Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Мы получили в наследство невыразимо прекрасный
и многообразный сад,
но беда в том,
что мы никудышные садовники.

Мы не позаботились о том,
чтобы усвоить простейшие правила садоводства.
Джеральд Даррелл,
«Путь кенгуренка»

Научно-техническая революция… посулив золотые горы
и дав многое из того, чем мы ныне гордимся,
породила иные, ранее неведомые проблемы.
Решить их на путях, проторенных уже,
не представляется возможным.
В.Р. Арсеньев,
«Звери-боги-люди».

В настоящее время термин «экология» стал очень популярным; как правило, его употребляют, говоря о неблагополучном состоянии окружающей нас природной среды. Вместе с тем, его нередко используют в сочетании такими словами, как «общество» , «семья» , «здоровье» , «культура» , «образование» . Как следствие, закономерен вопрос: «Что же, в конце концов, изучает эта наука?»

Термин «экология» (от греч.oikos – дом, жилище, родина и logos – слово, учение, наука), предложенный в 1868 г . немецким биологом Эрнстом Геккелем , дословно означает «наука о доме» . В самом широком смысле, экология – это комплекс наук об отношениях между организмами и факторами среды их обитания . При этом, некоторые науки экологического комплекса классифицируются не по объектам изучения, а по методам исследования, которые в них используются. Одним из таких направлений является «математическая экология» .

Математическая экология моделирует экологические процессы, т. е. возможные изменения в природе при изменении экологических факторов [Там же, с. 64]. При этом, небезынтересно отметить, что далеко не всегда возрастающим по сложности системам и объектам соответствуют все более усложняющиеся модели. Весь фокус состоит в том, что математическая модель вовсе не обязана детально описывать изучаемый объект, а может и должна отражать лишь самое важное для изучения.

В свете сказанного рассмотрим несколько примеров.

Пример №1. Алгебра, арифметика и биология . «Однажды в зоопарке я рассматривал зебр, серн, фламинго, нарвалов и бабочек. Всего я насчитал у них тридцать четыре ноги, четырнадцать крыльев, девять хвостов, шесть рогов и восемь ушей, - я хочу сказать, наружных ушей, а не внутренних. Сколько там было зебр? Сколько серн? Сколько фламинго? Сколько нарвалов? Сколько бабочек?»

Решение. Число зебр обозначим буквой x ; число серн - y ; фламинго - z ; нарвалов - u ; бабочек - v . Составим и заполним таблицу:

Решив полученную систему уравнений, найдем ответы на поставленные вопросы.

Пример №2. Загадка Каспийского моря . «Черное и каспийское моря произошли от одного древнего моря, которое было потом разделено Кавказскими горами на две части. Каспийское море замкнутое, Черное вытекает через Босфор и Дарданеллы в Средиземное море. Несмотря на это, Черное море намного соленее Каспийского. Это кажется необъяснимым, но вспомним, что у каспийского моря есть залив Кара-Богаз-Гол. На первый взгляд кажется, что это ничего не меняет, ведь оно по-прежнему остается замкнутым. Однако это не так, поскольку перемешивания вод Каспийского моря и залива не происходит: вода из Каспия все время течет в залив. Может ли это привести к опреснению Каспия?»

Решение. Введем обозначения: Q - общий приток вод в Каспий, I - превышение испарения над дождями в Каспии, I 1 - то же в заливе, q - интенсивность перетекания воды из Каспия в Кара-Богаз-Гол, и 1– скорости изменения объемов воды в Каспии и в заливе, ν - соленость вод рек, притекающих в Каспий, µ - соленость воды Каспия, и 1– скорость изменения количеств солей в Каспии и в заливе. Запишем уравнения:

= Q - I - q ,
1 = q - I 1,
= - q µ,
1 = q µ ,

где – интенсивность прибытия соли в Каспий, q µ - тоже для залива. Последнее уравнение показывает, что количество солей в заливе неограниченно растет со временем. В геологических масштабах времени можно считать, что= 1 = 0 , отсюда:

Q I q = 0,
q - I 1 = 0.

Как известно, концентрация солей в заливе давно достигла насыщения, и соли тысячелетиями осаждаются на его дне, образуя громадные залежи. Количество солей в Каспии возрастает до тех пор, пока > q µ . При выполнении условия = q µ рост солености Каспия прекращается, достигнув некоторого значения

µ* = Qν/q = (I+q) ν /= (1+I/q) ν .
Т. к. q = I 1 , то µ* = (1+ I / I 1 ,

где I / I 1 – отношение интенсивностей испарения воды в Каспии и в заливе. Грубо приближенно оно равно отношению S / S 1 площадей Каспия и залива. С учетом этого:

µ* = (1+I/I1) ν = µ* = (1+S/S1) ν

Т. к. S ≈ 40S1 , то µ* ≈ 40ν . Количественные оценки показывают, что это меньше, чем соленость Каспия сегодня. Т. е. залив Кара-Богаз-Гол опресняет Каспийское море, что объясняет его меньшую соленость по сравнению с Черным. В геологических масштабах времени соленость Каспия будет продолжать уменьшаться.

Пример №3. Дифференциальная модель эволюции популяции . Рассмотрим один из важных биологических примеров, основным содержанием которого является исследование развития биосистемы посредством построения динамической модели изменения численности популяции каких-либо живых существ (бактерий, рыб, животных и пр.) с учетом различных факторов. Заметим, что популяции, как правило, существуют не изолированно, а во взаимодействии с другими популяциями. Наиболее важным типом такого взаимодействия является взаимодействие между жертвами и хищниками (например, караси – щуки, зайцы – волки и так далее). При этом отметим, что математические модели «…способствуют более глубокому пониманию закономерностей, раскрывают динамику процесса и связывают воедино разные формы движения материи. В школьном курсе физики мы уже сталкивались с тем, что одно и то же дифференциальное уравнение хорошо описывает и механические колебания маятника, и электромагнитные колебания в контуре. Попробуем эту идею распространить и на другие явления» .

Пусть y – количество особей в некоторой популяции хищников, аx – количество их жертв. Тогда скорость изменения количества хищников пропорциональна количеству жертв, а скорость убывания количества жертв пропорциональна количеству хищников, т.е. имеют место дифференциальные уравнения:

Отсюда получим:

Вводя обозначение ω 2 = ab , придем к выражению:

Последнее, как известно, описывает колебательный процесс с периодом

Таким образом, в данном приближении, изменение численности популяции хищников носит периодический характер. Значения параметров a и b определяются из многолетних наблюдений.

Резюмируем сказанное. Введение в математическую экологию неизбежно требует обращения к физике, химии, математике и информатике. Природные объекты являются высокоорганизованными системами, как на собственном структурном уровне, так и на уровне экосистем. Поэтому, вполне естественно утверждать, что основная цель математической экологии заключается в изучении теории и практики этой организации во всей ее сложности и гибкости, в ее действии и эволюции. И если вводный этап изучения заключается в том, чтобы определить такие факторы, как вес, рост,

  • Гершензон М. А. Головоломки профессора Головоломки. – М.: Дет. лит., 1989.
  • Неймарк Ю. И. Простые математические модели и их роль в постижении мира.//СОЖ, 1997, №3. С. 139-143.
  • Найдин А.А. Математические модели развивают мышление. // Физика (ИД «Первое сентября»), 2008, №12.
  • Экология математическая

    Введение. Общесистемный подход к моделированию экологических систем.

    Гипотезы Вольтерра о типах взаимодействий в экосистемах.

    Модели экологических сообществ.

    Принципы лимитирования в экологии.

    Закон толерантности и функции отклика.

    Модели водных экосистем.

    Модели продукционного процесса растений.

    Модели лесных сообществ.

    Оценка загрязнения атмосферы и поверхности земли.

    Глобальные модели.

    Экология - развивающаяся междисциплинарная область знаний, включающую представления практически всех наук о взаимодействиях живых организмов, включая человека, с окружающей средой. До середины 20 века экология представляла собой одну из биологических дисциплин, а именно, науку о взаимодействии организмов с окружающей средой. Современная экология наряду с этим включает в себя науку и практические методы контроля за состоянием окружающей среды - мониторинг, охрану окружающей среды, учение о биогеоценозах и аторопологических воздействиях на природные экосистемы, эколого-экономические и эколого-социальные аспекты. Все это определяет и предмет математической экологии, объединяющей математически модели и методы, используемые при решении проблем экологии.

    Фундаментом математической экологии является математическая теория динамики популяций (См. Статью "Популяций динамика "), в которой фундаментальные биологические представления о динамике численности видов животных, растений, микроорганизмов и их взаимодействии формализованы в виде математических структур, в первую очередь, систем дифференциальных, интегро-дифференциальных и разностных уравнений.

    Любая экосистема состоит из нелинейно взаимодействующих подсистем, которые можно упорядочить в некоторую иерархическую структуру. По мере объединения компонентов, или подмножеств, в более крупные функциональные единицы, у этих новых единиц возникают свойства, отсутствующие у составляющих ее компонентов. Такие качественно новые "эмерджентные" свойства экологического уровня или экологической единицы не являются простой суммой свойств компонентов. Следствием является невозможность изучения динамики сложных экосистем путем их иерархического расчленения на подсистемы и последующего изолированного изучения этих подсистем, поскольку при этом неизбежно утрачиваются свойства, определяемые целостностью изучаемой системы.

    Воздействие внешних факторов на экологическую систему также нельзя рассматривать независимо друг от друга, так как комбинированное действие нельзя свести к сумме действующих факторов. Тем более сложной задачей является количественное описание реакции сложной системы на комплексное воздействие различных факторов.

    Все эти обстоятельства приводят к невозможности описать сложные экосистемы с помощью простых редуцированных "механизменных" моделей. Необходимы либо сложные имитационные модели, объединяющие в одну сложную систему на модельном уровне знания об элементах системы и типах их взаимодействия, либо упрощенные интегрированные модели типа "воздействие - отклик", интегрирующие данные большого числа наблюдений над экосистемой.

    Имитационные компьютерные модели включают представления о компонентах систем и их взаимосвязях как в виде собственно математических объектов: формул, уравнений, матриц, логических процедур, так и в виде графиков, таблиц, баз данных, оперативной информации экологического мониторинга. Такие многомерные модели позволяют объединить разнородную информацию об экологической или эколого-экономической системе, "проигрывать" различные сценарии развития и вырабатывать на модели оптимальные стратегии управления, что невозможно делать на реальной системе в силу ее уникальности и ограниченности времени.

    Имитационный подход, также как и моделирование экосистем с помощью функций отклик, требуют высоко развитой вычислительной техники, поэтому математическая экология как развитая и практически используемая наука получила распространение только в последние десятилетия 20 века. Широкое применение математического аппарата стимулировало развитие теоретической экологии . Построение математической моделей требует упорядочивания и классификации имеющейся информации об экосистемах, приводит к необходимости планировать систему сбора данных и позволяет объединить на содержательном уровне совокупность физических, химических и биологических сведений и представлений об отдельных происходящих в экосистемах процессах.

    Общесистемный подход к моделированию экологических систем

    При построении моделей экосистем применяют методы общесистемного анализа. В первую очередь это - выделение из системы отдельных структурных элементов, таких как живые и косные компоненты, среди живых - трофические уровни, виды, возрастные или половые группы, взаимодействие которых и будет определять поведение всей системы. Другой важный элемент - установление характера процессов, в которых участвует каждый элемент (процессы размножения и роста, взаимодействия типа хищничества, конкуренции и т.д.) Часто в экологическом моделировании используются балансовые компартментальные модели, когда рассматриваются потоки вещества и энергии между составляющими модель компартментами, содержание "вещества" в каждом из которых и представляет собой отдельную переменную системы.

    Необходимость описывать экологические взаимодействия послужила толчком для развития системных исследований. По словам одного из иснователей общей теории систем Людвига фон Берталанфи "работы Вольтерра, Лотки, Гаузе и других по теории популяций принадлежат к классическим трудам общей теории систем. В них впервые была продемонстрирована возможность развития концептуальных моделей для таких явлений как борьба за существование, которые могут быть подвергнуты эмпирической проверке." (Л.Берталанфи.Общая теория систем. Критический обзор. 1969)

    Широко используется принцип изоморфизма, позволяющий сходными математическими уравнениями описывать системы, разные по своей природе, но одинаковые по структуре и типу взаимодействия между элементами, их составляющими.

    Работа с имитационной моделью требует знания величин параметров модели, которые могут быть оценены только из наблюдения и эксперимента. Часто приходится разрабатывать новые методики наблюдений и экспериментов с целью установления факторов и взаимосвязей, знание которых позволяет выявить слабые места гипотез и допущений, положенных в основу модели. Весь процесс моделирования - от построения моделей до проверки предсказанных с ее помощью явлений и внедрения полученных результатов в практику - должен быть связан с тщательно отработанной стратегией исследования и строгой проверкой используемых в анализе данных.

    Это положение, справедливое для математического моделирования вообще, особенно важно для такой сложной науки как экология, имеющей дело с разнообразными взаимодействиями между огромным множеством организмов и средой их обитания. Почти все эти взаимодействия динамические в том смысле, что они зависят от времени и постоянно меняются, причем как правило включают в себя положительные и отрицательные обратные связи, то есть являются нелинейными. Сложность экосистем усугубляется с изменчивостью самих живых организмов, которая может проявляться и при взаимодействии организмов друг с другом (например, в процессе конкуренции или хищничества), и в реакции организма на изменения окружающей среды. Эта реакция может выражаться в изменении скорости роста и воспроизведения и в различной способности к выживанию в сильно различающихся условиях. К этому добавляются происходящие независимо изменения таких факторов среды как климат и характер мест обитания. Поэтому исследование и регулирование экологических процессов представляет собой исключительно сложную задачу.

    Экспериментальное и натурное наблюдение экологических процессов осложняется их длительностью. Например, исследования в области земледелия и садоводства связаны главным образом с определением урожайности, а урожай собирают раз в год, так что один цикл эксперимента занимает год и более. Чтобы найти оптимальное количество удобрений и провести другие возможные мероприятия по окультуриванию, может понадобиться несколько лет, особенно когда необходимо рассматривать взаимодействия между экспериментальными результатами и погодой. То же касается процессов, проходящих в аквакультуре, например, при разработке оптимальных режимов содержания рыбоводных прудов. В лесоводстве из-за длительности круговорота урожаев древесины самый непродолжительный эксперимент занимает 25 лет, а долговременные эксперименты могут длиться от 40 до 120 лет. Аналогичные временные масштабы необходимы для проведения исследований с другими природными ресурсами. Поэтому математическое моделирование является необходимым инструментом в экологии, природопользовании и управлении природными ресурсами.

    Классы задач и математический аппарат.

    Современные математические модели в экологии можно разбить на три класса. Первый - описательные модели: регрессионные и другие эмпирически установленные количественные зависимости, не претендующие на раскрытие механизма описываемого процесса. Примеры таких моделей приведены в (Биология математическая ). Они применяются обычно для описания отдельных процессов и зависимостей и включаются как фрагменты в имитационные модели. Второй - модели качественные, которые строятся с целью выяснения динамического механизма изучаемого процесса, способные воспроизвести наблюдаемые динамические эффекты в поведении систем, такие, например, как колебательный характер изменения биомассы или образование неоднородной в пространстве структуры. Обычно эти модели не слишком громоздкие, поддающиеся качественному исследованию с применением аналитических и компьютерных методов. Третий класс - имитационные модели конкретных экологических и эколого-экономических систем, учитывающие всю имеющуюся информацию об объекте. Цель построения таких моделей - детальное прогнозирование поведения сложных систем или решение оптимизационной задачи их эксплуатации.

    Чем лучше изучен сложная экологическая система, тем более полно может быть обоснована его математическая модель. При условии тесной связи наблюдений, экспериментального исследования и математического моделирования математическая модель может служить необходимым промежуточным звеном между опытными данными и основанной на них теорией изучаемых процессов. Для решения практических задач можно использовать модели всех трех типов. При этом особенно важны вопросы идентифицируемости (соответствия реальной системе) и управляемости таких моделей.

    Обычно при математическом моделировании задача состоит в том, чтобы получить обоснованный прогноз кинетики компонентов экологической системы. При этом делаются различные исходные предположения и преследуются соответствующие цели при изучении моделей, которые один из пионеров математической биологии А.А. Ляпунов сформировал следующим образом (Ляпунов, 1968, 1972).

    А . Биологические характеристики компонентов неизменны, так же как и взаимоотношения между ними. Система считается однородной в пространстве. Изучаются изменения во времени численности (биомассы) компонентов системы.

    Б. При сохранении гипотезы однородности вводится предположение о закономерном изменении системы отношений между компонентами. Это может соответствовать либо закономерному изменению внешних условий (например, сезонному), либо заданному характеру эволюций форм, образующих систему. При этом по-прежнему изучается кинетика численности компонентов.

    Аппаратом для изучения этих двух классов задач служат системы обыкновенных дифференциальных и дифференциально-разностных уравнений с постоянными (А) и переменными (Б) коэффициентами.

    В. Объекты считаются разнородными по своим свойствам и подверженными действию отбора. Предполагается, что эволюция форм определяется условиями существования системы. В этих условиях изучается, с одной стороны, кинетика численности компонентов, с другой - дрейф характеристик популяций. При решении таких задач используют аппарат теории вероятностей. К ним относятся многие задачи популяционной генетики.

    Г. Отказ от территориальной однородности и учет зависимости усредненных концентраций от координат. Здесь возникают вопросы, связанные с пространственным перераспределением живых и косных компонентов системы. Например, численность (биомасса) видов - гидробионтов меняется с изменением глубины водоема. Для описания таких систем необходимо привлечение аппарата дифференциальных уравнений в частных производных. В имитационных моделях часто вместо непрерывного пространственного описания применяют разбиение всей системы на несколько пространственных блоков.

    Задачи пространственной организации экологических систем представляет особый интерес. До последнего времени предполагали, что пространственная неоднородность распространения видов связана в основном с ландшафтно-климатическими факторами. В последние годы все более глубоко осознается тот факт, что сама пространственная структурированность экологических систем может быть обусловлена не только исходно существующей пространственной неоднородностью, но и спецификой локальных взаимодействий составляющих экосистему популяций между собой и с косными компонентами среды. Возникающие и активно поддерживающиеся таким образом пространственные структуры называют экологическими диссипативными структурами.

    Биологические популяции и сообщества заведомо являются энергетически "проточными", т.е. далекими от равновесия системами. колебательные режимы в таких системах давно известны как в лабораторных исследованиях, так и из полевых наблюдений и неплохо исследованы теоретически. Экологические системы подвержены влиянию периодических и нерегулярных геофизических воздействий, их биологические составляющие обладают эндогенными биологическими ритмами (биологические часы). В настоящее время активно решаются проблемы связи между колебательными режимами в локальных (точечных) системах и пространственно-временными структурами в экологических системах. Как и в физических и химических системах, здесь решающую роль играет характер нелинейных взаимодействий, определяющих пути массо- и энергообмена в сложной системе.

    Без учета пространственной неоднородности невозможно оценить влияние подвижности особей на регуляцию численности популяций, роль перемещений в синхронизации или затухании колебаний численности, которые имели бы место в отсутствие пространственных перемещений, как направленных, так и случайных - типа диффузии. Современный математический аппарат позволяет выяснить эти вопросы, а также установить связь локальной динамики популяций с крупномасштабными пространственными структурами и долговременной приспособленностью видов и видовых сообществ.

    Гипотезы Вольтерра о типах взаимодействий в экосистемах

    Первые модели динамики популяций -это ряд Фибоначчи (1202), модель экспоненциального роста (1798) Мальтуса, модель ограниченного роста Ферхюльста (1838) (См. Популяций динамика ). К настоящему времени имеется много самых разнообразных дискретных и непрерывных детерминистических и стохастических моделей. В начале 20 века появились первые модели взаимодействия видов. Классической книгой современной математической экологии является труд В.Вольтерра "Математическая теория борьбы за существование" (Volterra, 1931; Вольтерра, 1976). Развитие теоретической экологии в последующие десятилетия полностью подтвердило глубину и правильность его идей.

    Системы, изученные Вольтерра, состоят из нескольких биологических видов и запаса пищи, который используют некоторые из рассматриваемых видов. О компонентах системы формулируются следующие допущения.

    1.Пища либо имеется в неограниченном количестве, либо ее поступление с течением времени жестко регламентировано. 2. Особи каждого вида отмирают так, что в единицу времени погибает постоянная доля существующих особей. 3. Хищные виды поедают жертвы, причем в единицу времени количество съеденных жертв всегда пропорционально вероятности встречи особей этих двух видов, т.е. произведению количества хищников на количество жертв. 4. Если имеются пища в неограниченном количестве и несколько видов, которые способны ее потреблять, то доля пищи, потребляемая каждым видом в единицу времени, пропорциональна количеству особей этого вида, взятого с некоторым коэффициентом, зависящим от вида (модели межвидовой конкуренции).5. Если вид питается пищей, имеющейся в неограниченном количестве, прирост численности вида за единицу времени пропорционален численности вида. 6. Если вид питается пищей, имеющейся в ограниченном количестве, то его размножение регулируется скоростью потребления пищи, т.е. за единицу времени прирост пропорционален количеству съеденной пищи.

    Перечисленные гипотезы позволяют описывать сложные живые системы при помощи систем обыкновенных дифференциальных уравнений, в правых частях которых имеются суммы линейных и билинейных членов. Как известно, такими уравнениями описываются и системы химических реакций. Такое сходство уравнений в химических и экологических моделях позволяет применить для математического моделирования кинетики популяций те же методы исследований, что и для систем химических реакций. Вольтерровские уравнения могут быть получены не только из локального "принципа встреч", ведущего свое происхождение из статистической физики, но и исходя из баланса масс каждого из компонентов биогеоценоза и энергетических потоков между этими компонентами.

    Уравнения Вольтерра послужили отправной точкой для создания большинства динамических моделей в экологии вплоть до сегодняшнего дня. Вольтерра изучал сосуществование видов при более широких гипотезах, в частности при изменении внешних условий и с учетом явления последействия, рассмотрение которого приводит к интегро-дифференциальным уравнениям.

    Модели экологических сообществ

    Природные сообщества обладают сложным строением: несколькими уровнями, между которыми существуют разнообразные трофические (пищевые) и топические (не связанные с цепью питания) связи. Структура трофической пирамиды может быть весьма различной в зависимости от климата, почвы, ландшафта, длительности существования биогеоценоза и других факторов.

    При анализе биологических сообществ принято строить пищевые или трофические сети, т.е. графы , вершины которых соответствуют видам, входящим в сообщество, а ребра указывают трофические связи между видами. Обычно такие графы - ориентированные: направление дуги между двумя вершинами указывает на тот из видов, который является потребителем другого, т.е. направление дуги совпадает с направлением потока вещества или биомассы в системе. (рис.1)

    Рис.1. Пример двухвозрастной трофической пирамиды.

    Часто трофические графы изображают в виде трофических пирамид. В такой пирамиде выделяются трофические уровни - группы видов, между которыми невозможны прямые пищевые связи. Уровней может быть несколько: виды, принадлежащие одному уровню, либо находятся в состоянии конкуренции за жизненные ресурсы, либо совместно используют ресурс. На рис. 1 изображен пример двухуровневой трофической пирамиды, взятой из книги Ю. Одума "Основы экологии" (1975). Из 15 видов насекомых (верхний уровень) 5 видов питаются только на одном из двух видов растений, 2 вида - только на втором, в рацион остальных 8 видов насекомых входят оба вида растений. Основные трофические уровни наземных сообществ - это продуценты или автотрофы (растения, аккумулирующие энергию света и вещества субстрата) и гетеротрофы: первичные консументы (травоядные) и вторичные консументы (хищники, питающиеся травоядными). В некоторых случаях трофическая цепь содержит большее число уровней: например, растения служат пищей насекомым, насекомые поедаются птицами, которые в свою очередь служат пищей более крупным хищным птицам.

    Если в структуре сообщества учитывать движение некоторых биогенных элементов и энергии, то в системе обнаруживаются петли обратной связи. Разлагатели (редуценты) - микробы, грибы, бактерии - в процессе своей жизнедеятельности расщепляют сложные органические соединения (экскременты и мертвую органику) на более простые минеральные вещества, необходимые продуцентам. Образование органической биомассы происходит в процессе фотосинтеза с использованием солнечного света из углекислого газа и воды, причем необходимы также элементы, поступающие из почвы: азот, фосфор, калий, магний, железо и многие другие микроэлементы. Общая схема потоков массы и энергии между основными компонентами наземных экосистем изображена на рис. 2.

    Рис.2. Общая схема потоков вещества и энергии в экосистеме.

    Полную структуру парных взаимодействий между n видами можно изобразить с помощью матрицы S из п п элементов. Элемент (i,j) представляет собой знак +,- или 0 и показывает влияние i -го вида на j-й. Симметричные пары элементов матрицы S указывают на тип парного взаимодействия между видами:

    Взаимодействие между видами можно характеризовать и при помощи знакового ориентированного графа, который строится по следующему правилу. Если вид j влияет каким-либо образом на вид i , то проводится ребро и ему приписывается знак этого влияния.

    В современной литературе по математической экологии принято считать вольтерровскими моделями сообществ биологических видов системы вида

    (1)

    где - скорость естественного прироста или смертностиi -го вида в отсутствие всех остальных видов, а знак и абсолютная величина отражают соответственно характер и интенсивность влиянияj- го вида на i -й вид, показатель внутривидового взаимодействия для i -го вида. Мiатрицу Г = , отражающую структуру связей сообщества, называют матрицей сообщества.

    С введенной выше знаковой матрицей S она связана соотношением

    S = - sign Г.

    Гипотеза Вольтерра, на основе которой построена система (1), предполагает локальный принцип описания взаимодействия видов - принцип "встреч", ведущий свое происхождение из статистической физики. Вольтерровские уравнения могут быть получены из чисто экологических предпосылок.

    Рассмотрим сообщество, структура которого изображена на рис.2. Компоненты сообщества разобьем на три основные группы. 1. Продуценты с биомассами (или концентрациями) - это в основном зеленые растения. 2. Консументы с концентрациямиК этой группе отнесем животных, пожирающих другие организмы и разлагателей, расщепляющих мертвую органику на простые вещества, которые используются продуцентами. 3. Субстраты с концентрациямиЭто абиотические вещества (в основном продукты жизнедеятельности консументов), используемые продуцентами.

    Составим уравнения, отражающие баланс масс каждого из этих компонентов:

    (2)

    Здесь - функции рождаемости и смертности продуцентов и консументов; - функция выедания, описывающая скорость потребления биомассыi -го вида-продуцента единицей биомассы j -го вида-консумента; - функция выедания j -го вида r -м (среди консументов); - интенсивность производства k- го субстрата j -м консументом; - интенсивность потребления k- го субстрата i -м продуцентом; - сумма входных и выходных потоков соответствующих компонент. В общем случае все эти функции зависят от параметров внешней среды. Путем преобразования переменных система (2) может быть записана в виде, сходном с уравнениями Вольтерра (1).

    Рис.3. Знакоориентированный граф сообщества из трех видов.

    Применение этого формализма и его модификаций оказалось особенно успешным при моделировании замкнутых по веществу систем. (Алексеев, 1993). Пример трофической цепи для такой замкнутой системы (например, озерной экосистемы) приведен на рис. 3.

    Принципы лимитирования в экологии

    В силу сложности процессов в экологической системе необходимо выделить главные факторы, взаимодействие которых качественно определяет судьбу системы. Фактически все модели, включающие описание роста популяций или сообществ, основываются либо на "принципе лимитирующих факторов" (Leibig,1840. Перевод на русский язык: Либих, 1936), либо на "законе совокупного действия факторов", Э.А.Митчерлихf (Mitscherlich, 1909, 1925). Исходно эти принципы были сформулированы для популяций одного вида, однако применяются для описания многовидовых сообществ и экосистем.

    Концепция лимитирующих факторов принадлежит немецкому агрохимику Юстусу Либиху, который предложил знаменитый закон минимума:. "Каждое поле содержит одно или несколько питательных веществ в минимуме и одно или несколько других в максимуме. Урожаи находятся в соответствии с этим минимумом питательных веществ".Либих понимал под этим относительный минимум питательного вещества по сравнению с содержанием других веществ. Позже в экологической литературе фактор, находящийся в минимуме, стали называть лимитирующим фактором. Закон "лимитирующего фактора" для фотосинтетических процессов в 1905 г. предложил Ф.Блэкман, а в 1965 г. Н.Д.Иерусалимский сформулировал этот закон для ферментативных процессов. Естественно, что при изменении соотношений факторов, лимитирующий фактор может изменяться.

    Современная математическая экология представляет собой междисциплинарную область, включающую всевозможные методы математического и компьютерного описания экологических систем. Теоретической базой для описания взаимодействий между видами в экосистемах служит динамика популяций, которая описывает базовые взаимодействия и дает качественную картину возможных паттернов поведения переменных в системе. Для анализа реальных экосистем применяется системный анализ, при этом степень интегрированности модели зависит как от объекта, так и от целей моделирования. Моделирование многих водных экосистем, лесных ценозов, агроэкосистем является действенным средством разработки методом оптимального управления этими системами. Построение глобальных моделей позволяет оценить глобальные и локальные изменения климата, температуры, типа растительного покрова при разных сценариях развития человечества.

    Оценка загрязнения атмосферы и поверхности земли.

    Важную практическую. задачу математической экологии представляет расчет распространения загрязнений от уже существующих предприятий и планирование возможного размещения промышленных предприятий с соблюдением санитарных норм.

    Процесс распространения промышленных выбросов происходит за счет их переноса воздушными массами и диффузии, обусловленной турбулентными пульсациями воздуха. Если наблюдать за дымовым факелом из заводской трубы, то можно заметить увлечение этого факела потоком воздуха и постепенное его разбухание по мере удаления от источника вследствие мелкомасштабной турбулентности. Факел имеет форму конуса, вытянутого в сторону движения воздушных масс. Затем факел распадается на изолированные вихревые образования, увлекаемые на большие расстояния от источника.

    Почти все примеси в конечном счете рано или поздно осаждаются на поверхность Земли, тяжелые - под действием гравитационного поля, легкие - в результате диффузионного процесса. Примеси, состоящие из крупных частиц, под действием силы тяжести вскоре начинают опускаться в соответствии с законом Стокса. Примеси газообразного вида типа окислов представляют легкую фракцию и особенно опасны для окружающей среды.

    Большое значение в теории распространения загрязнение имеют флуктуации в направлении ветра за большой период времени - около года. За такой период воздушные массы, увлекающие примеси от источника, многократно меняют направление и скорость. Статистически такие многолетние изменения описываются специальной диаграммой, называемой розой ветров, в которой величина вектора пропорциональна числу повторяющихся событий, связанных с движениями воздушных масс в данном направлении. Максимумы диаграммы розы ветров соответствуют господствующим в данном районе ветрам. Эта информация является исходной при планировании новых индустриальных объектов. При оценке допустимых загрязнений предприятий, расположенных среди большого числа экологически значимых зон (населенных пунктов, зон отдыха, сельскохозяйственных, лесных угодий и т.д.) следует учитывать также загрязнения от уже существующих предприятий региона.

    Оценка загрязнения атмосферы и подстилающей поверхности пассивными и активными примесями осуществляется с помощью математических моделей, построенных на основе уравнений аэродинамики в частных производных, и также их конечно-разностных аппроксимаций.

    В России большой вклад в это направление внесли работы школы академика Г.И.Марчука. Модели такого типа широко используются в Европе и США при разрешении судебных исков, предъявляемых населением или местными властями промышленным предприятиям в связи с нанесением определенного ущерба. Для оценки принесенного ущерба с использованием математического моделирования производится экспертиза, в результате которой количественно оценивается сумма штрафа, которую загрязняющее среду предприятие обязано выплатить государственным или местным органам. Такие меры оказались весьма действенными и привели в развитых странах практически к повсеместному внедрению очистительных технологий

    Модели переноса загрязняющих веществ в такого типа моделях сопрягаются с процедурой вычисления основного функционала задачи, который может представлять собой полное число выпавших примесей, санитарную опасность примесей, включать в себя ущерб, наносимый здоровью населения, сельскохозяйственным угодьям, лесным массивам, почве, затраты на восстановление окружающей среды и другие показатели. В упрощенных вариантах широко используется метод функций отклика (см. выше).

    Экология (от греч. ойкос - дом и логос — учение) — наука о законах взаимодействия живых организмов со средой их обитания.

    Основателем экологии считается немецкий биолог Э. Геккель (1834- 1919 гг.), который впервые в 1866 г. употребил термин «экология». Он писал: «Под экологией мы подразумеваем общую науку об отношении организма и окружающей среды, куда мы относим все "условия существования" в широком смысле этого слова. Они частично являются органической частично неорганической природы».

    Первоначально этой наукой была биология, изучающая популяции животных и растений в среде их обитания.

    Экология изучает системы уровня выше отдельного организма. Основными объектами ее изучения являются:

    • популяция - группа организмов, относящихся к одному или сходным видам и занимающих определенную территорию;
    • , включающая биотическое сообщество (совокупность популяций на рассматриваемой территории) и среду обитания;
    • - область распространения жизни на Земле.

    К настоящему времени экология вышла за рамки собственно биологии и превратилась в междисциплинарную науку, изучающую сложнейшие проблемы взаимодействия человека с окружающей средой. Экология прошла сложный и длительный путь к осознанию проблемы «человек — природа», опираясь на исследования в системе «организм — среда».

    Взаимодействие Человека с Природой имеет свою специфику. Человек наделен разумом, и это дает ему возможность осознать свое место в природе и предназначение на Земле. С начала развития цивилизации Человек задумывался о своей роли в природе. Являясь, безусловно, частью природы, человек создал особую среду обитания, которая называется человеческой цивилизацией. По мере развития она все больше вступала в противоречие с природой. Сейчас человечество уже подошло к осознанию того, что дальнейшая эксплуатация природы может угрожать его собственному существованию.

    Актуальность этой проблемы, вызванной обострением экологической обстановки в масштабах всей планеты, привела к «экологизации» — к необходимости учета законов и требований экологии — во всех науках и во всей человеческой деятельности.

    Экологией в настоящее время принято называть науку о «собственном доме» человека — биосфере, ее особенностях, взаимодействии и взаимосвязи с человеком, а человека — со всем человеческим обществом.

    Экология является не только интегрированной дисциплиной, где оказываются связанными физические и биологические явления, она образует своеобразный мост между естественными и общественными науками. Она не относится к числу дисциплин с линейной структурой, т.е. развивается не по вертикали — от простого к сложному, — она развивается по горизонтали, охватывая все более широкий круг вопросов из различных дисциплин.

    Ни одна отдельная наука не способна решить все задачи, связанные с совершенствованием взаимодействия между обществом и природой, поскольку это взаимодействие имеет социальные, экономические, технологические, географические и другие аспекты. Решать эти задачи может лишь интегрированная (обобщающая) наука, какой и является современная экология.

    Таким образом, из несамостоятельной дисциплины в рамках биологии экология превратилась в комплексную междисциплинарную науку - современную экологию — с ярко выраженной мировоззренческой составляющей. Современная экология вышла за пределы не только биологии, но и в целом. Идеи и принципы современной экологии имеют мировоззренческий характер, поэтому экология связана не только с науками о человеке и культуре, но и с философией. Столь серьезные изменения позволяют заключить, что, несмотря на более чем столетнюю историю экологии, современная экология — наука динамичная.

    Цели и задачи современной экологии

    Одной из главных целей современной экологии как науки является изучение основных закономерностей и развитие теории рационального взаимодействия в системе «человек — общество — природа», рассматривая человеческое общество как неотъемлемую часть биосферы.

    Главнейшая цель современной экологии на данном этапе развития человеческого общества — вывести Человечество из глобального экологического кризиса на путь устойчивого развития, при котором будет достигнуто удовлетворение жизненных потребностей нынешнего поколения без лишения такой возможности будущих поколении.

    Для достижения этих целей экологической науке предстоит решить ряд разнообразных и сложных задач, в том числе:

    • разработать теории и методы оценивания устойчивости экологических систем на всех уровнях;
    • исследовать механизмы регуляции численности популяций и биотического разнообразия, роли биоты (флоры и фауны) как регулятора устойчивости биосферы;
    • изучить и создать прогнозы изменений биосферы под влиянием естественных и антропогенных факторов;
    • оценивать состояния и динамики природных ресурсов и экологических последствий их потребления;
    • разрабатывать методы управления качеством окружающей среды;
    • формировать понимание проблем биосферы и экологическую культуру общества.

    Окружающая нас живая среда не является беспорядочным и случайным сочетанием живых существ. Она представляет собой устойчивую и организованную систему, сложившуюся в процессе эволюции органического мира. Любые системы поддаются моделированию, т.е. можно предсказать, как та или иная система отреагирует на внешнее воздействие. Системный подход — основа изучения проблем экологии.

    Структура современной экологии

    В настоящее время экология разделилась на ряд научных отраслей и дисциплин , подчас далеких от первоначального понимания экологии как биологической науки об отношениях живых организмов с окружающей средой. Однако в основе всех современных направлений экологии лежат фундаментальные идеи биоэкологии , которая сегодня представляет собой совокупность различных научных направлений. Так, например, выделяют аутэкологию, исследующую индивидуальные связи отдельного организма со средой; популяционную экологию , занимающуюся отношениями между организмами, которые относятся к одному виду и живут на одной территории; синэкологию , комплексно изучающую группы, сообщества организмов и их взаимосвязи в природных системах (экосистемах).

    Современная экология представляет собой комплекс научных дисциплин. Базовой является общая экология , изучающая основные закономерности взаимоотношений организмов и условий среды. Теоретическая экология исследует общие закономерности организации жизни, в том числе в связи с антропогенным воздействием на природные системы.

    Прикладная экология изучает механизмы разрушения биосферы человеком и способы предотвращения этого процесса, а также разрабатывает принципы рационального использования природных ресурсов. Прикладная экология базируется на системе законов правил и принципов теоретической экологии. Из прикладной экологии выделяются следующие научные направления.

    Экология биосферы , изучающая глобальные изменения, происходящие на нашей планете в результате воздействия хозяйственной деятельности человека на природные явления.

    Промышленная экология , изучающая влияние выбросов предприятий на окружающую среду и возможности уменьшения этого влияния путем совершенствования технологий и очистных сооружений.

    Сельскохозяйственная экология , изучающая способы получения сельскохозяйственной продукции без истощения ресурсов почвы при сохранении окружающей среды.

    Медицинская экология, изучающая болезни человека, связанные с загрязнением окружающей среды.

    Геоэкология , изучающая строение и механизмы функционирования биосферы, связь и взаимосвязь биосферных и геологических процессов, роль живого вещества в энергетике и эволюции биосферы, участие геологических факторов в возникновении и эволюции жизни на Земле.

    Математическая экология моделирует экологические процессы, т.е. изменения в природе, которые могут произойти при изменении экологических условий.

    Экономическая экология разрабатывает экономические механизмы рационального природопользования и охраны окружающей среды.

    Юридическая экология разрабатывает систему законов, направленных на защиту природы.

    Инженерная экология - сравнительно новое направление экологической науки, изучает взаимодействия техники и природы, закономерности формирования региональных и локальных природно- технических систем и способы управления ими в целях защиты природной среды и обеспечения экологической безопасности. Она обеспечивает соответствие техники и технологии промышленных объектов экологическим требованиям

    Социальная экология возникла совсем недавно. Лишь в 1986 г. во Львове состоялась первая конференция, посвященная проблемам этой науки. Наука о «доме», или месте обитании социума (человека, общества), изучает планету Земля, а также космос — как жизненную среду социума.

    Экология человека - часть социальной экологии, рассматривающая взаимодействие человека как биосоциального существа с окружающим миром.

    - одно из новых самостоятельных ответвлений экологии человека - наука о качестве жизни и здоровье.

    Синтетическая эволюционная экология — новая научная дисциплина, включающая частные направления экологии — общую, био-, гео- и социальную.

    Краткий исторический путь развития экологии как науки

    В истории развития экологии как науки можно выделить три основных этапа. Первый этап - зарождение и становление экологии как науки (до 1960-х годов), когда накапливались данные о взаимосвязи живых организмов со средой их обитания, были сделаны первые научные обобщения. В этот же период французский биолог Ламарк и английский священник Мальтус впервые предупреждают человечество о возможных негативных последствиях воздействия человека на природу.

    Второй этап - оформление экологии в самостоятельную отрасль знаний (после 1960-х до 1950-х годов). Начало этапа ознаменовалось выходом в свет работ русских ученых К.Ф. Рулье, Н.А. Северцева, В.В. Докучаева, впервые обосновавших ряд принципов и понятий экологии. После исследований Ч. Дарвина в области эволюции органического мира немецкий зоолог Э. Геккель первый понял, что Дарвин называл «борьбой за существование», представляет собой самостоятельную область биологии, и назвал ее экологией (1866 г.).

    Как самостоятельная наука экология окончательно оформилась в начале XX столетия. В этот период американский ученый Ч. Адаме создал первую сводку по экологии, публикуются и другие важные обобщения. Крупнейший русский ученый XX в. В.И. Вернадский создает фундаментальное учение о биосфере.

    В 1930-1940-е годы сначала английский ботаник А. Тенсли (1935 г.) выдвинул понятие «экосистема» , а несколько позжеВ. Я. Сукачев (1940 г.) обосновал близкое ему представление о биогеоценозе.

    Третий этап (1950-е годы — до настоящего времени) — превращение экологии в комплексную науку, включающую в себя науки об охране окружающей человека среды. Одновременно с развитием теоретических основ экологии решались и прикладные вопросы, связанные с экологией.

    В нашей стране в 1960-1980-е годы практически ежегодно правительство принимало постановления об усилении охраны природы; были изданы земельный, водный, лесной и иные кодексы. Однако, как показала практика их применения, они не дали требуемых результатов.

    Сегодня Россия переживает экологический кризис: около 15% территории фактически являются зонами экологического бедствия; 85% населения дышат воздухом, загрязненным существенно выше ПДК. Растет число «экологически обусловленных» заболеваний. Наблюдается деградация и сокращение природных ресурсов.

    Аналогичное положение сложилось и в других странах мира. Вопрос о том, что произойдет с человечеством в случае деградации природных экологических систем и утраты биосферой способности поддерживать биохимические циклы, становится одним из наиболее актуальных.

    Основным содержанием современной экологии становится исследование взаимоотношений организмов друг с другом и со средой на популяционно-биоценотическом уровне и изучение жизни биологических макросистем более высокого ранга: биогеоценозов (экосистем) и биосферы, их продуктивности и энергетики. Отсюда очевидно, что предметом исследования экологии являются биологические макросистемы (популяции, биоценозы, экосистемы) и их динамика во времени и пространстве.

    Из содержания и предмета исследований экологии вытекают и её основные задачи , которые могут быть сведены к изучению динамики популяций, к учению о биогеоценозах и их системах. Поэтому главная теоретическая и практическая задача экологии заключается в том, чтобы вскрыть законы этих процессов и научиться управлять ими в условиях неизбежной индустриализации и урбанизации нашей планеты.

    В общетеоретическом плане к ним относятся:

    • - разработка общей теории устойчивости экологических систем;
    • - изучение экологических механизмов адаптации к среде;
    • - исследование регуляции численности популяций;
    • - изучение биологического разнообразия и механизмов его поддержания;
    • - исследование продукционных процессов;
    • - исследование процессов, протекающих в биосфере, с целью поддержания ее устойчивости;
    • - моделирование состояния экосистем и глобальных биосферных процессов.

    Основные прикладные задачи, которые экология должна решать в настоящее время, следующие:

    • - прогнозирование и оценка возможных отрицательных последствий в окружающей природной среде под влиянием деятельности человека;
    • - улучшение качества окружающей природной среды;
    • - сохранение, воспроизводство и рациональное использование природных ресурсов.
    • - Оптимизация инженерных, экономических, организационно-правовых, социальных и иных решений для обеспечения экологически безопасного устойчивого развития, в первую очередь в экологически наиболее неблагополучных районов.

    Стратегической задачей экологии считается развитие теории взаимодействия природы и общества на основе нового взгляда, рассматривающего человеческое общество как неотъемлемую часть биосферы.

    Закон Российской Федерации "Об экологической экспертизе" определяет, что экологическая экспертиза , это "установление соответствия намечаемой хозяйственной и иной деятельности экологическим требованиям и определение допустимости реализации объекта экологической экспертизы". При этом в российском законодательстве существует и правовое определение более частного понятия -- "государственная экологическая экспертиза".

    Оно содержится в ст. 35 и 36 Закона "Об охране окружающей природной среды": "Государственная экологическая экспертиза является обязательной мерой охраны окружающей природной среды, которая проводится с целью проверки соответствия хозяйственной и иной деятельности экологической безопасности общества, предшествующей принятию хозяйственного решения, осуществление которого может оказывать вредное воздействие на окружающую природную среду".

    Основные задачи экологической экспертизы:

    • 1. Организация и проведение (на стадии подготовки решения) всесторонних, объективных, научных исследований и анализа объектов экспертизы с позиций эффективности, полноты, обоснованности и достаточности предусмотренных в них мер, правильности определения заказчиком степени экологического риска и опасности намечаемой или осуществляемой деятельности, а также обеспечение экологического прогнозирования на основе информации о состоянии и возможных изменениях экологической обстановки вследствие размещения и развития производительных сил, не приводящих к негативному воздействию на ОС, т.е. определение вероятности экологически вредных воздействий и возможных их социальных, экономических и экологических последствий.
    • 2. Оценка соответствия экологическим стандартам экспортируемых объектов, намечаемых к реализации, на стадиях, предшествующих принятию решения об их реализации, или соответствия названным стандартам уже осуществляемой деятельности, обеспечение государственного экологического контроля за качеством подготовки инициатором (заказчиком) проектов решений о развитии намечаемой им деятельности, а также подготовка объективных, научно-обоснованных выводов (заключений) и своевременная передача их государственным и иным органам, принимающим решение о реализации объекта экспертизы.
    • 3. Информирование всех заинтересованных лиц (в т.ч. общественности) о возможных неблагоприятных воздействиях на окружающую природную среду и связанных с ними социальных, экономических и иных последствиях намечаемой деятельности в целях нахождения баланса интересов и компромиссного решения для снятия возникающих социально-психологических напряжений и предотвращения конфликтов на данной почве (задачи ОЭЭ).

    Моделирование - это один из важнейших методов научного познания, с помощью которого создается модель (условный образ) объекта исследования. Сущность его заключается в том, что взаимосвязь исследуемых явлений и факторов передается в форме конкретных математических уравнений .

    При экологическом исследовании, которое обычно поводится на определённом количестве особей, изучаются природные явления во всём их разнообразии: общие закономерности, присущие макросистеме, её реакции на изменение условий существования и др. Но каждая особь, индивидуум неодинаковы, отличны друг от друга. Кроме того, выбор особи из всей популяции носит случайный характер. И лишь применение методов математической статистики даёт возможность по случайному набору различных вариантов определить достоверность тех или иных результатов (степень отклонения их от нормы, случайные отклонения или закономерности) и получить объективное представление о всей популяции.

    Процесс построения математической модели включает в себя следующие типовые этапы:

    • 4. формулирование целей моделирования;
    • 5. качественный анализ экосистемы, исходя из этих целей;
    • 6. формулировку законов и правдоподобных гипотез относительно структуры экосистемы, механизмов ее поведения в целом или отдельных частей (при самоорганизации эти законы "находит" компьютер);
    • 7. идентификацию модели (определение ее параметров);
    • 8. верификацию модели (проверку ее работоспособности и оценку степени адекватности реальной экосистеме);
    • 9. исследование модели (анализ устойчивости ее решений, чувствительности к изменениям параметров и пр.) и эксперимент с ней.

    Современная математическая экология представляет собой междисциплинарную область, включающую всевозможные методы математического и компьютерного описания экологических систем.

    Теоретической базой для описания взаимодействий между видами в экосистемах служит динамика популяций, которая описывает базовые взаимодействия и дает качественную картину возможных паттернов поведения переменных в системе. Для анализа реальных экосистем применяется системный анализ, при этом степень интегрированности модели зависит как от объекта, так и от целей моделирования. Моделирование многих водных экосистем, лесных ценозов, агроэкосистем является действенным средством разработки методом оптимального управления этими системами. Построение глобальных моделей позволяет оценить глобальные и локальные изменения климата, температуры, типа растительного покрова при разных сценариях развития человечества.

    Однако как было установлено, что все биологические системы, в том числе и надорганизменные макросистемы, обладают способностью к саморегуляции, ограничиваться методами математической статистики стало невозможно. Поэтому в современной экологии широко применяются методы теории информации и кибернетики, тесно связанные с такими областями математики, как теория вероятности, математическая логика, дифференциальные и интегральные исчисления, теория чисел, матричная алгебра.

    В последнее время широкое распространение получило моделирование биологических явлений , т.е. воспроизведение в искусственных системах различных процессов, свойственных живой природе. Так, в "модельных условиях" были осуществлены многие реакции, протекающие в растении при фотосинтезе. Примером биологических моделей может служить и аппарат искусственного кровообращения, искусственная почка, искусственные лёгкие, протезы, управляемые биотоками мышц, и др.

    В различных областях биологии широко применяются так называемые живые модели. Несмотря на то, что различные организмы отличаются друг от друга сложностью структуры и функции, многие биологические процессы у них протекают практически одинаково. Поэтому изучать их удобно на более простых существах. Они то и становятся живыми моделями. В качестве примера можно привести зоохлореллу, которая служит моделью для изучения обмена веществ; моделью для исследования внутриклеточных процессов являются гигантские растительные и животные клетки и т.д.

    Основной задачей биологического моделирования является экспериментальная проверка гипотез относительно структуры и функции биологических систем. Сущность этого метода заключается в том, что вместе с оригиналом, т.е. с какой-то реальной системой, изучается его искусственно созданное подобие - модель. В сравнении с оригиналом модель обычно упрощена, но свойства их сходны. В противном случае полученные результаты могут оказаться недостоверными, не свойственными оригиналу. В зависимости от особенностей оригинала и задач исследования применяются самые разнообразные модели (рис. 1).

    Реальные (натурные, аналоговые) модели, если таковые удаётся создать, отражают самые существенные черты оригинала. Например, аквариум может служить моделью естественного водоёма. Однако создание реальных моделей сопряжено с большими техническими трудностями, так как пока ещё не удаётся достичь точного воспроизведения оригинала.

    Знаковая модель представляет собой условное отображение оригинала с помощью математических выражений или подобного описания.

    Рисунок 1 - Классификация моделей (по В.Д.Фёдорову и Т.Г.Гильманову)

    Наибольшее распространение в современных экологических исследованиях получили концептуальные и математические модели и их многочисленные разновидности.

    Разновидности концептуальных моделей характеризуются подробным описанием системы (научный текст, схема системы, таблицы, графики и т.д.). Математические модели являются более эффективным методом изучения экологических систем, особенно при определении количественных показателей.

    Математические символы, например, позволяют сжато описать сложные экологические системы, а уравнения дают возможность формально определить взаимодействия различных их компонентов.