При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Этот сайт никак не мог обойтись без статьи про сопротивление. Ну никак! Есть в электронике самое фундаментальное понятие, которое является к тому же физическим свойством. Ты наверно уже знаком с вот этими друзьями:

Сопротивление -- это свойство материала мешать потоку электронов. Материал как бы сопротивляется, препятствует этому потоку, как паруса фрегата сильному ветру!

В мире практически всё имеет свойство сопротивляться: воздух сопротивляется потоку электронов, вода тоже сопротивляется потоку электронов, но они всё равно проскальзывают. Медные провода тоже сопротивляются потоку электронов, но лениво. Так что они очень хорошо пропускают такой поток.

Не имеют сопротивления только сверхпроводники, но это уже другая история, так как раз у них нет сопротивления, то сегодня они нам не интересны.

Кстати, поток электронов -- это и есть электрический ток. Формальное определение более педантичное, так что ищи его сам в такой же сухой книге.

И да, электроны между собой взаимодействуют. Сила такого взаимодействия измеряется в Вольтах и называется напряжением. Скажешь, что странно звучит? Да ничего странного. Электроны напрягаются и двигают другие электроны с усилием. Несколько по-деревенски, зато понятен основной принцип.

Осталось упомянуть про мощность. Мощность - это когда ток, напряжение и сопротивление собираются за одним столом и начинают работать. Тогда и появляется мощность -- энергия, которую теряют электроны, проходя через сопротивление. Кстати:

I = U/R P = U * I

Есть у тебя, к примеру, лампочка на 60Вт с проводом. Втыкаешь её в розетку на 220В. Что дальше? Лампочка оказывает потоку электронов с потенциалом в 220В некоторое сопротивление. Если сопротивление слишком мало -- бум, сгорела. Если слишком большое -- нить накала будет светиться очень слабо, если вообще будет. А вот если оно будет "в самый раз", тогда лампочка скушает 60Вт и превратит эту энергию в свет и тепло.

Тепло при этом побочный эффект и называется "потерей" энергии, так как вместо того, что бы светить ярче лампочка тратит энергию на нагрев. Пользуйтесь энергосберегающими лампами! Кстати, провод тоже обладает сопротивлением и если поток электронов будет слишком большим, то он также нагреется до заметной температуры. Тут можно предложить почитать заметку про то, зачем спользуются высоковольтные линии

Уверен, теперь ты понимаешь о сопротивлении больше. При этом мы не свалились в детали подобные удельному сопротивлению материала и формулы типа

где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².

Немного анимашек для полноты картины

И наглядно о том, как поток электронов меняется от в зависимости от температуры проводника и его толщины

>>Физика: Электрическое сопротивление

Скачать календарно-тематическое планирование по физике , ответы на тесты, задания и ответы школьнику, книги и учебники, курсы учителю по физике для 9 класса

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Настала очередь узнать, что такое сопротивление. Представьте себе теперь уже обычную кристаллическую решетку. Так вот… Чем плотнее будут кристаллы расположены друг к другу, тем больше в них будет задерживаться зарядов. Значит, говоря простым языком - тем больше сопротивление металла. Кстати, сопротивление любого обычного металла можно на время увеличить, нагрев его. «Почему?», - спросите. Да потому, что при нагревании атомы металла начинают усиленно колебаться возле своего закрепленного связями положения. Поэтому движущиеся заряды будут чаще сталкиваться с атомами, а значит чаще и больше задерживаться в узлах кристаллической решетки. На рис.1 приведена наглядная схема-сборка, так сказать для «непосвященных», где сразу видно, как измерить напряжение на сопротивлении. Точно таким же образом можно измерить напряжение и на лампочке. Кстати, если, как видно из рисунка, наша батарея имеет напряжение, допустим, 15В(Вольт), а сопротивление таково, что на нем «оседает» 10В, то оставшиеся 5В придутся на лампочку.

Так выглядит закон Ома для замкнутой цепи.

Если не вдаваться в подробности, то этот закон говорит о том, что напряжение источника питания равно сумме падений напряжений на всех его участках. Т.е. в нашем случае, 15В = 10В + 5В. Но… если все же немножко вникнуть в подробности, то нужно знать, что то, что мы называли напряжением батареи, есть не что иное как ее значение при подключенном потребител е(в нашем случае - это лампочка + сопротивление). Если лампочку с сопротивлением отсоединить и измерить значение напряжения на батарее, то оно окажется несколько больше 15В. Это будет напряжение холостого хода и «обзывается» оно ЭДС батареи - электродвижущая сила. В действительности схема будет работать как показано на рис.2. В реальности батарею можно представить как некую другую батарею с напряжением, допустим, 16В, которая имеет свое некоторое внутреннее сопротивление Rвн. Значение этого сопротивления очень мало и обусловлено технологическими особеностями изготовления. Из рисунка видно, что при подключеной нагрузке часть напряжения батареи «осядет» на ее внутреннем сопротивлении и на ее выходе будет уже не 16В, а 15В, т.е. 1В «поглотится» ее внутренним сопротивлением. И здесь также сработает закон Ома для замкнутой цепи. Сумма напряжений на всех участках цепи окажется равной ЭДС батареи. 16В = 1В + 10В + 5В. Единицей измерения сопротивления является величина, называемая Ом. Названа она так в честь немецкого физикаГеорга Симона Ом, который этими работами и занимался. 1Ом равен электрическому сопротивлению проводника(им может, например, и лампочка быть) между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер. Для определения сопротивления лампы необходимо замерить на ней напряжение и измерить ток в цепи (см рис.5). А затем полученное значение напряжения разделить на значение тока (R=U/I). Сопротивления в электрических цепях могут соединяться последовательно (конец первого с началом второго - в данном случае их можно обозначить произвольно) и параллельно (начало с началом, конец с концом - и в данном случае их можно обозначить произвольно). Рассмотрим оба случая на примере лампочек - ведь их нити накала состоят их вольфрама, т.е. представляют из себя сопротивления. Случай последовательного соединения показан на рис.3.

Получилась всем известная (а, значит, будем считать и понятная- гирлянда). При таком соединении ток I будет всюду одинаковый независимого от того, что будут ли это одинаковые лампы на одно и то же напряжение или на разные. Надо сразу оговориться, что одинаковыми считаюся лампы, на которых:

  1. указаны одно и тоже напряжение и ток(подобно лампочкам от карманного фонаря);
  2. указаны одно и тоже напряжение и мощность(подобно лампам освещения).

Напряжение U истотчника питания в этом случае «раскидается» по всем лампам, т.е. U = U1 + U2 +U3. При этом, если лампы одинаковые - на всех них напряжение будет одинаковым. Если лампы не одинаковые, то в зависимости от сопротивления каждой конкретной лампы. В первом случае напряжение на каждой лампе можно легко вычислить, разделив напряжение источника на общее количество ламп. Во втором случае надо покопаться в вычислениях. Все это мы рассмотрим в задачах этого раздела. Итак, мы выяснили, что при последовательном соединении проводников(в данном случае - ламп) напряжение U на концах всей цепи равно сумме напряжений последовательно включенных проводников(ламп) - U = U1 + U2 +U3. По закону Омадля участка цепи: U1 = I*R1, U2 = I*R2, U3 = I*R3,U = I*R где R1 - сопротивление нити первой лампы(проводника), R2 - второй и R3 - третьей, R - полное сопротивление всех ламп. Заменив в выражении «U = U1 + U2 +U» значение U на I*R, U1 на I*R1, U2 на I*R2, U3 на I*R3, получим I*R = I*(R1+R2+R3). Отсюда R = R1+R2+R3.Вывод: при последовательном соединении проводников их общее сопротивление равно сумме сопротивлений всех проводников. Сделаем вывод: последовательное включение применяется для нескольких потребителей(например, ламп новогодней гирлянды) с напряжением питания меньшим напряжения источника..

Случай параллельного соединения проводников показан на рис.4.

При параллельном соединении проводников их начала и концы имеют общие точки подключения к источнику. При этом напряжения на всех лампах(проводниках) одинаково независимо от того, какая из них и на какое напряжение рассчитана, так они напрямую подключены к источнику. Естественно, если лампа на меньшее напряжение, чем источник напряжения - она перегорит. А вот ток I будет равен сумме токов во всех лампах, т.е. I = I1 + I2 + I3. И лампы могут быть разной мощности - каждая будет брать тот ток, на который рассчитана. Это можно понять, если вместо источника представить розетку с напряжением 220В, а вместо ламп - подключенные к ней, например, утюг, настольная лампа и зарядныое устройство от телефона. Сопротивление каждого прибора в такой цепи определяется делением его напряжения на ток, который оно потребляет… опять-таки по закону Ома для участка цепи, т.е.

Сразу изложим тот факт, что есть величина, обратная сопротивлению и называется она - проводимость. Обозначается она Y. В системе СИ обозначается как См (Сименс). Обратная сопротивлению означает, что

Не вдаваясь в математические выводы, сразу скажем, что при параллельном соединении проводников(будь то лампы, утюги, микроволновки или телевизоры) величина, обратная общему сопротивлению, равна сумме величин, обратных сопротивлениям всех параллельно включенных проводников, т.е.

Учитывая, что

Иногда в задачах пишут Y = Y1 + Y2 + Y3. Это одно и то же. Есть также более удобная формула для нахождения общего сопротивления двух параллельно включенных сопротивлений. Выглядит она так:

Сделаем вывод: параллельный способ включения применяется для подключения ламп освещения и бытовых электроприборов к электрической сети.

Как мы выяснили, столкновения свободных электронов в проводниках с атомами кристаллической решетки тормозят их поступательное движение… Это противодействие направленному движению свободных электронов, т.е. постоянному току, составляет физическую сущность сопротивления проводника. Аналогичен механизм сопротивления постоянному току в электролитах и газах. Проводящие свойства материала определяют его объемное удельное сопротивление ρv, равное сопротивлению между противоположными сторонами куба с ребром 1м, изготовленного из данного материала. Величина обратная объемному удельному сопротивлению, называется объемной удельной проводимостью и равна γ = 1/ρv. Единицей объемного сопротивления служит 1Ом*м, объемной удельной проводимости - 1См/м. Сопротивление проводника постоянному току зависит от температуры. В общем случае наблюдается достаточно сложная зависимость. Но при изменениях температуры в относительно узких пределах (примерно 200°С) ее можно выразить формулой:

где R2 и R1 - сопротивления соответственно при температурах Т1 и Т2; α - температурный коэффициент сопротивления, равный относительному изменению сопротивления при изменении температуры на 1°С.

Важные понятия

Электротехническое устройство, обладающее сопротивлением и применяемое для ограничения тока, называется резистором. Регулируемый резистор (т.е. имеется возможность изменять его сопротивление) называется реостатом.

Резистивными элементами называются идеализированные модели резисторов и любых других электротехнических устройств или их частей, оказывающих сопротивление постоянному току независимо от физической природы этого явления. Они применяются при составлении схем замещения цепей и расчетах их режимов. При идеализации пренебрегают токами через изолирующие покрытия резисторов, каркасы проволочных реостатов и т.п.

Линейный резистивный элемент является схемой замещения любой части электротехнического устройства, в которой ток пропорционален напряжению. Его параметром служит сопротивление R = const. R = const означает, что значение сопротивления неизменно (const значит постоянна).
Если зависимость тока от напряжения нелинейна, то схема замещения содержит нелинейный резистивный элемент, который задается нелинейной ВАХ (вольт-амперной характеристикой) I(U) - читается как «И от У». На рис.5 приведены вольт-амперные характеристики линейного (линия а) и нелинейного (линия б) резистивных элементов, а также их обозначения на схмах замещения.

Сопротивление проводника – способность материала препятствовать протеканию электрического тока. Включая случай скин-эффекта переменных высокочастотных напряжений.

Физические определения

Материалы делятся классами согласно удельному сопротивлению. Рассматриваемая величина – сопротивление – считается ключевой, позволит выполнить градацию всех веществ, встречающихся в природе:

  1. Проводники – материалы с удельным сопротивлением до 10 мкОм м. Касается большинства металлов, графита.
  2. Диэлектрики – удельное сопротивление 100 МОм м — 10 ПОм м. Приставка Пета используется в контексте пятнадцатой степени десятки.
  3. Полупроводники – группа электротехнических материалов с удельным сопротивлением в диапазоне от проводников до диэлектриков.

Удельным сопротивление называется, позволяя охарактеризовать параметры отреза провода длиной 1 метр, площадью 1 квадратный метр. Чаще цифрами пользоваться неудобно. Сечение реального кабеля намного меньше. К примеру, для ПВ-3 площадь составляет десятки миллиметров. Расчет упрощается, если пользоваться единицами Ом кв.мм/м (см. рис.).

Удельное сопротивление металлов

Удельное сопротивление обозначается греческой буквой «ро», для получения показателя сопротивления величину домножим на длину, разделив на площадь образца. Перевод меж стандартными единицами измерения Ом м чаще используемыми для расчета показывает: взаимосвязь устанавливается через шестую степень десятки. Иногда удастся найти среди табличных значениях сведения, касающиеся удельного сопротивления меди:

  • 168 мкОм м;
  • 0,00175 Ом кв. мм / м.

Легко убедиться, цифры расходятся примерно на 4%, убедитесь, выполнив приведение единиц. Значит, цифры приводятся сортамента меди. При необходимости точных вычислений вопрос уточняется дополнительно, отдельно. Сведения об удельном сопротивлении образца получают чисто опытным путем. Отрез провода с известными сечением, длиной подсоединяется к контактам мультиметра. Для получения ответа требуется показания разделить на протяженность образца, домножить площадью сечения. В тестах полагается выбирать образец подлиннее, сократив до минимума погрешность. Значительная часть тестеров наделена недостаточной точностью для получения годных значений.

Итак, боящимся физиков, отчаявшимся освоить китайские мультиметры работать с удельным сопротивлением неудобно. Гораздо проще взять готовый отрез (большей длины), оценить параметр полного куска. На практике доли Ома играют малую роль, указанные действия выполняются для оценки потерь. Напрямую определены активным сопротивлением участка цепи и квадратично зависят от тока. Учитывая сказанное, отметим: проводники в электротехнике принято делить на две категории по применяемости:

  1. Материалы высокой проводимости, высокого сопротивления. Первые применяются для создания кабелей, вторые – сопротивлений (резисторов). В таблицах не бывает четкого разграничения, учитывается практичность. Серебро с низким сопротивлением для создания проводов не применяют вовсе, для контактов приборов – редко. По очевидным причинам.
  2. Сплавы с высокой упругостью применяются для создания гибких токонесущих частей: пружин, рабочих частей контакторов. Сопротивление обычно должно быть минимальным. Понятно, для этих целей в корне непригодна обычная медь, которой присуща большая степень пластичности.
  3. Сплавы с высоким или низким температурным коэффициентом расширения. Первые служат основой создания биметаллических пластин, структурно служащих основой . Вторые образуют группу инварных сплавов. Часто требуются, где важна геометрическая форма. У держателей нити (замена дорогостоящему вольфраму) и вакуумплотных спаев на стыке со стеклом. Но еще чаще инварные сплавы никакого отношения к электричеству не имеют, используются в составе станков, приборов.

Формула связи удельного сопротивления с омическим

Физические основы электропроводности

Сопротивление проводника признано величиной, обратной электропроводности. В современной теории не установлено досконально, как происходит процесс образования тока. Физики часто упирались в стену, наблюдая явление, которое никак не могло быть объяснено с точки позиций ранее выдвигавшихся концепций. Сегодня доминирующей считается зонная теория. Требуется привести краткий экскурс развития представлений о строении вещества.

Изначально предполагалось: вещество представлено субстанцией, заряженной положительно, в ней плавают электроны. Так считал небезызвестный лорд Кельвин (урожденный Томсон), в честь которого названа единица измерения абсолютной температуры. Впервые сделал предположение о планетарной структуре атомов Резерфорд. Теория, выдвинутая в 1911 году, была сооружена на факте отклонения альфа-излучения веществами с большой дисперсией (отдельные частицы изменяли угол полета на весьма значительную величину). На основе существующих предпосылок автор заключил: положительный заряд атома сосредоточен внутри малой области пространства, которую назвали ядром. Факт отдельных случаев сильного отклонения угла полета вызван тем, что путь частицы пролегал в непосредственной близости от ядра.

Так установлены пределы геометрических размеров отдельных элементов и для разных веществ. Заключили, что диаметр ядра золота укладывается областью 3 пм (пико – приставка к отрицательной двенадцатой степени десятки). Дальнейшее развитие теории строения веществ выполнил Бор в 1913 году. На основе наблюдения поведения ионов водорода сделал вывод: заряд атома составляет единицу, была определена масса, составившая примерно одну шестнадцатую веса кислорода. Бор предположил: электрон удерживается силами притяжения, определенными Кулоном. Следовательно, что-то удерживает от падения на ядро. Бор предположил, виновата центробежная сила, возникающая при вращении частицы по орбите.

Важную поправку к макету внес Зоммерфельд. Допустил эллиптичность орбит, ввел два квантовых числа, описывающих траекторию – n и k. Бор заметил: теория Максвелла для модели терпит крах. Движущаяся частица обязана порождать в пространстве магнитное поле, тогда постепенно электрон упал бы на ядро. Следовательно, приходится допустить: существуют орбиты, на которых излучения энергии в пространство не происходит. Легко заметить: предположения противоречат друг другу, лишний раз напоминая: сопротивление проводника, как физическую величину, сегодня неспособны объяснить физики.

Почему? Зонная теория выбрала базисом постулаты Бора, гласящие: положения орбит дискретны, вычисляются заранее, геометрические параметры связаны некоторыми соотношениями. Выводы ученого пришлось дополнить волновой механикой, поскольку сделанные математические модели бессильны оказались объяснить некоторые явления. Современная теория говорит: для каждого вещества предусмотрено в состоянии электронов три зоны:

  1. Валентная зона электронов, прочно связанных с атомами. Требуется большая энергия — разорвать связь. Электроны валентной зоны в проводимости не участвуют.
  2. Зона проводимости, электроны при возникновении в веществе напряженности поля образуют электрический ток (упорядоченное движение носителей заряда).
  3. Запрещенная зона – область энергетических состояний, где электроны в нормальных условиях находиться не могут.

Необъяснимый опыт Юнга

Согласно зонной теории, у проводника зона проводимости перекрывается валентной. Образуется электронное облако, легко увлекаемое напряженностью электрического поля, образуя ток. По этой причине сопротивление проводника имеет столь малое значение. Причем ученые прилагают бесполезные усилия объяснить, что представляет собой электрон. Известно только: элементарная частица проявляет волновые и корпускулярные свойства. Принцип неопределенности Гейзенберга ставит факты на места: нельзя с вероятностью 100% одновременно определить местоположение электрона и энергию.

Что касается эмпирической части, учеными подмечено: опыт Юнга, проделанный с электронами, дает любопытный результат. Ученый пропускал поток фотонов через две близкие щели щита, получалась интерференционная картина, составленная рядом полос. Предложили проделать тест с электронами, случился коллапс:

  1. Если электроны проходят пучком, минуя две щели, образуется интерференционная картина. Происходит, будто движутся фотоны.
  2. Если электроны выстреливать по одному, ничего не меняется. Следовательно… одна частица отражается сама от себя, существует сразу в нескольких местах?
  3. Тогда стали пытаться зафиксировать момент прохождения электроном плоскости щита. И… интерференционная картина пропала. Остались два пятна напротив щелей.

Эффект бессильны объяснить с научной точки зрения. Получается, электроны «догадываются» о проводимом наблюдении, перестают проявлять волновые свойства. Показывает ограниченность современных представлений физики. Хорошо, если бы этим можно было удовольствоваться! Очередной муж науки предложил вести наблюдение за частицами, когда они уже прошли сквозь щель (летели в определенном направлении). И что же? Снова электроны перестали проявлять волновые свойства.

Получается, элементарные частицы вернулись обратно во времени. В тот момент, когда проходили щель. Проникли в тайну будущего, узнав, будет ли вестись наблюдение. В зависимости от факта скорректировали поведение. Понятно, ответ не может быть попаданием в яблочко. Загадка ждет разрешения по сей день. Кстати, теория Эйнштейна, выдвинутая в начале XX века, теперь опровергнута: найдены частицы, скорость которых превышает световую.

Как образуется сопротивление проводников

Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.

Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров — температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение — сопротивление проводников отличается. У меди меньше алюминия.