• проводники;
  • диэлектрики (с изоляционными свойствами);
  • полупроводники.

Электроны и ток

В основе современного представления об электрическом токе лежит предположение о том, что он состоит из материальных частиц - зарядов. Но различные физические и химические опыты дают основания утверждать, что эти носители заряда могут быть различного типа в одном и том же проводнике. И эта неоднородность частиц влияет на плотность тока. Для вычислений, которые связаны с параметрами электротока, применяются определенные физические величины. Среди них важное место занимают проводимость вместе с сопротивлением.

  • Проводимость связана с сопротивлением взаимной обратной зависимостью.

Известно, что при существовании некоторого напряжения, приложенного к электрической цепи, в ней появляется электрический ток, величина которого связана с проводимостью этой цепи. Это фундаментальное открытие сделал в свое время немецкий физик Георг Ом. С тех пор в ходу закон, называемый законом Ома. Он существует для разных вариантов цепей. Поэтому формулы для них могут быть непохожими друг на друга, поскольку соответствуют совсем разным условиям.

В любой электрической цепи имеется проводник. Если в нем находится один тип частиц-носителей заряда, ток в проводнике подобен потоку жидкости, который имеет определенную плотность. Она определяется по такой формуле:

Большинство металлов соответствуют однотипности заряженных частиц, благодаря которым существует электрический ток. Для металлов вычисление удельной электрической проводимости производится по такой формуле:

Поскольку можно вычислить проводимость, определить удельное электрическое сопротивление теперь труда не составит. Выше уже было упомянуто, что удельное сопротивление проводника - это величина, обратная проводимости. Следовательно,

В этой формуле буква греческого алфавита ρ (ро) используется для обозначения удельного электрического сопротивления. Такое обозначение наиболее часто используется в технической литературе. Однако можно встретить и несколько иные формулы, с помощью которых вычисляется удельное сопротивление проводников. Если для расчетов применять классическую теорию металлов и электронную проводимость в них, удельное сопротивление вычисляется по такой формуле:

Однако есть одно «но». На состояние атомов в металлическом проводнике влияет продолжительность процесса ионизации, которое осуществляется электрическим полем. При однократном ионизирующем воздействии на проводник атомы в нем получат однократную ионизацию, которая создаст баланс между концентрацией атомов и свободных электронов. И величины этих концентраций получатся равными. В этом случае имеют место такие зависимости и формулы:

Девиации удельных проводимостей и сопротивлений

Далее рассмотрим, от чего зависит удельная проводимость, связанная обратной зависимостью с удельным сопротивлением. Удельное сопротивление вещества - это довольно-таки абстрактная физическая величина. Каждый проводник существует в виде конкретного образца. Для него характерно наличие различных примесей и дефектов внутренней структуры. Они учитываются как отдельные слагаемые выражения, определяющего удельное сопротивление в соответствии с правилом Маттиссена. Это правило также учитывает рассеяние движущегося потока электронов на колеблющихся в зависимости от температуры узлах кристаллической решетки образца.

Наличие внутренних дефектов, таких как вкрапление различных примесей и микроскопические пустоты, также увеличивает удельное сопротивление. Для определения количества примесей в образцах удельное сопротивление материалов измеряется для двух значений температуры материала образца. Одна температурная величина - комнатная, а другая соответствует жидкому гелию. По отношению результата измерения при комнатной температуре к результату при температуре жидкого гелия получают коэффициент, который иллюстрирует структурное совершенство материала и его химическую чистоту. Коэффициент обозначается буквой β.

Если в качестве проводника электрического тока рассматривается металлический сплав со структурой твердого раствора, которая неупорядочена, величина остаточного удельного сопротивления может быть существенно больше удельного сопротивления. Такая особенность металлических сплавов из двух составляющих, не относящихся к редкоземельным элементам, так же, как и к переходным элементам, охватывается специальным законом. Его называют законом Нордгейма.

Современные технологии в электронике все больше стремятся в сторону миниатюризации. Причем настолько, что вскоре появится слово «наносхема» взамен микросхемы. Проводники в таких устройствах настолько тонкие, что правильным будет называть их пленками из металла. Вполне понятно то, что пленочный образец своим удельным сопротивлением будет отличаться в большую сторону от более крупного проводника. Малая толщина металла в пленке приводит к появлению в нем свойств полупроводников.

Начинает проявляться соразмерность толщины металла со свободным пробегом электронов в этом материале. Места для движения электронов остается мало. Потому они начинают мешать друг другу двигаться упорядоченно, что и приводит к увеличению удельного сопротивления. Для пленок из металла удельное сопротивление рассчитывают по специальной формуле, полученной на основе экспериментов. Формула названа именем Фукса - ученого, который изучал удельное сопротивление пленок.

Пленки - это весьма специфические образования, которые сложно повторить так, чтобы свойства нескольких образцов были одинаковыми. Для приемлемой точности в оценке пленок применяют специальный параметр - удельное поверхностное сопротивление.

Из металлических пленок на подложке микросхем формируются резисторы. По этой причине расчеты удельного сопротивления - это весьма востребованная задача в микроэлектронике. Величина удельного сопротивления, очевидно, имеет влияние со стороны температуры и связана с ней зависимостью прямой пропорциональности. Для большинства металлов эта зависимость имеет некоторый линейный участок в определенном температурном диапазоне. В таком случае удельное сопротивление определяется формулой:

В металлах электроток возникает по причине большого числа свободных электронов, концентрация которых относительно велика. Причем, электроны так же определяют и большую теплопроводность металлов. По этой причине между удельной электрической проводимостью и удельной теплопроводностью установлена связь особым законом, который был обоснован экспериментальным путем. Этот закон Видемана-Франца характерен такими формулами:

Заманчивые перспективы сверхпроводимости

Однако самые удивительные процессы происходят при минимальной технически достижимой температуре жидкого гелия. При таких условиях охлаждения все металлы практически утрачивают свое удельное сопротивление. Провода из меди, охлажденные до температуры жидкого гелия, оказываются способными проводить токи многократно большие по сравнению с обычными условиями. Если бы на практике такое стало возможным, экономический эффект получился бы неоценимо большим.

Еще более удивительным оказалось открытие высокотемпературных проводников. Эти разновидности керамики при обычных условиях были очень далеки по своему удельному сопротивлению от металлов. Но при температуре примерно на три десятка градусов выше жидкого гелия они становились сверхпроводниками. Открытие такого поведения неметаллических материалов стало мощным стимулом для исследований. Из-за величайших экономических последствий практического применения сверхпроводимости на это направление были брошены весьма значительные финансовые ресурсы, начались масштабные исследования.

Но пока что, как говорится, «воз и ныне там»… Керамические материалы оказались непригодными для практического применения. Условия поддержания состояния сверхпроводимости требовали таких больших расходов, что уничтожалась вся выгода от ее использования. Но эксперименты со сверхпроводимостью продолжаются. Прогресс налицо. Уже получена сверхпроводимость при температуре 165 градусов Кельвина, однако для этого требуется высокое давление. Создание и поддержание таких особых условий опять-таки отрицает коммерческое использование этого технического решения.

Дополнительные факторы влияния

В настоящее время все продолжает идти своим путем, и для меди, алюминия и некоторых других металлов удельное сопротивление продолжает обеспечивать их промышленное использование для изготовления проводов и кабелей. В заключение стоит добавить еще немного информации о том, что не только удельное сопротивление материала проводника и температура окружающей среды влияют на потери в нем при прохождении электротока. Весьма значима геометрия проводника при использовании его на повышенной частоте напряжения и при большой силе тока.

В этих условиях электроны стремятся сосредотачиваться вблизи поверхности провода, и его толщина как проводника утрачивает смысл. Поэтому можно оправданно уменьшить в проводе количество меди, изготовив из нее только наружную часть проводника. Еще одним фактором увеличения удельного сопротивления проводника является деформация. Поэтому, несмотря на высокие показатели некоторых электропроводящих материалов, в определенных условиях они могут не проявиться. Следует правильно подбирать проводники для конкретных задач. В этом помогут таблицы, показанные далее.

Что такое удельное сопротивление вещества? Чтобы ответить простыми словами на этот вопрос, нужно вспомнить курс физики и представить физическое воплощение этого определения. Через вещество пропускается электрический ток, а оно, в свою очередь, препятствует с какой-то силой прохождению тока.

Понятие удельного сопротивления вещества

Именно эта величина, которая показывает насколько сильно препятствует вещество току и есть удельное сопротивление (латинская буква «ро»). В международной системе единиц сопротивление выражается в Омах , умноженных на метр. Формула для вычисления звучит так: «Сопротивление умножается на площадь поперечного сечения и делится на длину проводника».

Возникает вопрос: «Почему при нахождении удельного сопротивления используется еще одно сопротивление?». Ответ прост, есть две разных величины - удельное сопротивление и сопротивление. Второе показывает насколько вещество способно препятствовать прохождению через него тока, а первое показывает практически то же самое, только речь идет уже не о веществе в общем смысле, а о проводнике с конкретной длиной и площадью сечения, которые выполнены из этого вещества.

Обратная величина, которая характеризует способность вещества пропускать электричество именуется удельной электрической проводимостью и формула по которой вычисляется удельная сопротивляемость напрямую связана с удельной проводимостью.

Применение меди

Понятие удельного сопротивления широко применяется в вычисление проводимости электрического тока различными металлами. На основе этих вычислений принимаются решения о целесообразности применения того или иного металла для изготовления электрических проводников, которые используются в строительстве, приборостроении и других областях.

Таблица сопротивления металлов

Существуют определенные таблицы? в которых сведены воедино имеющиеся сведения о пропускании и сопротивлении металлов, как правило, эти таблицы рассчитаны для определенных условий.

В частности, широко известна таблица сопротивления металлических монокристаллов при температуре двадцать градусов по Цельсию, а также таблица сопротивления металлов и сплавов.

Этими таблицами пользуются для вычисления различных данных в так называемых идеальных условиях, чтобы вычислить значения для конкретных целей нужно пользоваться формулами.

Медь. Ее характеристики и свойства

Описание вещества и свойства

Медь - это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.

Физические свойства меди:

  • температура плавления - 1084 градусов по Цельсию;
  • температура кипения - 2560 градусов по Цельсию;
  • плотность при 20 градусах - 8890 килограмм деленный на кубический метр;
  • удельная теплоемкость при постоянном давлении и температуре 20 градусов - 385 кДж/Дж*кг
  • удельное электрическое сопротивление - 0,01724;

Марки меди

Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:

  1. Марки М00, М0, М1 - отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
  2. Марки М2 и М3 - дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
  3. Марки М1, М1ф, М1р, М2р, М3р - это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.

Между собой марки отличаются по нескольким параметрам:

Влияние примесей на свойства меди

Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.

В заключение следует подчеркнуть, что медь - это уникальный металл с уникальными свойствами. Она применяется в автомобилестроении, изготовлении элементов для электроиндустрии, электроприборов, предметов потребления, часов, компьютеров и многого другого. Со своим низким удельным сопротивлением данный металл является отличным материалом для изготовления проводников и прочих электрических приборов. Этим свойством медь обгоняет только серебро, но из-за более высокой стоимости оно не нашло такого же применения в электроиндустрии.

Как уже отмечалось, сила тока в цепи зависит не только от напряжения на концах участка, но также и от свойств проводника, включенного в цепь. Зависимость силы тока от свойств проводников объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

Электрическое сопротивление R - физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных носителей зарядов в проводнике. Обозначается сопротивление буквой R. В СИ единицей сопротивления проводника является ом (Ом).

1 Ом - сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на нем 1 В.

Применяются и другие единицы: килоом (кОм), мегаом (МОм), миллиом (мОм): 1 кОм = 10 3 Ом; 1 МОм = 10 6 Ом; 1 мОм = 10 -3 Ом.

Физическую величину G, обратную сопротивлению, называют электрической проводимостью

Единицей электрической проводимости в СИ является сименс: 1 См - это проводимость проводника сопротивлением 1 Ом.

Проводник содержит не только свободные заряженные частицы - электроны, но и нейтральные частицы и связанные заряды. Все они участвуют в хаотическом тепловом движении, равновероятном в любых направлениях. При включении электрического поля под действием электрических сил будет преобладать направленное упорядоченное движение свободных зарядов, которые должны двигаться с ускорением и их скорость должна была бы со временем возрастать. Но в проводниках свободные заряды движутся с некоторой постоянной средней скоростью. Следовательно, проводник оказывает сопротивление упорядоченному движению свободных зарядов, часть энергии этого движения передается проводнику, в результате чего повышается его внутренняя энергия. Из-за движения свободных зарядов искажается даже идеальная кристаллическая решетка проводника, на искажениях кристаллической структуры рассеивается энергия упорядоченного движения свободных зарядов. Проводник оказывает сопротивление прохождению электрического тока.

Сопротивление проводника зависит от материала, из которого он изготовлен, длины проводника и площади поперечного сечения. Для проверки этой зависимости можно воспользоваться той же электрической схемой, что и для проверки закона Ома (рис. 2), включая в участок цепи MN различные по размерам проводники цилиндрической формы, изготовленные из одного и того же материала, а также из разных материалов.

Результаты эксперимента показали, что сопротивление проводника прямо пропорционально длине l проводника, обратно пропорционально площади S его поперечного сечения и зависит от рода вещества, из которого изготовлен проводник:

где - удельное сопротивление проводника.

Скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника, изготовленного из данного вещества и имеющего длину 1 м и площадь поперечного сечения 1 м 2 , или сопротивлению куба с ребром 1 м. Единицей удельного сопротивления в СИ является ом-метр (Ом·м).

Удельное сопротивление металлического проводника зависит от

  1. концентрации свободных электронов в проводнике;
  2. интенсивности рассеивания свободных электронов на ионах кристаллической решетки, совершающих тепловые колебания;
  3. интенсивности рассеивания свободных электронов на дефектах и примесях кристаллической структуры.

Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца - "нихрома". Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l .

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l )/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Удельное сопротивление - прикладное понятие в электротехнике. Оно обозначает то, какое сопротивление на единицу длины оказывает материал единичного сечения протекающему через него току - другими словами, каким сопротивлением обладает провод миллиметрового сечения длиной один метр. Это понятие используется в различных электротехнических расчетах.

Важно понимать различия между удельным электрическим сопротивлением постоянному току и удельным электросопротивлением переменному току. В первом случае сопротивление вызывается исключительно действием постоянного тока на проводник. Во втором случае переменный ток (он может быть любой формы: синусоидальной, прямоугольной, треугольной или произвольной) вызывает в проводнике дополнительно действующее вихревое поле, которому также создается сопротивление.

Физическое представление

В технических расчетах, предполагающих прокладку кабелей различных диаметров, используются параметры, позволяющие рассчитать необходимую длину кабеля и его электрические характеристики. Одним из основных параметров является удельное сопротивление. Формула удельного электрического сопротивления:

ρ = R * S / l, где:

  • ρ - это удельное сопротивление материала;
  • R - омическое электросопротивление конкретного проводника;
  • S - поперечное сечение;
  • l - длина.

Размерность ρ измеряется в Ом мм 2 /м, или, сократив формулу - Ом м.

Значение ρ для одного и того же вещества всегда одинаковое. Следовательно, это константа, характеризующая материал проводника. Обычно она указывается в справочниках. Исходя из этого уже можно проводить расчет технических величин.

Важно сказать и об удельной электрической проводимости. Эта величина является обратной удельному сопротивлению материала, и используется наравне с ним. Ее также называют электропроводностью. Чем выше эта величина, тем лучше металл проводит ток. Например, удельная проводимость меди равна 58,14 м/(Ом мм 2). Или, в единицах, принятых в системе СИ: 58 140 000 См/м. (Сименс на метр - единица электропроводности в СИ).

Говорить об удельном сопротивлении можно только при наличии элементов, проводящих ток, так как диэлектрики обладают бесконечным или близким к нему электросопротивлением. В отличие от них, металлы - очень хорошие проводники тока. Измерить электросопротивление металлического проводника можно с помощью прибора миллиомметра, или еще более точного - микроомметра. Значение измеряется между их щупами, приложенными к участку проводника. Они позволяют проверить цепи, проводку, обмотки двигателей и генераторов.

Металлы разнятся между собой по способности проводить ток. Удельное сопротивление различных металлов - параметр, характеризующий это отличие. Данные приведены при температуре материала 20 градусов по шкале Цельсия:

Параметр ρ показывает, каким сопротивлением будет обладать метровый проводник с сечением 1 мм 2 . Чем больше это значение, тем больше электросопротивление будет у нужного провода определенной длины. Наименьшее ρ, как видно из списка, у серебра, сопротивление одного метра из этого материала будет равно всего 0,015 Ом, но это слишком дорогой металл для использования его в промышленных масштабах. Следующим идет медь, которая в природе встречается гораздо чаще (не драгоценный, а цветной металл). Поэтому медная проводка очень распространена.

Медь является не только хорошим проводником электрического тока, но и очень пластичным материалом. Благодаря этому свойству медная проводка лучше укладывается, она устойчива к изгибам и растяжению.

Медь очень востребована на рынке. Из этого материала производят множество различных изделий:

  • Огромное многообразие проводников;
  • Автозапчасти (например, радиаторы);
  • Часовые механизмы;
  • Компьютерные составляющие;
  • Детали электрических и электронных приборов.

Удельное электрическое сопротивление меди является одним из лучших среди проводящих ток материалов, поэтому на ее основе создается множество товаров электроиндустрии. К тому же медь легко поддается пайке, поэтому очень распространена в радиолюбительстве.

Высокая теплопроводность меди позволяет использовать ее в охлаждающих и обогревающих устройствах, а пластичность дает возможность создавать мельчайшие детали и тончайшие проводники.

Проводники электрического тока бывают первого и второго рода. Проводники первого рода - это металлы. Проводники второго рода- это проводящие растворы жидкостей. Ток в первых переносят электроны, а переносчики тока в проводниках второго рода -ионы, заряженные частицы электролитической жидкости.

Говорить о проводимости материалов можно только в контексте температуры окружающей среды. При более высокой температуре проводники первого рода увеличивают свое электросопротивление, а второго, напротив, уменьшают. Соответственно, существует температурный коэффициент сопротивления материалов. Удельное сопротивление меди Ом м возрастает при увеличении нагрева. Температурный коэффициент α тоже зависит только от материала, эта величина не имеет размерности и для разных металлов и сплавов равна следующим показателям:

  • Серебро - 0,0035;
  • Железо - 0,0066;
  • Платина - 0,0032;
  • Медь - 0,0040;
  • Вольфрам - 0,0045;
  • Ртуть - 0,0090;
  • Константан - 0,000005;
  • Никелин - 0,0003;
  • Нихром - 0,00016.

Определение величины электросопротивления участка проводника при повышенной температуре R (t), вычисляется по формуле:

R (t) = R (0) · , где:

  • R (0) - сопротивление при начальной температуре;
  • α - температурный коэффициент;
  • t - t (0) - разность температур.

Например, зная электросопротивление меди при 20 градусах Цельсия, можно вычислить, чему оно будет равно при 170 градусах, то есть при нагреве на 150 градусов. Исходное сопротивление увеличится в раз, то есть в 1,6 раз.

При увеличении температуры проводимость материалов, напротив, уменьшается. Так как это величина, обратная электросопротивлению, то и уменьшается она ровно во столько же раз. Например, удельная электропроводность меди при нагреве материала на 150 градусов уменьшится в 1,6 раз.

Существуют сплавы, которые практически не изменяют своего электросопротивления при изменении температуры. Таков, к примеру, константан. При изменении температуры на сто градусов его сопротивление увеличивается всего на 0,5%.

Если проводимость материалов ухудшается с нагревом, она улучшается с понижением температуры. С этим связано такое явление, как сверхпроводимость. Если понизить температуру проводника ниже -253 градусов Цельсия, его электросопротивление резко уменьшится: практически до нуля. В связи с этим падают затраты на передачу электрической энергии. Единственной проблемой оставалось охлаждение проводников до таких температур. Однако в связи с недавними открытиями высокотемпературных сверхпроводников на базе оксидов меди, охлаждать материалы приходится уже до приемлемых значений.