле направлено вдоль оси x, то магнитное поле будет направлено вдоль оси y, и наоборот. Эти две разные возможности не исключают друг друга и соответствуют двум различным поляризация. Подробнее этот вопрос разбирается в статьи Поляризация волн.
Спектральные диапазоны с выделенным видимым светом В зависимости от частоты или длины волны (эти величины связаны между собой), электромагнитные волны относят к разным диапазонам. Волны в различных диапазонах различным образом взаимодействуют с физическими телами.
Электромагнитные волны с наименьшей частотой (или наибольшей длиной волны) относятся к радиодиапазона. Радиодиапазон используется для передачи сигналов на расстояние с помощью радио, телевидения, мобильных телефонов. В радиодиапазоне работает радиолокация. Радиодиапазон разделяется на метровый, дицеметровий, сантиметровый, миллиметровый, в зависимости от длины Електомагнитна волны.
Электромагнитные волны с вероятностью принадлежат к инфракрасного диапазона. В инфракрасном диапазоне лежит тепловое излучение тела. Регистрация этого випромиювання лежит в основе работы приборов ночного видения. Инфракрасные волны применяются для изучения тепловых колебаний в телах и помогают установить атомную структуру твердых тел, газов и жидкостей.
Электромагнитное излучение с длиной волны от 400 нм до 800 нм принадлежат к диапазону видимого света. В зависимости от частоты и длины волны видимый свет различается по цветам.
Волны с длиной менее 400 нм называются ультрафиолетовыми. Человеческий глаз их не различает, хотя их свойства не отличаются от свойств волн видимого диапазона. Большая частота, а, следовательно, и энергия квантов такого света приводит к более разрушительного воздействия ультрафиолетовых волн на биологические объекты. Земная поверхность защищена от вредного воздействия ультрафиолетовых волн озоновым слоем. Для дополнительной защиты природа наделила людей темной кожей. Однако ультрафиолетовые лучи нужны человеку для производства витамина D. Именно поэтому люди в северных широтах, где интенсивность ультрафиолетовых волн меньше, потеряли темную окраску кожи.
Електомагнитна волны более высокой частоты относятся к рентгеновского диапазона. Они называют так потому, что их открыл Рентген, изучая излучения, которое образуется при торможении электронов. В зарубежной литературе такие волны принято называть X-лучами, уважая желание Рентгена, чтобы лучи не называли его именем. Рентгеновские волны слабо взаимодействуют с веществом, сильнее поглощаясь там, где плотность больше. Этот факт используется в медицине для рентгеновской флюорографии. Рентгеновские волны применяются также для элементного анализа и изучения структуры кристаллических тел.
Наивысшую частоту и наименьшую длину имеют ?-лучи. Такие лучи образуются в результате ядерных реакций и реакций между элементарными частицами. ?-лучи обладают большой разрушительное воздействие на биологические объекты. Однако они используются в физике для изучения различных характеристик атомного ядра.
Энергия электромагнитной волны определяется суммой энергий электрического и магнитного поля. Плотность энергии в определенной точке пространства задается выражением:

.

Усредненная по времени плотность энергии равна.

,

Где E 0 = H 0 – амплитуда волны.
Важное значение имеет плотность потока энергии электромагнитной волны. Она в частности определяет световой поток в оптике. Плотность потока энергии электромагнитной волны задается вектором Умова-Пойнтинга.

Распространения электромагнитных волн в среде имеет ряд особенностей по сравнению с распространением в пустоте. Эти особенности связаны со свойствами среды и в целом зависят от частоты электромагнитной волны. Электрическая и магнитная составляющая волны вызывают поляризацию и намагничивания среды. Этот отклик среды неодинаковых в случае малой и большой частоты. При малой частоте электромагнитной волны, электроны и ионы вещества успевают отреагировать на изменение интенсивности электрического и магнитного полей. Отклик среды отслеживает временные колебания в волны. При большой частоте электроны и ионы вещества не успевают сместиться течение периода колебания полей волны, а потому поляризация и намагничивание среды намного меньше.
Электромагнитное поле малой частоты не проникает в металлы, где много свободных электронов, которые смещаются таким образом, полностью гасят электромагнитную волну. Электромагнитная волна начинает проникать в металл при частоте превышающей определенную частоту, которая называется плазменной частотой. При частотах меньших плазменную частоту электромагнитная волна может проникать в поверхностный слой металла. Это явление называется скин-эффектом.
В диэлектриках изменяется закон дисперсии электромагнитной волны. Если в пустоте электромагнитные волны распространяются с постоянной амплитудой, то в среде они затухают, вследствие поглощения. При этом энергия волны передается электронам или ионам среды. Всего закон дисперсии при отсутствии магнитных эффектов принимает вид

Где волновое число k – всего комплексная величина, мнимая часть которой описывает уменьшение амплитуды елетромагнитнои волны, – Зависящая от частоты комплексная диэлектрическая проницаемость среды.
В анизотропных средах направление векторов напряженности электрического и магнитного полей не обязательно перпендикулярен направлению распространения волны. Однако направление векторов электрической и магнитной индукции сохраняет это свойство.
В среде при определенных условиях может распространяться еще один тип электромагнитной волны – продольная электромагнитная волна, для которой направление вектора напряженности электрического поля совпадает с направлением распространения волны.
В начале двадцатого века для того, чтобы объяснить спектр излучения абсолютно черного тела, Макс Планк предположил, что электромагнитные волны излучаются квантами с энергией пропорциональной частоте. Через несколько лет Альберт Эйнштейн, объясняя явление фотоэффекта расширил эту идею, предположив, что электромагнитные волны поглощаются такими же квантами. Таким образом, стало ясно, что электромагнитные волны характеризуются некоторыми свойствами, которые раньше приписывались материальным частицам, корпускул.
Эта идея получила название корпускулярно-волнового дуализма.

В 1860-1865 гг. один из величайших физиков XIX века Джеймс Клерк Максвелл создал теорию электромагнитного поля. Согласно Максвеллу явление электромагнитной индукции объясняется следующим образом. Если в некоторой точке пространства изменяется во времени магнитное поле, то там образуется и электрическое поле. Если же в поле находится замкнутый проводник, то электрическое поле вызывает в нем индукционный ток. Из теории Максвелла следует, что возможен и обратный процесс. Если в некоторой области пространства меняется во времени электрическое поле, то здесь же образуется и магнитное поле.

Таким образом, любое изменение со временем магнитного поля приводит к возникновению изменяющегося электрического поля, а всякое изменение со временем электрического поля порождает изменяющееся магнитное поле. Эти порождающие друг друга переменные электрические и магнитные поля образуют единое электромагнитное поле.

Свойства электромагнитных волн

Важнейшим результатом, который вытекает из сформулированной Максвеллом теории электромагнитного поля, стало предсказание возможности существования электромагнитных волн. Электромагнитная волна - распространение электромагнитных полей в пространстве и во времени.

Электромагнитные волны, в отличие от упругих (звуковых) волн , могут распространяться в вакууме или любом другом веществе.

Электромагнитные волны в вакууме распространяются со скоростью c=299 792 км/с , то есть со скоростью света.

В веществе скорость электромагнитной волны меньше, чем в вакууме. Соотношение между длиной волна , ее скоростью, периодом и частотой колебаний, полученные для механических волн выполняются и для электромагнитных волн:

Колебания вектора напряженности E и вектора магнитной индукции B происходят во взаимно перпендикулярных плоскостях и перпендикулярно направлению распространения волны (вектору скорости).

Электромагнитная волна переносит энергию.

Диапазон электромагнитных волн

Вокруг нас сложный мир электромагнитных волн различных частот: излучения мониторов компьютеров, сотовых телефонов, микроволновых печей, телевизоров и др. В настоящее время все электромагнитные волны разделены по длинам волн на шесть основных диапазонов.

Радиоволны - это электромагнитные волны (с длиной волны от 10000 м до 0,005 м), служащие для передачи сигналов (информации) на расстояние без проводов. В радиосвязи радиоволны создаются высокочастотными токами, текущими в антенне.

Электромагнитные излучения с длиной волны, от 0,005 м до 1 мкм, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением . Инфракрасное излучение испускают любые нагретые тела. Источником инфракрасного излучения служат печи, батареи, электрические лампы накаливания. С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте.

К видимому свету относят излучения с длиной волны примерно 770 нм до 380 нм, от красного до фиолетового цвета. Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового цвета, называют ультрафиолетовым излучением. Оно способно убивать болезнетворные бактерии.

Рентгеновское излучение невидимо глазом. Оно проходит без существенного поглощения через значительные слои вещества, непрозрачного для видимого света, что используют для диагностики заболеваний внутренних органов.

Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными ядрами и возникающее при взаимодействии элементарных частиц.

Принцип радиосвязи

Колебательный контур используют как источник электромагнитных волн. Для эффективного излучения контур "открывают", т.е. создают условия для того, чтобы поле "уходило" в пространство. Это устройство называется открытым колебательным контуром - антенной .

Радиосвязью называется передача информации с помощью электромагнитных волн, частоты которых находятся в диапазоне от до Гц.

Радар (радиолокатор)

Устройство, которое передает ультракороткие волны и тут же их принимает. Излучение осуществляется короткими импульсами. Импульсы отражаются от предметов, позволяя после приема и обработки сигнала установить дальность до предмета.

Радар скорости работает по аналогичному принципу. Подумайте, как радар определяет скорость движущейся машины.