Условие (1) означает, что в большой серии независимых экспери­ментов, в каждом из которых получена выборка объема п, в среднем (1 - а) 100% из общего числа построенных доверительных интервалов содержат истинное значение параметра 0.

Длина доверительного интервала, характеризующая точность интер­вального оценивания, зависит от объема выборки n и доверительной ве­роятности 1 - α: при увеличении объема выборки длина доверительного интервала уменьшается, а с приближением доверительной вероятности к единице - увеличивается. Выбор доверительной вероятности опреде­ляется конкретными условиями. Обычно используются значения 1 - α, равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние довери­тельные интервалы, границы которых определяются из условий

Ρ [θ < θ 2 ] = 1 - α или Ρ [θ 1 < θ] = 1 - α.

Эти интервалы называются соответственно левосторонними и право­сторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ, необходимо знать закон распределения статистики θ ’ = θ ’ (x 1 , ..., х п ), значение ко­торой является оценкой параметра θ. При этом для получения довери­тельного интервала наименьшей длины при данном объеме выборки n и заданной доверительной вероятности 1 - α в качестве оценки θ пара­метра θ следует брать эффективную либо асимптотически эффективную оценку.

2.1.5. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ. КРИТЕРИЙ СОГЛАСИЯ ПИРСОНА.

Критерием согласия называется критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Пусть по выборке объема n получено эмпирическое распределение:

С помощью критерия Пирсона можно проверить гипотезу о различных законах распределения генеральной совокупности (равномерном, нормальном, показательном и др.) Для этого в предположении о конкретном виде распределения вычисляются теоретические частоты n i ’ , и в качестве критерия выбирается случайная величина.

имеющая закон распределения χ2 с числом степеней свободы k = s – 1 – r, где s – число частичных интервалов выборки, r – число параметров предполагаемого распределения. Критическая область выбирается правосторонней, и граница ее при заданном уровне значимости α находится по таблице критических точек распределения χ2.

Теоретические частоты n i ’ вычисляются для заданного закона распределения

как количества элементов выборки, которые должны были попасть в каждый интервал, если бы случайная величина имела выбранный закон распределения, параметры которого совпадают с их точечными оценками по выборке, а именно:



а) для проверки гипотезы о нормальном законе распределения n i ’ = n · Р i , где

n – объем выборки, , x i и x i +1 левая и правая

границы i-го интервала, - выборочное среднее, s – исправленное среднее квадратическое отклонение. Поскольку нормальное распределение характеризуется двумя параметрами, число степеней свободы k = n – 3.

2.1.6. КВАНТИЛЬ

Квантиль - значение, которое заданная случайная величина не превышает с фиксированной вероятностью.

Квантилью уровня P, называется решение уравнения , где P и F заданы.

Квантиль P – значение случайной величины, при котором функция распределения равна P.

В Данной работе будут использованы квантили распределения Стьюдента и хи-квадрат Пирсона.


2.2 РАСЧЁТЫ

Данная выборка

объем выборки

2.3. ВЫВОДЫ

В ходе работы над первой частью курсовой работы был написан подробный

теоретический обзор. Также были решены данные задачи. Получен опыт нахождения статистического ряда, построения гистограммы и полигона частот. После проверки гипотезы было выяснено, что теоретическое меньше, чем практическое. Это означает, что нормальный закон распределения для данной совокупности не подходит.


3 ЧАСТЬ II. РЕГРЕССИОННЫЙ АНАЛИЗ

3.1. ТЕОРИТИЧЕСКИЕ СВЕДЕНЬЯ

Часто у инженера возникает задача выделения сигнала из смеси «сигнал + шум».

Например, на промежутке от t 1 до t 2 функция f(t) имеет вид, но в силу патологического влияния шумов и помех эта кривая превратилась в смесь f(t) + f(n).

Реально мы владеем какой-то информацией и о сигнале и о шуме, но этого недостаточно.

Алгоритм восстановления сигнала из смеси «сигнал + шум»:

1. Задается функция f(t)

2. Генерируется шум с помощью датчика случайных чисел f(n)

3. Построим сумму f(t) + f(n)

4. Принимая модель f(t) в виде полинома третьей степени – кубической параболы. Находим методом МНК коэффициенты этой кубической параболы. Они будут являться функциями y(t)

3.1.1 МЕТОД НАИМЕНЬШИХ КВАДРАТОВ (МНК)

Метод наименьших квадратов (МНК) – это метод оценки неизвестных случайных величин по результатам измерений, содержащим случайные ошибки. В нашем случае дана смесь – сигнал+шум. Наша задача состоит в извлечении истинного тренда.

При помощи метода наименьших квадратов вычисляются коэффициенты аппроксимирующего многочлена. Эта задача решается следующим образом.

Пусть на некотором отрезке в точках … нам известны значения … некоторой функции f(x).

Требуется определить параметры многочлена вида

Где k

такого, что сумма квадратов отклонений значений y от значений функции f(y) в заданных точках x была минимальной, то есть .

Геометрический смысл заключается в том, что график найденного многочлена y = f(x) будет проходить как можно ближе к каждой из заданных точек.

…………………………………………………………………………….

Запишем систему уравнений в матричном виде:

Решением является следующее выражение:

Несмещенная оценка для дисперсии ошибок наблюдений равна:

Чем величина S меньше, тем точнее описывается Y.

N – Объем выборки

k-Число параметров тренда –

Считается по формуле:

Доверительный интервал для коэффициентов тренда считается так:

– квантиль распределения Стьюдента

J-ый диагональный элемент матрицы


3.2 РАСЧЕТЫ

шаг



4. ЗАКЛЮЧЕНИЕ

В ходе выполнения данной курсовой работы был получен опыт нахождения

точечной оценки и доверительного интервала для таких величин, как математическое

ожидание и дисперсия, закреплены навыки построения гистограммы и полигона частот

для некоторой выборки значений.

Так же был освоен метод наименьших квадратов (МНК), как один из способов

в регрессионном анализе для извлечения истинного тренда из смеси сигнал + шум.

Полученные в ходе работы навыки можно использовать не только в учебной

деятельности, но и в повседневной жизни.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Симонов А.А. Выск Н.Д. Проверка статистических гипотез:

Методические указания и варианты курсовых заданий. Москва, 2005, 46 с.

2. Ю. И. Галанов. Математическая статистика: учебное пособие.

Издательство ТПУ. Москва, 2010, 66 с.

3. Вентцель Е.С. Теория вероятностей: Учебник для студ. вузов, 2005. – 576 с.

4. Э. А. Вуколов, А. В. Ефимов, В.Н. Земсков, А. С. Поспелов. Сборник задач по математике для ВТУЗОВ: Учебник для студентов вузов.

Москва, 2003, 433 с.

5. Чернова Н. И. Математическая статистика: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2007. 148 с.

Доверительные интервалы.

Вычисление доверительного интервала базируется на средней ошибке соответствующего параметра. Доверительный интервал показывает, в каких пределах с вероятностью (1-a) находится истинное значение оцениваемого параметра. Здесь a – уровень значимости, (1-a) называют также доверительной вероятностью.

В первой главе мы показали, что, например, для среднего арифметического, истинное среднее по сово­купности примерно в 95% случаев лежит в пределах 2 средних ошибок среднего. Таким образом, границы 95% доверительного интервала для среднего будет отстоять от выборочного среднего на удвоенную среднюю ошибку среднего, т.е. мы умножаем среднюю ошибку среднего на некий коэффициент, зависящий от доверительной вероятности. Для среднего и разности средних берётся коэффициент Стьюдента (критическое значение критерия Стьюдента), для доли и разности долей критическое значение критерия z. Произведение коэффициента на среднюю ошибку можно назвать предельной ошибкой данного параметра, т.е. максимальную, которую мы можем получить при его оценке.

Доверительный интервал для среднего арифметического : .

Здесь - выборочное среднее;

Средняя ошибка среднего арифметического;

s – выборочное среднее квадратическое отклонение;

n

f = n -1 (коэффициент Стьюдента).

Доверительный интервал для разности средних арифметических :

Здесь - разность выборочных средних;

- средняя ошибка разности средних арифметических;

s 1 ,s 2 – выборочные средние квадратические отклонения;

n 1 ,n 2

Критическое значение критерия Стьюдента при заданных уровне значимости a и числе степеней свободы f=n 1 +n 2 -2 (коэффициент Стьюдента).

Доверительный интервал для доли :

.

Здесь d – выборочная доля;

– средняя ошибка доли;

n – объём выборки (численность группы);

Доверительный интервал для разности долей :

Здесь - разность выборочных долей;

– средняя ошибка разности средних арифметических;

n 1 ,n 2 – объёмы выборок (численности групп);

Критическое значение критерия z при заданном уровне значимости a ( , , ).

Вычисляя доверительные интервалы для разности показателей, мы, во-первых, непосредственно видим возможные значения эффекта, а не только его точечную оценку. Во-вторых, можем сделать вывод о принятии или опровержении нулевой гипотезы и, в-третьих, можем сделать вывод о мощности критерия.

При проверке гипотез с помощью доверительных интервалов надо придерживаться следующего правила:

Если 100(1-a)-процентный доверительный интервал разности средних не содержит нуля, то различия статистически значимы на уровне значимости a; напротив, если этот интервал содержит ноль, то различия статистически не значимы.

Действительно, если этот интервал содержит ноль, то, значит, сравниваемый показатель может оказаться как больше, так и меньше в одной из групп, по сравнению с другой, т.е. наблюдаемые различия случайны.

По месту, где находится ноль внутри доверительного интервала, можно судить о мощности критерия. Если ноль близок к нижней или верхней границе интервала, то возможно при большей численности сравниваемых групп, различия достигли бы статистической значимости. Если ноль близок к середине интервала, то, значит, равновероятно и увеличение и уменьшение показателя в экспериментальной группе, и, вероятно, различий действительно нет.

Примеры:

Сравнить операционную летальность при применении двух разных видов анестезии: с применением первого вида анестезии оперировалось 61 человек, умерло 8, с применением второго – 67 человек, умерло 10.

d 1 = 8/61 = 0,131; d 2 = 10/67 = 0,149; d1-d2 = - 0,018.

Разность летальностей сравниваемых методов будет находиться в интервале (-0,018 - 0,122; -0,018 + 0,122) или (-0,14 ; 0,104) с вероятностью 100(1-a) = 95%. Интервал содержит ноль, т.е. гипотезу об одинаковой летальности при двух разных видах анестезии отвергнуть нельзя.

Таким образом, летальность может и уменьшится до 14% и увеличиться до 10,4% с вероятностью 95%, т.е. ноль находится примерно по середине интервала, поэтому можно утверждать, что, скорее всего, действительно не отличаются по летальности эти два метода.

В рассмотренном ранее примере сравнивалось среднее время нажатия при теппинг-тесте в четырёх группах студентов, отличающихся по экзаменационной оценке. Вычислим доверительные интервалы среднего времени нажатия для студентов, сдавших экзамен на 2 и на 5 и доверительный интервал для разности этих средних.

Коэффициенты Стьюдента находим по таблицам распределения Стьюдента (см. приложение): для первой группы: = t(0,05;48) = 2,011; для второй группы: = t(0,05;61) = 2,000. Таким образом, доверительные интервалы для первой группы: = (162,19-2,011*2,18 ; 162,19+2,011*2,18) = (157,8 ; 166,6) , для второй группы (156,55-2,000*1,88 ; 156,55+2,000*1,88) = (152,8 ; 160,3). Итак, для сдавших экзамен на 2, среднее время нажатия лежит в пределах от 157,8 мс до 166,6 мс с вероятностью 95%, для сдавших экзамен на 5 – от 152,8 мс до 160,3 мс с вероятностью 95%.

Проверять нулевую гипотезу можно и по доверительным интервалам для средних, а не только для разности средних. Например, как в нашем случае, если доверительные интервалы для средних перекрываются, то нулевую гипотезу отвергнуть нельзя. Для того чтобы отвергнуть гипотезу на выбранном уровне значимости, соответствующие доверительные интервалы не должны перекрываться.

Найдём доверительный интервал для разности среднего времени нажатия в группах сдавших экзамен на 2 и на 5. Разность средних: 162,19 – 156,55 = 5,64. Коэффициент Стьюдента: = t(0,05;49+62-2) = t(0,05;109) = 1,982. Групповые средние квадратические отклонения будут равны: ; . Вычисляем среднюю ошибку разности средних: . Доверительный интервал: =(5,64-1,982*2,87 ; 5,64+1,982*2,87) = (-0,044 ; 11,33).

Итак, разница среднего времени нажатия в группах, сдавших экзамен на 2 и на 5, будет находиться в интервале от -0,044 мс до 11,33 мс. В этот интервал входит ноль, т.е. среднее время нажатия у отлично сдавших экзамен, может и увеличиться и уменьшится по сравнению с неудовлетворительно сдавшими, т.е. нулевую гипотезу отвергнуть нельзя. Но ноль находится очень близко к нижней границе, время нажатия гораздо вероятнее всё-таки уменьшается у отлично сдавших. Таким образом, можно сделать вывод, что различия в среднем времени нажатия между сдавшими на 2 и на 5 всё-таки есть, просто мы не смогли их обнаружить при данном изменении среднего времени, разбросе среднего времени и объёмах выборок.



Мощность критерия – это вероятность отвергнуть неверную нулевую гипотезу, т.е. найти различия там, где они действительно есть.

Мощность критерия определяется исходя из уровня значимости, величины различий между группами, разброса значений в группах и объёма выборок.

Для критерия Стьюдента и дисперсионного анализа можно воспользоваться диаграммами чувствительности.

Мощность критерия можно использовать при предварительном определении необходимой численности групп.

Доверительный интервал показывает, в каких пределах с заданной вероятностью находится истинное значение оцениваемого параметра.

С помощью доверительных интервалов можно проверять статистические гипотезы и делать выводы о чувствительности критериев.

ЛИТЕРАТУРА.

Гланц С. – Глава 6,7.

Реброва О.Ю. – с.112-114, с.171-173, с.234-238.

Сидоренко Е. В. – с.32-33.

Вопросы для самопроверки студентов.

1. Что такое мощность критерия?

2. В каких случаях необходимо оценить мощность критериев?

3. Способы расчёта мощности.

6. Как проверить статистическую гипотезу с помощью доверительного интервала?

7. Что можно сказать о мощности критерия при расчёте доверительного интервала?

Задачи.

11.1. Доверительные интервалы и доверительная вероятность.

Доверительные интервалы для параметров нормально распреде­ленной

генеральной совокупности.

При статистической обработке результатов наблюдений следует не только найти оценку неизвестного параметра θ , но и охарактеризовать точность этой оценки. С этой целью вводится понятие доверительного интервала.

Доверительным интервалом для параметра θ называется интервал (θ 1 , θ 2 ), содержащий (накрывающий) истинное значение θ с заданной вероятностью р = 1 - α , т.е. Р [θ 1 < θ < θ 2 ] = 1-α .

Число 1 - α называется доверительной вероятностью, а зна­чение α - уровнем значимости. Статистики θ 1 = θ 1 (x 1 ,...,x n ) и θ 2 = θ 2 (x 1 ,...,x n ), определяемые по выборке x 1 ,...,x n из генераль­ной совокупности с неизвестным параметром θ , называются со­ответственно нижней и верхней границами доверительного ин­тервала.

Условие Р [θ 1 < θ < θ 2 ] = 1-α означает, что в большой серии независимых экспериментов, в каждом из которых получена вы­борка объема n , в среднем (1 - α )·100% из общего числа построенных доверительных интервалов содержат истинное значение параметра θ .

Длина доверительного интервала, характеризующая точ­ность интервального оценивания, зависит от объема выборки n и доверительной вероятности 1 - α : при увеличении объема выборки длина доверительного интервала уменьшается, а с приближе­нием доверительной вероятности к единице - увеличивается. Вы­бор доверительной вероятности определяется конкретными усло­виями. Обычно используются значения 1 - α , равные 0,90; 0,95; 0,99.

При решении некоторых задач применяются односторонние доверительные интервалы, границы которых определяют из усло­вий: Р [θ < θ 2 ] = 1-α или Р [θ 1 < θ ] = 1-α .

В этом случае интервалы называются соответственно левосторонними и правосторонними доверительными интервалами.

Чтобы найти доверительный интервал для параметра θ , на­до знать закон распределения статистики = (х 1 ,...,х п) , значе­ние которой является оценкой параметра θ.

Для получения доверительного интервала наименьшей дли­ны при данном объеме выборки п и заданной доверительной веро­ятности 1в качестве оценки параметра θ следует брать эффективную либо асимптотически эффективную оценку.

Рассмотрим один из методов построения доверительных интервалов. Предположим, что существует статистика Y = Y( , θ) такая, что:

а) закон распределения Y известен и не зависит от θ ;

б) функция Y( , θ) непрерывна и строго монотонна по θ.
Пусть (1) - заданная доверительная вероятность, а у а/2 и у 1- a /2 - квантили распределения статистики Y порядков α/2 и 1-α/ 2соответственно. Тогда с вероятностью 1выполняется неравенство у а/2 < Y( , θ) < у 1- a /2 .

Решая это неравенство относительно θ , найдем границы θ i и θ 2 доверительного интервала для θ. Если плотность распреде­ления статистики Y симметрична относительно оси Оу , то доверительный интервал имеет наименьшую длину, а если это распре­деление несимметрично, то длину, близкую к наименьшей.

Пример 46. Пусть х 1 ,х 2 ,...,х n - выборка из нормально рас­пределенной генеральной совокупности. Найти доверительный интервал для математического ожидания т при условии, что дис­персия генеральной совокупности известна и равна σ 2 , а довери­тельная вероятность равна 1-α.

Решение. В качестве оценки математического ожидания т возьмем выборочное среднее . Для нормально распределенной генеральной совокупности выборочное среднее является эффективной оценкой т. Выборочное среднее в данном случае имеет нормальное распределение .

Рассмотрим статистику , имеющую нормальное распределение N (0,1) независимо от значения параметра т. Кро­ме того, U как функция т непрерывна и строго монотонна. Тогда , где и а/2 и и 1- a /2 - квантили нормального распределения N (0,1).

Решая неравенство относительно т, по­лучим, что с вероятностью 1 выполняется условие:

.

Так как квантили нормального распределения связаны со­отношением и а/2 =-u 1- a /2 , полученный доверительный интервал для т можно записать следующим образом:

11.2. Доверительные интервалы для вероятности успеха в схеме Бернулли

и параметра λ распределения Пуассона.

Если распределение генеральной совокупности не является нор­мальным, то в некоторых случаях по выборкам большого объема можно построить доверительные интервалы для неизвестных па­раметров приближенно, используя при этом предельные теоремы теории вероятности и вытекающие из них асимптотические рас­пределения и оценки.

Пример 47. Пусть в n независимых испытаниях успех на­ступил х раз. Найти доверительный интервал для вероятности р успеха в одном испытании.

Решение . Эффективной оценкой вероятности успеха р в од­ном испытании является относительная частота = h = x/h . По теореме Муавра-Лапласа относительная частота h имеет асимпто­тически нормальное распределение , где q = 1 - р.

Рассмотрим статистику , которая имеет асимптотически нормальное распределение N (0,1) независимо от значения р. При больших п тогда имеем

.

Отсюда получим, что с вероятностью ≈1 выполняется неравенство

.

Заменяя значения р и q влевой и правой частях записанно­го выше неравенства их оценками = h и = 1-h, получим до­верительный интервал для вероятности успеха в схеме

Пример 48. При проверке 100 деталей из большой партии обнаружено 10 бракованных деталей.

а) Найти 95 % приближенный доверительный интервал для доли бракованных деталей во всей партии.

б) Какой минимальный объем выборки следует взять для того, чтобы с вероятностью 0,95 можно было утверждать, что до­ля бракованных деталей по всей партии отличается от частоты
появления бракованных деталей в выборке не более чем на 1 %?

Решение .а) Оценка доли бракованных деталей в партии по выборке равна = h = 10/100 = 0,1. По таблице приложений (П1) находим квантиль и 1- a /2 = и 0,975 = 1,96 . Тогда 95% доверительный

интервал для доли бракованных деталей в партии приближенно имеет вид 0,041 < р < 0,159.

б) Представим полученный доверительный интервал в виде неравенства

,

которое выполняется с вероятностью ≈1 - α = 0,95. Так как со­гласно условию задачи , то для определения n полу­чим неравенство

.

Отсюда следует, что и n ≥(0,3·196) 2 =3457,44 . Итак, минимальный объем выборки n = 3458.

11.3. Доверительные интервалы для коэффициента корреляции ρ.

Пусть выборка (х i ,у i), i = 1,2,...,п, получена из генеральной совокупности, имеющей двумерное нормальное распределение, и r - выборочный коэффициент корреляции. При достаточно больших n статистика имеет приближенно нормальное распределение .

Доверительный интервал для Arth ρ имеет вид

Доверительный интервал для ρ вычисляется с помощью таблиц гиперболического тангенса ρ= thz .(смотри таблицу при­ложение П8).

Пример 49. Выборочный коэффициент корреляции, вычис­ленный по выборке объема 10, r = -0,64. Найти 90 % доверительный интервал для коэффициента корреляции р.

Решение. По таблице приложений (П8) находим Arth(-0,64)= -Arth0,64 = -0,76.

Так как и 0, 95 = 1,645, то доверительный интервал для Arthρ имеет вид , т.е. -1,38

Обращаясь к таблице П8, получим 90 % доверительный ин­тервал для коэффициента корреляции: - 0,881 < ρ < -0,139.

11.4. Примеры доверительных интервалов.

1. Доверительный интервал для математического ожидания а нормальной случайной величины при известной дисперсии σ 2 имеет вид .

Здесь величина определяется по заданной доверительной вероятности γ по таблице значений , в которой .

После получения точечной оценки желательно иметь данные о надежности такой оценки. Понятно, что величина является лишь приближенным значением параметра q. Вычисленная точечная оценка может быть близка к оцениваемому параметру, а может и очень сильно отличаться от него. Точечная оценка не несет информации о точности процедуры оценивания. Особенно важно иметь сведения о надежности оценок для небольших выборок. В таких случаях следует пользоваться интервальными оценками.

Задачу интервального оценивания в самом общем виде можно сформулировать следующим образом: по данным выборки построить числовой интервал, относительно которого с заранее выбранной вероятностью можно сказать, что внутри этого интервала находится оцениваемый параметр. Здесь существует несколько подходов. Наиболее распространенным методом интервального оценивания является метод доверительных интервалов .

Доверительным интервалом для параметра q называется интервал , содержащий неизвестное значение параметра генеральной совокупности с заданной вероятностью g, т.е.

.

Число g называется доверительной вероятностью , а число a=1–g – уровнем надежности . Доверительная вероятность задается априорно и определяется конкретными условиями. Обычно используется g=0,9; 0,95; 0,99 (соответственно, a=0,1; 0,05; 0,01).

Длина доверительного интервала, характеризующая точность интервальной оценки, зависит от объема выборки n и доверительной вероятности g. При увеличении величины n длина доверительного интервала уменьшается, а с приближением вероятности g к единице – увеличивается.

Часто доверительный интервал строят симметричным относительно точечной оценки, т.е. в виде

, (3.15)

Здесь число D называется предельной (или стандартной ) ошибкой выборки . Однако симметричные интервалы не всегда удается построить, более того, иногда приходится ограничиваться односторонними доверительными интервалами:

или .

Поскольку в эконометрических задачах часто приходится строить доверительные интервалы параметров случайных величин, имеющих нормальное распределение , приведем схемы их нахождения.



3.4.2. Доверительный интервал оценки генеральной
средней при известной генеральной дисперсии

Пусть количественный признак X генеральной совокупности имеет нормальное распределение с заданной дисперсией s 2 и неизвестным математическим ожиданием a . Для оценки параметра a извлечена выборка X 1 , X 2 , …, X n , состоящей из n независимых нормальной распределенных случайных величин с параметрами a и s, причем s известно, а величину a оценивают по выборке:

.

Оценим точность этого приближенного равенства. Для этого зададим вероятность g и попробуем найти такое число D, чтобы выполнялось соотношение

.

Далее воспользуемся свойствами нормального распределения. Известно, что сумма нормально распределенных величин также имеет нормальное распределение. Поэтому средняя величина имеет нормальное распределение, математическое ожидание и дисперсия которой равны

Следовательно,

.

Воспользуемся теперь формулой нахождения вероятностей отклонения нормально распределенной случайной величины от математического ожидания:

,

где F(x ) – функция Лапласа. Заменяя X на и s на , получим

,

где . Из последнее равенства находим, что предельная ошибка выборки будет равна

.

Приняв во внимание, что доверительная вероятность задана и равна g, получим окончательный результат.

Интервальная оценка генеральной средней (математического ожидания) имеет вид

, (3.17)

или более кратко

где число t g определяется из равенства .

Приведем значения t g для широко распространенных значений доверительной вероятности:

, , .

Обсудим, как влияет на точность оценивания параметра a объем выборки n , величина среднего квадратичного отклонения s, а также значение доверительной вероятности g.

а) При увеличении n точность оценки увеличивается. К сожалению, увеличение точности (т.е. уменьшение длины доверительного интервала) пропорционально , а не 1/n , т.е. происходит гораздо медленнее, чем рост числа наблюдений. Например, если мы хотим увеличить точность выводов в 10 раз чисто статистическими средствами, то мы должны увеличить объем выборки в 100 раз.

б) Чем больше s, тем ниже точность. Зависимость точности от этого параметра носит линейный характер.

в) Чем выше доверительная вероятность g, тем больше значение параметра t g , т.е. тем ниже точность. При этом между g и t g существует нелинейная связь. С увеличением g значение t g резко увеличивается ( при ). Поэтому с большой уверенностью (с высокой доверительной вероятностью) мы можем гарантировать лишь относительно невысокую точность. (Доверительный интервал окажется широким.) И наоборот: когда мы указываем для неизвестного параметра a относительно узкие пределы, мы рискуем совершить ошибку – с относительно высокой вероятностью.

Отметим, что величина

называется средней ошибкой выборки . Для бесповторной выборки эта формула примет вид

. (3.20)

Тогда предельная ошибка выборки D будет представлять собой t -кратную среднюю ошибку:

Пример 3.7. На основе продолжительных наблюдений за весом X пакетов орешков, заполняемых автоматически, установлено, что среднее квадратичное отклонение веса пакетов равно s=10 г . Взвешено 25 пакетов, при этом их средний вес составил . В каком интервале с надежностью 95% лежит истинное значение среднего веса пакетов?

.

Для определения 95%-го доверительного интервала вычислим предельную ошибку выборки

Следовательно 95%-й доверительный интервал для истинное значение среднего веса пакетов будет иметь вид

,

На первый взгляд может показаться, что полученный результат представляет только теоретический результат, поскольку среднее квадратичное отклонение s, как правило, тоже неизвестно и вычисляется по выборочным данным. Однако если выборка достаточно большая, то полученный результат вполне приемлем для практического использования, поскольку функция распределения будет мало отличаться от нормальной, а оценка дисперсии s 2 будет достаточно близка к истинному значению s 2 . Более того, полученный результат часто используют и в том случае, когда распределение генеральной совокупности отличается нормального. Это обусловлено тем, что сумма независимых случайных величин, в силу центральной предельной теоремы, при больших выборках имеет распределение, близкое к нормальному. â

Пример 3.8. Предположим, что в результате выборочного обследования жилищных условий жителей города на основе собственно-случайной повторной выборки, получен следующий вариационный ряд:

Таблица 3.5

Построить 95%-доверительный интервал для изучаемого признака.

Решение. Рассчитаем выборочную среднюю величину и дисперсию изучаемого признака.

Таблица 3.6

Общая площадь жилищ, приходящаяся на 1 чел., м 2 Число жителей, n i Середина интервала, x i
До 5,0 2,5 20,0 50,0
5,0–10,0 7,5 712,5 5343,8
10,0–15,0 12,5 2550,0 31875,0
15,0–20,0 17,5 4725,0 82687,5
20,0–25,0 22,5 4725,0 106312,5
25,0–30,0 27,5 3575,0 98312,5
30,0 и более 32,5 2697,5 87668,8
Итого 19005,0 412250,0

; ; .

Средняя ошибка выборки составит

.

Определим предельную ошибку выборки с вероятностью 0,95 ():

Установим границы генеральной средней

.

Таким образом, на основании проведенного выборочного обследования с вероятностью 0,95 можно заключить, что средний размер общей площади, приходящейся на 1 чел., в целом по городу лежит в пределах от 18,6 до 19,4 м 2 . â

3.4.3. Доверительный интервал оценки генеральной
средней при неизвестной генеральной дисперсии

Выше была решена задача построения интервальной оценки для математического ожидания нормального распределения, когда его дисперсия известна. Однако на практике дисперсия обычно тоже неизвестна и ее вычисляют по той же самой выборке, что и математическое ожидание. Это приводит к необходимости использования другой формулы при определении доверительного интервала для математического ожидания случайной величины, имеющей нормальное распределение. Такая постановка задачи особенно актуальна при малых объемах выборки.

Пусть количественный признак X генеральной совокупности имеет нормальное распределение N (a ,s), причем оба параметра a и s неизвестны. По данным выборки X 1 , X 2 , …, X n , вычислим среднее арифметическое и исправленную дисперсию:

, .

Для нахождения доверительного интервала в этом случае строится статистика

имеющая распределение Стьюдента с числом степеней свободы n=n–1 независимо от значений параметров a и s. Выбрав доверительную вероятность g и зная объем выборки n, можно найти такое число t, что будет выполняться равенство

,

.

Отсюда находим

интервальную оценку для генеральной средней (математического ожидания) при неизвестном s:

, (3.22)

или более кратко

Число t (коэффициент Стьюдента ) находится из таблиц для распределения Стьюдента. Отметим, что он является функцией двух аргументов: доверительной вероятности g и числа степеней свободы k =n –1, т.е. t=t (g,n).

Следует быть очень внимательным при использовании таблиц для распределения Стьюдента. Во-первых, обычно в таблицах вместо доверительной вероятности g используют уровень надежности a=1–g. Во-вторых, очень часто в таблицах приводятся значения т.н. одностороннего критерия Стьюдента

Или .

В этом случае в таблицах следует брать значения , если в таблице используется уровень надежности, или , если в таблице используется доверительная вероятность.

Несмотря на кажущееся сходство формул (3.17) и (3.22), между ними имеется существенное различие, заключающееся в том, что коэффициент Стьюдента t зависит не только от доверительной вероятности, но и от объема выборки. Особенно это различие заметно при малых выборках. (Напомним, что при больших выборках различие между распределением Стьюдента и нормальным распределением практически исчезает.) В этом случае использование нормального распределения приводит к неоправданному сужению доверительного интервала, т.е. к неоправданному повышению точности. Например, если n =5 и g=0,99, то, пользуясь распределением Стьюдента, получим t =4,6, а используя нормальное распределение, – t =2,58, т.е. доверительный интервал в последнем случае почти в два раза уже, чем интервал при использовании распределения Стьюдента.

Пример 3.9. Аналитик фондового рынка оценивает среднюю доходность определенных акций. Случайная выборка 15 дней показала, что средняя (годовая) доходность со средним квадратичным отклонением . Предполагая, что доходность акций подчиняется нормальному закону распределения, постройте 95%-доверительный интервал для средней доходности интересующего аналитика вида акций.

Решение. Поскольку объем выборки n =15, то необходимо применить распределение Стьюдента с степенями свободы. По таблицам для распределения Стьюдента находим

.

Используя это значение, строим 95%-доверительный интервал:

.

Следовательно, аналитик может быть на 95% уверен, что средняя годовая доходность по акциям находится между 8,44% и 12,3%. â

Теоремы 1 и 2 хотя и являются общими, т. е. сформулированы при достаточно широких предположениях, они не дают возможности установить, насколько близки оценки к оцениваемым параметрам. Из факта, что -оценки являются состоятельными, следует только то, что при увеличении объема выборки значение P (|θ * – θ | < δ), δ < 0, приближается к 1.

Возникают следующие вопросы.

1) Каким должен быть объем выборки п, чтобы заданная точность
|θ * – θ | = δ была гарантирована с заранее принятой вероятностью?

2) Какова точность оценки, если объем выборки известен и вероятность безошибочности вывода задана?

3) Какова вероятность того, что при заданном объеме выборки будет обеспечена заданная точность оценки?

Введем несколько новых определений.

Определение. Вероятность γ выполнения неравенства, |θ *– θ | < δ называется доверительной вероятностью или надежностью оценки θ .

Перейдем от неравенства |θ *–θ | < δ к двойному неравенству. Известно, что . Поэтому доверительную вероятность можно записать в виде

Так как θ (оцениваемый параметр) – число постоянное, а θ * – величина случайная, понятие доверительной вероятности сформулировать так: доверительной вероятностью γ называется вероятность того, что интервал (θ *– δ, θ *+ δ) накрывает оцениваемый параметр.

Определение. Случайный интервал (θ *–δ , θ *+δ ), в пределах которого с вероятностью γ находится неизвестный оцениваемый параметр, называется доверительным интервалом İ , соответствующим коэффициенту доверия γ,

İ= (θ*– δ, θ*+ δ ). (3)

Надежность оценки γ может задаваться заранее, тогда, зная закон распределения изучаемой случайной величины, можно найти доверительный интервал İ . Решается и обратная задача, когда по заданному İ находится соответствующая надежность оценки.

Пусть, например, γ = 0,95; тогда число р = 1 – у = 0,05 показывает, с какой вероятностью заключение о надежности оценки ошибочно. Число р=1–γ называется уровнем значимости. Уровень значимости задается заранее в зависимости от конкретного случая. Обычно р принимают равным 0,05; 0,01; 0,001.

Выясним, как построить доверительный интервал для математического ожидания нормально распределенного признака. Было показано, что

Оценим математическое ожидание с помощью выборочной средней учитывая, что также имеет нормальное распределение*. Имеем

(4)

а по формуле (12.9.2) получаем

Принимая во внимание (13.5.12), получим

(5)

Пусть известна вероятность γ . Тогда

Для удобства пользования таблицей функции Лапласа положим тогда а

Интервал

(7)

накрывает параметр а = М (Х ) с вероятностью γ .

В большинстве случаев среднее квадратическое отклонение σ(Х) исследуемого признака неизвестно. Поэтому вместо σ (Х ) при большой выборке (n > 30) применяют исправленное выборочное среднее квадратическое отклонение s , являющееся, в свою очередь оценкой σ (X ), доверительный интервал будет иметь вид

İ =

Пример. С вероятностью γ = 0,95 найти доверительный интервал для М (Х ) – длины колоса ячменя сорта «Московский 121». Распределение задается таблицей, в которой" вместо интервалов изменения (х i , х i + 1) взяты числа , см. Считать, что случайная величина X подчинена нормальному распределению.

Решение. Выборка большая (n = 50). Имеем

Найдем точность оценки

Определим доверительные границы:

Таким образом, с надежностью γ = 0,95 математическое ожидание заключено в доверительном интервале I = (9,5; 10,3).

Итак, в случае большой выборки (n > 30), когда исправленное среднее квадратическое отклонение незначительно отклоняется от среднего квадратического отклонения значения признака в генеральной совокупности, можно найти доверительный интервал. Но делать большую выборку удается не всегда и это не всегда целесообразно. Из (7) видно, что чем меньше п, тем шире доверительный интервал, т. е. I зависит от объема выборки п.

Английский статистик Госсет (псевдоним Стьюдент) доказал, что в случае нормального распределения признака X в генеральной совокупности нормирования случайная величина

(8)

зависит только от объема выборки. Была найдена функция распределения случайной величины Т и вероятность P (T < t γ ), t γ – точность оценки. Функция, определяемая равенством

s (n , t γ ) = P (|T | < t γ ) = γ (9)

названа t-распределением Стьюдента с п – 1 степенями свободы. Формула (9) связывает случайную величину Т, доверительный интервал İ и доверительную вероятность γ . Зная две из них, можно найти третью. Учитывая (8), имеем

(10)

Неравенство в левой части (13.7.10) заменим равносильным ему неравенством . В результате получим

(11)

где t γ =t (γ ,n ). Для функции t γ составлены таблицы (см. Приложение 5). При n >30 числа t γ и t, найденные по таблице функции Лапласа, практически совпадают.

Доверительный интервал для оценки среднего квадратического отклонения σ x в случае нормального распределения.

Теорема. Пусть известно, что случайная величина имеет нормальное распределение. Тогда для оценки параметра σ х этого закона имеет место равенство

(12)

где γ – доверительная вероятность, зависящая от объема выборки п и точности оценки β .

Функция γ = Ψ (n , β ) хорошо изучена. С ее помощью определяют β = β (γ ,п ). Для β = β (γ ,п ) составлены таблицы, по которым по известным п (объему выборки) и γ (доверительной вероятности) определяется β .

Пример. Для оценки параметра нормально распределенной случайной величины была сделана выборка (дневной удой 50 коров) и вычислено s = 1,5. Найти доверительный интервал, накрывающий с вероятностью γ = 0,95.

Решение. По таблице β (γ , п) для n = 50 и γ = 0,95 находим β = 0,21 (см. Приложение 6).

В соответствии с неравенством (13) найдем границы доверительного интервала. Имеем

1,5 – 0,21·1,5 = 1,185; 1,5 + 0,21·1,5 = 1,185;