Химический опыт брома с алюминием

Если в пробирку из термостойкого стекла поместить несколько миллилитров брома и аккуратно опустить в него кусочек алюминиевой фольги, то через некоторое время (необходимое для того, чтобы бром проник через оксидную плёнку) начнётся бурная реакция. От выделяющегося тепла алюминий плавится и в виде маленького огненного шарика катается по поверхности брома (плотность жидкого алюминия меньше плотности брома), быстро уменьшаясь в размерах. Пробирка наполняется парами брома и белым дымом, состоящим из мельчайших кристаллов бромида алюминия:

2Al+3Вr 2 → 2AlВr 3 .

Также интересно наблюдать реакцию алюминия с иодом. Смешаем в фарфоровой чашечке небольшое количество порошкообразного иода с алюминиевой пудрой. Пока реакции не заметно: в отсутствие воды она протекает крайне медленно. Пользуясь длинной пипеткой, капнем на смесь несколько капель воды, играющей роль инициатора, и реакция пойдёт энергично - с образованием пламени и выделением фиолетовых паров иода.

Химические опыты с порохом: как взрывается порох!

Пороха

Дымный, или чёрный, порох представляет собой смесь калийной селитры (нитрата калия - KNO 3), серы (S) и угля (C). Он воспламеняется при температуре около 300 °С. Порох может взрываться и от удара. В его состав входят окислитель (селитра) и восстановитель (уголь). Сера также является восстановителем, но главная её функция - связывать калий в прочное соединение. При горении пороха протекает реакция:

2KNO 3 +ЗС+S→ K 2 S+N 2 +3СО 2 ,
- в результате которой выделяется большой объём газообразных веществ. С этим и связано использование пороха в военном деле: образующиеся при взрыве и расширяющиеся от тепла реакции газы выталкивают пулю из оружейного ствола. В образовании сульфида калия легко убедиться, понюхав ствол ружья. Он пахнет сероводородом - продуктом гидролиза сульфида калия.

Химические опыты с селитрой: огненная надпись

Эффектный химический опыт можно провести, имея калийную селитру. Напомню, что селитры - это сложные вещества - соли азотной кислоты. В данном случае нам понадобится калиевая селитра. Её химическая формула KNO 3 . На листе бумаги нарисуйте контур, рисунок (для большего эффекта пусть линии не пересекаются!). Приготовьте концентрированный раствор нитрата калия. Для сведений: в 15 мл горячей воды растворяется 20 г KNO 3 . Затем с помощью кисти пропитываем бумагу по нарисованному контуру, при этом не оставляем пропусков и промежутков. дадим бумаге высохнуть. Теперь надо коснуться горящей лучинкой какой-нибудь точки на контуре. Тотчас же появится "искра", которая будет медленно двигаться по контуру рисунка, пока не замкнёт его полностью. Вот что происходит: Калиевая селитра разлагается по уравнению:

2KNO 3 → 2 KNO 2 +O 2 .

Здесь KNO 2 +O 2 - соль азотистой кислоты. От выделяющегося кислорода бумага обугливается и сгорает. Для большего эффекта опыт можно проводить в тёмном помещении.

Химические опыт растворения стекла в плавиковой кислоте

Стекло растворяется
в плавиковой кислоте

Действительно, стекло легко растворяется. Стекло - это очень вязкая жидкость. В том, что стекло может растворяться, можно убедиться, проделав следующую химическую реакцию. Плавиковая кислота - это кислота, образованная растворением фтороводорода (HF) в воде. Её ещё называют фтороводородная кислота. Для большей наглядности возьмём тонкое спекло, на которое прицепим грузик. Стекло с грузиком опустим в раствор плавиковой кислоты. Когда стекло растворится в кислоте, грузик упадёт на дно колбы.

Химические опыты с выделением дыма

Химические реакции с
выделением дыма
(хлорид аммония)

Проведём красивый опыт по получению густого белого дыма. Для этого нам нужно приготовить смесь поташа (карбонат калия К 2 CO 3) раствором аммиака (нашатырный спирт). Смешаем реагенты: поташ и нашатырный спирт. К полученной смеси добавим раствор соляной кислоты. Реакция начнётся уже в момент, когда колба с соляной кислотой будет близко поднесена к колбе, в которой содержится аммиак. Аккуратно прилейте соляную кислоту к раствору аммиака и наблюдайте образование густого белого пара хлорида аммония, химическая формула которого NH 4 Cl. Химическая реакция между аммиаком и соляной кислотой протекает следующим образом:

HCl+NH 3 → NH 4 Cl

Химические опыты: свечение растворов

Реакция свечения раствора

Как отмечено выше - свечение растворов - признак химической реакции. Проведём ещё один эффектный опыт, при котором у нас раствор будет светиться. Для реакции нам необходим раствор люминол, раствор перекиси водорода H 2 O 2 и кристаллики красная кровяной кровяной соли K 3 . Люминол - сложное органическое вещество, формула которого C 8 H 7 N 3 O 2 . Люминол хорошо растворяется в некоторых органических растворителях, при этом в воде не растворяется. Свечение происходит при реакции люминола с некоторыми окислителями в щелочной среде.

Итак, начнём: прилейте раствор перекиси водорода к люминолу, затем к полученному раствору добавьте горсть кристалликов красной кровяной соли. Для большего эффекта попробуйте проводить опыт в темном помещении! Как только кристаллики кровяной красной соли коснуться раствора, сразу будет заметно холодное голубое свечение, что свидетельствует о течении реакции. Свечение при химической реакции называется хемилюминисценцией

Ещё один химический опыт со светящимися растворами:

Для него нам потребуется: гидрохинон (раньше использовался в фототехнике), карбонат калия K 2 CO 3 (ещё известен под названием "поташ"), аптечный раствор формалина (формальдегида) и перекись водорода. Растворите 1 гр гидрохинона и 5 гр карбоната калия K 2 CO 3 в 40 мл аптечного формалина (водный раствор формальдегида). Перелейте эту реакционную смесь в большую колбу или бутылку емкостью не менее литра. В небольшом сосуде приготовьте 15 мл концентрированного раствора перекиси водорода. Можно использовать таблетки гидроперита - соединение перекиси водорода с мочевиной (мочевина не помешает опыту). Для большего эффекта зайдите в темную комнату, когда глаза привыкнут к темноте, слейте раствор пероксида водорода в большой сосуд с гидрохиноном. Смесь начнет вспениваться (поэтому и надо взять большой сосуд) и появится отчетливое оранжевое свечение!

Химические реакции, при которых появляется свечение происходят не только при окислении. Иногда свечение возникает при кристаллизации. Самый простой способ его наблюдения - поваренная соль. Растворите поваренную соль в воде, причем соли возьмите столько, чтобы на дне стакана оставались нерастворившиеся кристаллы. Полученный насыщенный раствор перелейте в другой стакан и по каплям добавляйте к этому раствору концентрированную соляную кислоту . Соль начнет кристаллизоваться, при этом в растворе будут проскальзывать искры. Наиболее красиво, если опыт ставить в темноте!

Химические опыты с хромом и его соединениями

Разноцветный хром!... Окраска солей хрома может легко переходить из фиолетовой в зелёную и наоборот. Проведём реакцию: растворим в воде несколько фиолетовых кристалликов хлорида хрома CrCl 3 6Н 2 О. При кипячении фиолетовый раствор этой соли становится зелёным. При выпаривании зелёного раствора образуется зелёный порошок того же состава, что и исходная соль. А если насытить охлаждённый до 0 °С зелёный раствор хлорида хрома хлороводородом (HCl), цвет его вновь станет фиолетовым. Как объяснить наблюдаемое явление? Это редкий в неорганической химии пример изомерии - существования веществ, имеющих одинаковый состав, но разные строение и свойства. В фиолетовой соли атом хрома связан с шестью молекулами воды, а атомы хлора являются противоионами: Cl 3 , а в зелёном хлориде хрома они меняются местами: Cl 2Н 2 О. В кислой среде бихроматы являются сильными окислителями. Продукты их восстановления - ионы Cr3+:

К 2 Cr 2 О 7 +4H 2 SO 4 +3K 2 SO 3 → Cr 2 (SO 4) 3 +4K 2 SO 4 +4H 2 O.

Хромат калия (жёлтый)
бихромат - (красный)

При пониженной температуре из образовавшегося раствора удаётся выделить фиолетовые кристаллы хромокалиевых квасцов KCr(SO 4) 2 12Н 2 О. Тёмно-красный раствор, получаемый при добавлении концентрированной серной кислоты к насыщенному водному раствору дихромата калия, называется «хромпик». В лабораториях он служит для мытья и обезжиривания химической посуды. Посуду осторожно ополаскивают хромпиком, который не выливают в раковину, а используют многократно. В конце концов смесь становится зелёной - весь хром в таком растворе уже перешёл в форму Сr 3+ . Особенно сильный окислитель - оксид хрома (VI) СrО 3 . С его помощью можно зажечь спиртовку без спичек: достаточно прикоснуться к смоченному спиртом фитилю палочкой с несколькими кристалликами этого вещества. При разложении CrО 3 может быть получен тёмно-коричневый порошок оксида хрома (IV) CrО 2 . Он обладает ферромагнитными свойствами и используется в магнитных лентах некоторых типов аудиокассет. В организме взрослого человека содержится всего около б мг хрома. Многие соединения этого элемента (особенно хроматы и дихроматы) токсичны, а некоторые из них являются канцерогенами, т.е. способны вызывать рак.

Химические опыты: восстановительные свойства железа


Хлорид железа III

Данный тип химической реакции относится к окислительно-восстановительным реакциям . Для проведения реакции нам потребуется разбавленный (5%-й) водные растворы хлорида железа(III) FeCl 3 и такой же раствор иодида калия KI. Итак, в одну колбу наливают раствор хлорида железа(III). Затем добавляем к ней несколько капель раствора иодида калия. Наблюдаем изменение окраски раствора. Жидкость приобретёт красно-бурый цвет. В растворе будут протекать следующие химические реакции:

2FeCl 3 + 2KI→ 2FeCl 2 + 2KCl + I 2

KI + I 2 → K


Хлорид железа II

Ещё один химический опыт с соединениями железа. Для него нам понадобятся разбавленные (10–15%-й) водные растворы сульфата железа(II) FeSO 4 и тиоцианата аммония NH 4 NCS, бромная вода Br 2 . Начнём. В одну колбу наливаем раствор сульфата железа(II). Туда же добавляют 3–5 капель раствора тиоцианата аммония. Замечаем, что нет никаких признаков химических реакций. Конечно, катионы железа(II) не образуют с тиоцианат-ионами окрашенных комплексов. Теперь в эту колбу добавляем бромную воду. А вот теперь ионы железа "выдали себя" и окрасили раствор в кроваво-красный цвет. так реагируют ион (III) -валентного железа на тиоцианат-ионы. Вот, что происходило в колбе:

Fe(H 2 O) 6 ] 3+ + n NCS– (n–3) – + n H 2 O

Химический опыт по обезвоживанию сахара серной кислотой

Обезвоживание сахара
серной кислотой

Концентрированная серная кислота обезвоживает сахар. Сахар - это сложное органическое вещество, формула которого C 12 H 22 O 11 . Вот, как это происходит. Сахарную пудру помещают в высокий стеклянный стакан, чуть смачивают водой. Затем к влажному сахару приливают немного концентрированной серной кислоты. осторожно и быстро перемешивают стеклянной палочкой. Палочку так и оставляют в середине стакана со смесью. Через 1 - 2 минуты сахар начинает чернеть, вспучиваться и в виде объёмной, рыхлой массы чёрного цвета подниматься, забирая с собой стеклянную палочку. Cмесь в стакане сильно разогревается и немного дымиться. При этой химической реакции серная кислота не только отбирает у сахара воду, но и частично превращает его в уголь.

C 12 H 22 O 11 +2H 2 SO 4 (конц.)→ 11С+CO 2 +13H 2 O+2SO 2

Выделяющаяся вода при такой химической реакции в основном поглощается серной кислотой (серная кислота "жадно" поглощает воду) с образованием гидратов, - отсюда сильное выделение тепла. А углекислый газ CO 2 , который получается при окислении сахара, и сернистый газ SO 2 поднимают обугливающуюся смесь вверх.

Химическая опыт с исчезновением алюминиевой ложки

Раствор нитрата ртути

Проведём ещё одну забавную химическую реакцию: для этого нам потребуется алюминиевая ложка и нитрат ртути (Hg(NO 3) 2). Итак, возьмём ложку, очистим её мелкозернистой наждачной бумагой, затем обезжирим ацетоном. Окуните ложку на несколько секунд в раствор нитрата ртути (Hg(NO 3) 2). (помните, что соединения ртути ядовиты!). Как только поверхность алюминиевой ложки в растворе ртути станет серого цвета, ложку надо вынуть, обмыть кипячёной водой высушить (промокая, но не вытирая). Через несколько секунд металлическая ложка будет превращаться в белые пушистые хлопья, и вскоре от неё останется лишь сероватая кучка пепла. Произошло вот что:

Al + 3 Hg(NO 3) 2 → 3 Hg + 2 Al(NO 3) 3 .

В растворе в начале реакции на поверхности ложки появляется тонкий слой амальгамы алюминия (сплав алюминия и ртути). Затем амальгама превращается в белые пушистые хлопья гидроксида алюминия (Al(OH) 3). Израсходованный в реакции металл пополняется новыми порциями алюминия, растворённого в ртути. И, наконец, вместо блестящей ложки на бумаге остаётся белый порошок Al(OH) 3 и мельчайшие капельки ртути. Если после раствора нитрата ртути (Hg(NO 3) 2) алюминиевую ложку сразу погрузить в дистиллированную воду, то на её поверхности появятся пузырьки газа и чешуйки белого цвета (произойдёт выделение водорода и гидроксида алюминия).

А вы знали, что 29 мая День химика? Кто из нас в детстве не мечтал творить своеобразные волшебства, удивительные химические опыты? Пора воплощать мечты в реальность! Читайте скорее дальше, и мы расскажем, как весело провести День химика 2017, а также какие химические опыты для детей легко провести в домашних условиях.


Домашний вулкан

Если вас уже не привлекают, то… Хотите увидеть извержение вулкана? Попробуйте устроить его дома! Чтобы устроить химический опыт «вулкан» вам понадобится сода, уксус, краситель пищевой, пластиковый стакан, стакан теплой воды.

В пластиковый стаканчик насыпаете 2-3 ложки столовые соды, туда добавляете ¼ стакана теплой воды и немного пищевого красителя, желательно красного цвета. Потом добавляете ¼ уксуса и наблюдаете за «извержением» вулкана.

Роза и аммиак

Очень интересный и оригинальный химический опыт с растениями можно посмотреть на видео из YouTube:

Самонадувающйся шарик

Хотите провести для детей безопасные химические опыты? Тогда вам точно понравиться эксперимент с воздушным шариком. Приготовьте заранее: бутылку пластиковую, соду пищевую, воздушный шарик и уксус.

Внутрь шарика насыпаете 1 ложку чайную соды. В бутылку наливаете ½ стакана уксуса, после чего надеваете шарик на горлышко бутылки и делаете так, чтобы сода попала в уксус. В результате бурной химической реакции, которая сопровождается активным выделением углекислого газа, шарик начнет надуваться.

Фараоновая змея

Для опыта понадобится: таблетки глюконата кальция, сухое горючее, спички или газовая горелка. Алгоритм действий смотрите на YouTube ролике:

Цветное волшебство

Хотите удивить ребенка? Скорее проводите химические опыты с цветом! Вам понадобятся следующие доступные составляющие: крахмал, йод, прозрачная емкость.

Смешайте в емкости белоснежный крахмал и коричневый йод. В результате вы получите удивительную смесь синего цвета.

Выращиваем змею

Самые интересные домашние химические опыты можно провести, используя доступные ингредиенты. Для создания змеи вам понадобятся: тарелка, песок речной, пудра сахарная, спирт этиловый, зажигалка или горелка, сода пищевая.

На тарелку насыпаете песочную горку и пропитываете ее спиртом. В горке сверху делаете углубление, куда аккуратно добавляете сахарную пудру и соду. Теперь поджигаем песочную горку и наблюдаем. Через пару минут с вершины горки начнет вырастать темная извивающаяся лента, которая напоминает змейку.

Как провести химические эксперименты со взрывом смотрите на следующем видео с Youtube:

Вечер занимательной химии

При подготовке химического вечера требуется тщательная подготовка учителя к проведению опытов.

Проведению вечера должна предшествовать продолжительная, тщательная работа с учащимися, при этом одному ученику не следует поручать больше двух опытов.

Цель проведения химического вечера – повторить полученные знания, углубить интерес учащихся к химии и привить им практические навыки в разработке и осуществлении опытов.

Описание основных этапов проведения вечера занимательной химии

I. Вступительное слово учителя на тему “Роль химии в жизни общества”.

II. Занимательные опыты по химии.

Ведущий (роль ведущего выполняет один из учеников 10-11-го класса):

Сегодня мы проводим вечер занимательной химии. Ваша задача – внимательно следить за химическими опытами и постараться их объяснить. И так, мы начинаем! Опыт № 1: “Вулкан”.

Опыт № 1. Описание:

Участник вечера высыпает на асбестовою сетку растертый в порошок дихромат аммония (в виде горки), на верхнюю часть горки кладет несколько головок спичек и поджигает их лучинкой.

Примечание: вулкан будет выглядеть еще более эффектно, если к дихромату аммония добавить немного порошкообразного магния. Компоненты смеси сразу перемешать, т.к. магний сгорает энергично и находясь в одном месте вызывает разбрасывание раскаленных частиц.

Сущность опыта – экзотермическое разложение дихромата аммония при местном нагревании.

Нет дыма без огня – гласит старая русская пословица. Оказывается, с помощью химии можно получить дым без огня. И так, внимание!

Опыт № 2. Описание:

Участник вечера берет две стеклянные палочки, на которые накручено понемногу ваты, и смачивает их: одну в концентрированной азотной (или соляной) кислоте, другую в водном 25%-ом растворе аммиака. Палочки следует поднести друг к другу. От палочек поднимается белый дым.

Сущность опыта – образование азотнокислого (хлористого) аммония.

А теперь представляем вашему внимаю следующий опыт – “Стреляющая бумага”.

Опыт № 3. Описание:

Участник вечера выносит на листе фанеры листочки бумаги, дотрагивается до них стеклянной палочкой. При прикосновении к каждому листочку раздается выстрел.

Примечание: заранее нарезаются узкие полоски фильтровальной бумаги и смачиваются в растворе йода в нашатырном спирте. После этого полоски раскладывают на листе фанеры и оставляют сохнуть до вечера. Выстрел получается тем сильнее, чем лучше пропитана бумага раствором и чем концентрированнее был раствор йодистого азота.

Сущность опыта – экзотермическое разложение непрочного соединения NI3*NH3.

У меня есть яйцо. Кто из вас, ребята, очистит его, не разбивая скорлупы?

Опыт № 4. Описание:

Участник вечера помещает яйцо в кристаллизатор с раствором соляной (или уксусной) кислоты. Через некоторое время вытаскивает яйцо, покрытое только подскорлуповой оболочкой.

Сущность опыта – в состав скорлупы в основном входит карбонат кальция. В соляной (уксусной) кислоте он переходит в растворимый хлорид кальция (ацетат кальция).

Ребята, у меня в руках фигурка человека из цинка. Давайте оденем его.

Опыт № 5. Описание:

Участник вечера опускает фигурку в 10%-й раствор ацетата свинца. Фигурка покрывается пушистым слоем кристаллов свинца, напоминающим меховую одежду.

Сущность опыта – более активный металл вытисняет из растворов солей менее активный металл.

Ребята, а можно ли сжечь сахар без помощи огня? Давайте проверим!

Опыт № 6. Описание:

Участник вечера высыпает в стакан, поставленный на блюдце, сахарную пудру (30 г), туда же вливает 26 мл концентрированной серной кислоты и перемешивает смесь стеклянной палочкой. Через 1-1,5 минуты смесь в стакане темнеет, вспучивается и в виде рыхлой массы поднимается над краями стакана.

Сущность опыта – серная кислота отнимает от молекул сахара воду, окисляет углерод в углекислый газ, одновременно образуется сернистый газ. Выделяющиеся газы выталкивают массу из стакана.

Какие вы знаете способы добывания огня?

Из зала приводят примеры.

Попробуем обойтись без этих средств.

Опыт № 7. Описание:

Участник вечера насыпает на кусок жести (или кафельную плитку) растертый в порошок перманганат калия (6 г) и капает на него из пипетки глицерин. Через некоторое время появляется огонь.

Сущность опыта – в результате реакции выделяется атомарный кислород и глицерин воспламеняется.

Другой участник вечера:

Я тоже получу огонь без спичек, только другим способом.

Опыт № 8. Описание:

Участник вечера насыпает на кирпич небольшое количество кристаллов перманганата калия и капает на него концентрированную серную кислоту. Вокруг этой смеси он складывает тонкие щепки в виде костра, но так, чтобы они не касались смеси. Затем смачивает спиртом небольшой кусочек ваты и держа руку над костром выдавливает из ваты несколько капель спирта так, чтобы они попали на смесь. Костер моментально загорается.

Сущность опыта – происходит энергичное окисление спирта кислородом, который выделяется при взаимодействии серной кислоты с перманганатом калия. Выделяющееся при этой реакции тепло зажигает костер.

А теперь удивительные огни!

Опыт № 9. Описание:

Участник вечера помещает в фарфоровые чашки ватные тампоны, смоченные этиловым спиртом. На поверхность тампонов он насыпает следующие соли: хлорида натрия, нитрата стронция (или нитрата лития), хлорида калия, нитрата бария (или борной кислоты). На кусочке стекла участник готовит смесь (кашицу) из перманганата калия и концентрированной серной кислоты. Он берет стеклянной палочкой немного этой массы и касается поверхности тампонов. Тампоны вспыхивают и горят разными цветами: желты, красным, фиолетовым, зеленым.

Сущность опыта – ионы щелочных и щелочноземельных металлов окрашивают пламя в различные цвета.

Дорогие ребята, я так устал и проголодался, что прошу вас разрешить мне немного покушать.

Опыт № 10. Описание:

Ведущий обращается к участнику вечера:

Дай мне, пожалуйста, чай и сухарь.

Участник вечера дает ведущему стакан с чаем и белый сухарь.

Ведущий смачивает сухарь в чае – сухарь синеет.

Ведущий :

Безобразие, ты же меня чуть не отравил!

Участник вечера:

Простите мен, я, наверное, перепутал стаканы.

Сущность опыта – в стакане находился раствор йода. Крахмал, находящийся в сухаре, посинел.

Ребята, я получи письмо, но в конверте оказался чистый лист бумаги. Кто сможет помочь мне узнать, в чем тут дело?

Опыт № 11. Описание:

Учащийся из зала (заранее подготовленный) прикасается тлеющей лучинкой к карандашной метке на листе бумаги. Бумага по линии рисунка медленно сгорает и огонек, передвигаясь по контуру изображения, обрисовывает его (рисунок может быть произвольным).

Сущность опыта – бумага сгорает за счет кислорода селитры, выкристаллизовавшейся в ее толще.

Примечание: на лист бумаги заранее наносится рисунок крепким раствором калиевой селитры. Его необходимо наносить одной непрерывной линией без пересечений. От контура рисунка тем же раствором следует провести к краю бумаги линию, отметив ее конец карандашом. Когда бумага высохнет, рисунок станет незаметным.

Ну а теперь, ребята, переходим ко второй части нашего вечера. Химические игры!

III. Командные игры.

Участникам вечера предлагают разбиться на группы. Каждая группа принимает участие в предложенной ей игре.

Игра № 1. Химическое лото.

На карточках, разграфленных как в обычном лото, пишутся формулы химических веществ, а на картонных квадратиках – названия этих веществ. Участникам группы раздают карточки, а один из них вытаскивает квадратики и называет вещества. Выигрывает тот участник группы, который первым закроет все поля карточки.

Игра № 2. Химическая викторина.

Между спинками двух стульев натягивается веревка. К ней на ниточках привязываются конфеты, к которым прикреплены бумажки с вопросами. Участники группы поочередно ножницами срезают конфеты. Игрок становится владельцем конфеты после того, как отвечает на приложенный к ней вопрос.

Участники группы образовывают круг. В руках у них химические знаки и цифры. Двое из игроков находятся в середине круга. По команде они составить химическую формулу веществ из знаков и цифр, которые держат остальные игроки. Побеждает тот участник, который быстрее составит формулу.

Участники группы делятся на две команды. Им раздаются карточки с химическими формулами и цифрами. Они должны составить химическое уравнение. Побеждает та команда, которая составит уравнение первой.

Вечер заканчивается вручением призов наиболее активным участникам.

Химик - профессия очень интересная и многогранная, объединяющая под своим крылом множество разных специалистов: ученых-химиков, химиков-технологов, химиков-аналитиков, нефтехимиков, преподавателей химии, фармацевтов и многих других. Мы решили вместе с ними отметить приближающийся День химика 2017, поэтому выбрали несколько интересных и впечатляющих экспериментов в рассматриваемой области, которые сможет повторить даже тот, кто от профессии химика максимально далек. Лучшие химические опыты в домашних условиях - читайте, смотрите и запоминайте!

Когда отмечают День химика

Прежде чем мы начнем рассматривать наши химические опыты, уточним, что традиционно День химика отмечают на территории государств постсоветского пространства в самом конце весны, а именно - в последнее воскресенье мая. Это значит, что дата не фиксирована: например, в 2017 году День химика отмечается 28 мая. И если вы работаете в сфере химической промышленности, либо изучаете специальность из этой области, или как-то иначе непосредственно связаны с химией по долгу службы, значит, имеете полное право в этот день присоединиться к торжеству.

Химические опыты в домашних условиях

А теперь приступаем к главному, и начинаем выполнять интересные химические опыты: лучше всего делать это вместе с маленькими детьми, которые точно воспримут происходящее как магический фокус. Причем мы постарались подобрать такие химические эксперименты, реактивы к которым можно легко достать в аптеке или магазине.

Опыт №1 - Химический светофор

Начнем с очень простого и красивого опыта, который получил такое название отнюдь не зря, ведь участвующая в эксперименте жидкость будет менять свой цвет как раз на цвета светофора - красный, желтый и зеленый.

Вам понадобится:

  • индигокармин;
  • глюкоза;
  • каустическая сода;
  • вода;
  • 2 прозрачные стеклянные емкости.

Пусть названия некоторых ингредиентов вас не пугают - глюкозу в таблетках можно запросто купить в аптеке, индигокармин продается в магазинах как пищевой краситель, а каустическую соду найдете в хозяйственном магазине. Емкости лучше взять высокие, с широким основанием и более узким горлом, например, колбы, чтобы их было удобнее взбалтывать.

Но чем интересны химические опыты - здесь всему есть объяснение:

  • Смешав глюкозу с каустической содой, т. е. гидроксидом натрия, мы получили щелочной раствор глюкозы. Затем, смешав его с раствором индигокармина, мы окисляем жидкость кислородом, которым она насытилась во время переливания из колбы - это и есть причина появления зеленого цвета. Далее в качестве восстановителя начинает работать глюкоза, постепенно меняя цвет на желтый. Но встряхнув колбу, мы снова насыщаем жидкость кислородом, позволяя химической реакции пройти этот круг заново.

О том, как интересно это выглядит вживую, вы получите представление из данного короткого ролика:

Опыт №2 - Универсальный индикатор кислотности из капусты

Дети обожают интересные химические опыты с разноцветными жидкостями, это не секрет. Но и мы, как взрослые, ответственно заявляем, что выглядят такие химические эксперименты очень зрелищно и любопытно. Поэтому мы советуем вам провести в домашних условиях еще один «цветовой» опыт - демонстрацию удивительных свойств краснокочанной капусты. В ней, как и во многих других овощах и фруктах, содержатся антоцианы - природные красители-индикаторы, меняющие свой цвет в зависимости от уровня pH - т.е. степени кислотности среды. Это свойство капусты нам и пригодится, чтобы получить далее разноцветные растворы.

Что нам понадобится:

  • 1/4 краснокочанной капусты;
  • сок лимона;
  • раствор пищевой соды;
  • уксус;
  • сахарный раствор;
  • напиток типа «Спрайт»;
  • дезинфицирующее средство;
  • отбеливатель;
  • вода;
  • 8 колб или бокалов.

Многие вещества из этого списка довольно опасны, поэтому соблюдайте осторожность, выполняя простые химические опыты в домашних условиях, наденьте перчатки, по возможности защитные очки. И не подпускайте детей слишком близко - они могут опрокинуть реагенты или итоговое содержимое цветных колбочек, даже захотеть их попробовать, чего никак нельзя допустить.

Приступаем к выполнению:

А как эти химические опыты объясняют изменения цвета?

  • Дело в том, что на все объекты, которые мы видим, падает свет - а он содержит в себе все цвета радуги. При этом каждый цвет в луче спектра имеет свою длину волны, а молекулы разной формы, в свою очередь, отражают и поглощают эти волны. Та волна, которая отражается от молекулы, и является той, которую мы видим, и это определяет, какой цвет мы воспринимаем - ведь другие волны просто поглощаются. И в зависимости от того, какое вещество мы добавляем к индикатору, он и начинает отражать только лучи определенного цвета. Ничего сложного!

Немного другой вариант этого химического опыта, с меньшим количеством реагентов, смотрите в видео:

Опыт №3 - Танцующие желейные червячки

Продолжаем делать химические опыты в домашних условиях - и третий эксперимент мы проведем над всеми любимыми желейными конфетками в виде червячков. Даже взрослым он покажется забавным, а детей и вовсе в восторг приведет.

Возьмите следующие ингредиенты:

  • горсть желейных червячков;
  • уксусную эссенцию;
  • обыкновенную воду;
  • пищевую соду;
  • стаканы - 2 шт.

Выбирая подходящие конфеты, остановитесь на гладких тягучих червячках, без сахарной обсыпки. Чтобы они не были тяжелыми и легче шевелились, разрежьте каждую конфетку вдоль на две половинки. Итак, начинаем интересные химические опыты:

  1. Сделайте в одном стакане раствор теплой воды и 3 столовых ложек соды.
  2. Поместите туда червячков и подержите их там около пятнадцати минут.
  3. Другой глубокий стакан заполните эссенцией. Теперь можно потихоньку бросать желешки в уксус, наблюдая, как они начинают двигаться вверх-вниз, что в некотором роде похоже на танец:

Почему так происходит?

  • Все просто: пищевая сода, в которой четверть часа пропитываются червячки - это гидрокарбонат натрия, а эссенция - 80% раствор уксусной кислоты. Когда они вступают в реакцию, образуется вода, углекислый газ в виде мелких пузырьков и натриевая соль уксусной кислоты. Именно углекислым газом в виде пузырей обрастает червячок, поднимается вверх, а затем опускается, когда они лопаются. Но процесс все еще продолжается, заставляя конфетку подниматься на образующихся пузырьках и опускаться вплоть до полного своего завершения.

А если вы всерьез интересуетесь химией, и хотите, чтобы в будущем День химика стал и вашим профессиональным праздником, то вам наверняка будет любопытно посмотреть следующее видео, где подробно рассказывается о типичных буднях студентов-химиков и их увлекательной учебно-научной деятельности:


Забирай себе, расскажи друзьям!

Читайте также на нашем сайте:

Показать еще

Занимательная физика в нашем изложении расскажет, почему в природе не может быть двух одинаковых снежинок и зачем машинист электровоза сдает назад перед тем, как тронуться, где находятся самые большие запасы воды и какое изобретение Пифагора помогает бороться с алкоголизмом.

Б.Д.СТЕПИН, Л.Ю.АЛИКБЕРОВА

Эффектные опыты по химии

C чего начинается увлечение химией – наукой, полной удивительных загадок, таинственных и непонятных явлений? Очень часто – с химических опытов, которые сопровождаются красочными эффектами, «чудесами». И так было всегда, по крайней мере тому есть множество исторических свидетельств.

В материалах рубрики «Химия в школе и дома» будут описаны простые и интересные опыты. Все они хорошо получаются, если строго соблюдать приведенные рекомендации: ведь на ход реакции часто влияют температура, степень измельчения веществ, концентрация растворов, наличие примесей в исходных веществах, соотношение реагирующих компонентов и даже порядок их прибавления друг к другу.

Любые химические опыты требуют при выполнении осторожности, внимания и аккуратности. Избежать неприятных неожиданностей поможет соблюдение трех простых правил.

Первое: не надо экспериментировать дома с незнакомыми веществами. Не забывайте, что слишком большие количества хорошо известных химикатов в неумелых руках тоже могут стать опасными. Никогда не превышайте количества веществ, указанные в описании опыта.

Второе: прежде чем выполнять любой опыт, надо внимательно прочесть его описание и понять свойства применяемых веществ. Для этого есть учебники, справочники и другая литература.

Третье: надо быть осторожным и предусмотрительным. Если опыты связаны с горением, образованием дыма и вредных газов, следует показывать их там, где это не вызовет неприятных последствий, например в вытяжном шкафу во время занятий химического кружка или под открытым небом. Если во время опыта какие-то вещества разбрасываются или разбрызгиваются, то необходимо обезопасить себя защитными очками либо экраном, а зрителей усадить на безопасном расстоянии. Все опыты с сильными кислотами и щелочами надо проводить, надев очки и резиновые перчатки. Опыты, отмеченные звездочкой (*), могут выполняться только учителем или руководителем химического кружка.

При соблюдении этих правил эксперименты будут успешными. Тогда химические вещества раскроют перед вами чудеса своих превращений.

Елочка в снегу

Для этого опыта надо достать стеклянный колокол, небольшой аквариум, в крайнем случае – пятилитровую стеклянную банку с широким горлом. Нужна также ровная доска или лист фанеры, на которую будут установлены эти сосуды вверх дном. Еще понадобится небольшая пластмассовая игрушечная елочка. Выполняют опыт следующим образом.

Сначала пластмассовую елочку обрызгивают в вытяжном шкафу концентрированной соляной кислотой и тотчас ставят ее под колокол, банку или аквариум (рис. 1). Выдерживают елочку под колоколом 10–15 мин, затем быстро, чуть-чуть приподняв колокол, помещают рядом с елочкой небольшую чашку с концентрированным раствором аммиака. Сразу же в воздухе под колоколом появляется кристаллический «снег», который оседает на елочке, и вскоре вся она покрывается кристаллами, похожими на иней.

Этот эффект вызван реакцией хлороводорода с аммиаком:

НСl + NН 3 = NH 4 Сl,

которая приводит к образованию мельчайших бесцветных кристалликов хлорида аммония, осыпающих елочку.

Искрящиеся кристаллы

Как поверить тому, что вещество при кристаллизации из водного раствора выделяет под водой сноп искр? Но попробуйте смешать 108 г сульфата калия К 2 SO 4 и 100 г декагидрата сульфата натрия Nа 2 SO 4 10Н 2 О (глауберова соль) и добавить порциями при помешивании немного горячей дистиллированной или кипяченой воды, пока все кристаллы не растворятся. Раствор оставьте в темноте, чтобы при охлаждении началась кристаллизация двойной соли состава Nа 2 SO 4 2К 2 SO 4 10Н 2 О. Как только начнут выделяться кристаллы, раствор будет искриться: при 60 °С слабо, а по мере охлаждения все сильнее и сильнее. Когда кристаллов выпадет много, вы увидите целый сноп искр.

Свечение и образование искр вызвано тем, что при кристаллизации двойной соли, которая получается по реакции

2К 2 SO 4 + Na 2 SO 4 + 10Н 2 O = Nа 2 SO 4 2К 2 SO 4 10Н 2 О,

выделяется много энергии, почти полностью превращающейся в световую.

Оранжевый свет

Появление этого удивительного свечения вызвано почти полным превращением энергии химической реакции в световую. Чтобы его наблюдать, к насыщенному водному раствору гидрохинона С 6 Н 4 (ОН) 2 приливают 10–15%-й раствор карбоната калия К 2 СО 3 , формалин – водный раствор формальдегида НСНО и пергидроль – концентрированный раствор пероксида водорода Н 2 О 2 . Свечение жидкости лучше наблюдать в темноте.

Причина выделения света – окислительно-восстановительные реакции превращения гидрохинона С 6 Н 4 (ОН) 2 в хинон С 6 Н 4 О 2 , а формальдегида НСНО – в муравьиную кислоту НСООН:

С 6 Н 4 (ОН) 2 + Н 2 О 2 = С 6 Н 4 О 2 + 2Н 2 О,

НСНО + Н 2 О 2 = НСООН + Н 2 О.

Одновременно протекает реакция нейтрализации муравьиной кислоты карбонатом калия с образованием соли – формиата калия НСООК – и выделением диоксида углерода СО 2 (углекислого газа), поэтому раствор вспенивается:

2НСООН + К 2 СО 3 = 2НСООК + СО 2 + Н 2 О.

Гидрохинон (1,4-гидроксибензол) – бесцветное кристаллическое вещество. Молекула гидрохинона содержит бензольное кольцо, в котором два атома водорода в параположении замещены на две гидроксильные группы.

Гроза в стакане

«Гром» и «молния» в стакане воды? Оказывается, бывает и такое! Сначала взвесьте 5–6 г бромата калия КВrО 3 и 5–6 г дигидрата хлорида бария ВаС 12 2Н 2 О и растворите эти бесцветные кристаллические вещества при нагревании в 100 г дистиллированной воды, а потом смешайте полученные растворы. При охлаждении смеси выпадет осадок малорастворимого на холоду бромата бария Ва(ВrO 3) 2:

2КBrO 3 + ВаСl 2 = Ва(ВrO 3) 2 + 2КСl.

Отфильтруйте выпавший бесцветный осадок кристаллов Ва(ВrO 3) 2 и промойте его 2–3 раза небольшими (5–10 мл) порциями холодной воды. Затем высушите промытый осадок на воздухе. После этого 2 г полученного Ва(ВrO 3) 2 растворите в 50 мл кипящей воды и профильтруйте еще горячий раствор.

Стакан с фильтратом поставьте охлаждаться до 40–45 °С. Это лучше всего сделать на водяной бане, нагретой до такой же температуры. Температуру бани проверяйте термометром и, если она понизится, снова подогрейте воду с помощью электрической плитки.

Закройте окна шторами или выключите свет в комнате, и вы увидите, как в стакане одновременно с появлением кристаллов будут то в одном, то в другом месте возникать голубые искры – «молнии» и раздаваться хлопки «грома». Вот вам и «гроза» в стакане! Световой эффект вызван выделением энергии при кристаллизации, а хлопки – возникновением кристаллов.

Дым из воды

В стакан наливают водопроводную воду и бросают туда кусочек «сухого льда» – твердого диоксида углерода СО 2 . Вода тотчас же забурлит, и из стакана повалит густой белый «дым», образованный охлажденными парами воды, которые увлекает за собой возгоняющийся диоксид углерода. Этот «дым» совершенно безопасен.

Диоксид углерода. Твердый диоксид углерода возгоняется без плавления при низкой температуре, равной –78 °С. В жидком состоянии СО 2 может находиться только под давлением. Газообразный диоксид углерода – бесцветный, негорючий газ со слабым кисловатым вкусом. Вода способна растворять значительное количество газообразного СО 2: 1 л воды при 20 °С и давлении 1 атм поглощает около 0,9 л СО 2 . С водой взаимодействует очень незначительная часть растворенного СО2, при этом образуется угольная кислота Н 2 СО 3 , которая только частично взаимодействует с молекулами воды, образуя ионы оксония Н 3 О + и гидрокарбонатные ионы НСО 3 – :

Н 2 СО 3 + Н 2 О НСО 3 – + Н 3 О + ,

НСО 3 – + Н 2 О СО 3 2– + Н 3 О + .

Таинственное исчезновение

Оксид хрома(III) поможет показать, как вещество бесследно исчезает, исчезает без пламени и дыма. Для этого складывают горкой несколько таблеток «сухого спирта» (твердого горючего на основе уротропина), а сверху насыпают щепотку предварительно разогретого в металлической ложечке оксида хрома(III) Сr 2 O 3 . И что же? Нет пламени, нет дыма, а горка постепенно уменьшается в размерах. Через некоторое время от нее остается только щепотка неизрасходованного зеленого порошка – катализатора Сr 2 О 3 .

Окисление уротропина (СН 2) 6 N 4 (гексаметилентетрамина) – основы твердого спирта – в присутствии катализатора Сr 2 O 3 идет по реакции:

(СН 2) 6 N 4 + 9O 2 = 6СO 2 + 2N 2 + 6Н 2 О,

где все продукты – диоксид углерода СО 2 , азот N 2 и пары воды Н 2 O – газообразны, бесцветны и не имеют запаха. Заметить их исчезновение невозможно.

Ацетон и медная проволока

Можно показать еще один опыт с таинственным исчезновением вещества, который на первый взгляд кажется просто колдовством. Готовят медную проволоку толщиной 0,8–1,0 мм: очищают ее наждачной бумагой и сворачивают в кольцо диаметром 3–4 см. Отгибают отрезок проволоки длиной 10–15 см, который будет служить ручкой, а чтобы держать ее было не горячо, на конец этого отрезка надевают кусок карандаша, из которого заранее удален грифель.

Затем наливают в стакан 10–15 мл ацетона (СН 3) 2 СО (не забывайте: ацетон огнеопасен!).

Вдали от стакана с ацетоном нагревают кольцо из медной проволоки, держа ее за ручку, а потом быстро опускают его в стакан с ацетоном так, чтобы кольцо не касалось поверхности жидкости и находилось от нее в 5–10 мм (рис. 2). Проволока раскалится и будет светиться до тех пор, пока не израсходуется весь ацетон. Но ни пламени, ни дыма не будет! Чтобы опыт был еще эффектнее, в комнате гасят свет.

Статья подготовлена при поддержке компании «Пластика ОКОН». При ремонте квартиры не стоит забывать об остеклении балкона. Компания «Пластика ОКОН» занимается производством пластиковых окон с 2002 года. На сайте, расположенном по адресу plastika-okon.ru , вы сможете, не вставая со своего кресла, заказать остекление балкона или лоджии по выгодной цене. Компания «Пластика ОКОН» имеет развитую логистическую базу, которая позволяет ей, производить доставку и установку в кратчайшие сроки.

Рис. 2.
Исчезновение ацетона

На поверхности меди, которая служит катализатором и ускоряет реакцию, протекает окисление паров ацетона до уксусной кислоты СН 3 СООН и уксусного альдегида СН 3 СНО:

2(СН 3) 2 СО + О 2 = СН 3 СООН + 2СН 3 СНО,

с выделением большого количества теплоты, поэтому проволока раскаляется докрасна. Пары обоих продуктов реакции бесцветны, их выдает только запах.

«Сухая кислота»

Если в колбу положить кусочек «сухого льда» – твердого диоксида углерода – и закрыть ее пробкой с газоотводной трубкой, а конец этой трубки опустить в пробирку с водой, куда заранее добавили синий лакмус, то вскоре произойдет маленькое чудо.

Колбу слегка подогрейте. Очень скоро синий лакмус в пробирке покраснеет. Это значит, что диоксид углерода – кислотный оксид, при его реакции с водой получается угольная кислота, которая подвергается протолизу, и среда становится кислотной:

Н 2 СО 3 + Н 2 О НСО 3 – + Н 3 О + .

Волшебное яйцо

Как очистить куриное яйцо, не разбивая скорлупы? Если опустить его в разбавленную соляную или азотную кислоту, то скорлупа полностью растворится и останутся белок и желток, окруженные тонкой пленкой.

Этот опыт можно продемонстрировать весьма эффектным способом. Надо взять колбу или стеклянную бутылку с широкой горловиной, налить в нее на 3/4 объема разбавленную соляную или азотную кислоту, положить на горловину колбы сырое яйцо, а потом осторожно подогреть содержимое колбы. Когда кислота начнет испаряться, будет происходить растворение скорлупы, и через недолгое время яйцо в эластичной пленке проскользнет внутрь сосуда с кислотой (хотя яйцо больше в сечении, чем горловина колбы).

Химическое растворение скорлупы яйца, главным компонентом которой является карбонат кальция, отвечает уравнению реакции.