Экосистема — это функциональное единство живых организмов и среды их обитания. Основные характерные особенности экосистемы — ее безразмерность и безранговость. Замещение одних биоценозов другими в течение длительного периода времени называется сукцессией. Сукцессия, протекающая на вновь образовавшемся субстрате, называется первичной. Сукцессия на территории, уже занятой растительностью, называется вторичной.

Единицей классификации экосистем является биом — природная зона или область с определенными климатическими условиями и соответствующим набором доминирующих видов растений и животных.

Особая экосистема — биогеоценоз — участок земной поверхности с однородными природными явлениями. Составными частями биогеоценоза являются климатоп, эдафотоп, гидротоп (биотоп), а также фитоценоз, зооценоз и микробоценоз (биоценоз).

С целью получения продуктов питания человек искусственно создает агроэкосистемы. Они отличаются от естественных малой устойчивостью и стабильностью, однако более высокой продуктивностью.

Экосистемы — основные структурные единицы биосферы

Экологическая система, или экосистема, — основная функциональная единица в экологии, так как в нее входят организмы и

неживая среда — компоненты, взаимно влияющие на свойства друг друга, и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Термин экосистема впервые был предложен в 1935 г. английским экологом А. Тенсли.

Таким образом, под экосистемой понимается совокупность живых организмов (сообществ) и среды их обитания, образующих благодаря круговороту веществ, устойчивую систему жизни.

Сообщества организмов связаны с неорганической средой теснейшими материально- энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода.

В любом конкретном месте обитания запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков.

Следовательно, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Рис. 8.1. Структура биогеоценоза и схема взаимодействия между компонентами

В отечественной литературе широко применяется термин «биогеоценоз», предложенный в 1940 г.B . Н Сукачевым. По его определению, биогеоценоз — «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии».

В биогеоценозе В.Н. Сукачев выделял два блока: экотоп — совокупность условий абиотической среды и биоценоз — совокупность всех живых организмов (рис. 8.1). Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп — как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов.

Существует мнение, что термин «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается, прежде всего, ее функциональная сущность. Фактически же между этими терминами различий нет.

Следует указать, что совокупность специфического физико-хи- мического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему:

Экосистема = Биотоп + Биоценоз.

Равновесное (устойчивое) состояние экосистемы обеспечивается на основе круговоротов веществ (см. п. 1.5). В этих круговоротах непосредственно участвуют все составные части экосистем.

Для поддержания круговорота веществ в экосистеме необходимо наличие запаса неорганических веществ в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений (рис. 8.2).

Рис. 8.2. Продуценты

Консументы - гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов в течение жизни, выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена — консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе весьма различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т.е. многократность вовлечения одних и тех же элементов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, озера и т.п.).

Экосистема — практически замкнутая система. В этом состоит принципиальное отличие экосистем от сообществ и популяций, являющиеся открытыми системами, обменивающимися со средой обитания энергией, веществом и информацией.

Однако ни одна экосистема Земли не имеет полностью замкнутого круговорота, поскольку минимальный обмен массой со средой обитания все-таки происходит.

Экосистема является совокупностью взаимосвязанных энергопотребителей, совершающих работу по поддержанию ее неравновесного состояния относительно среды обитания за счет использования потока солнечной энергии.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Экосистемная организация жизни является одним из необходимых условий ее существования. Как уже отмечалось, запасы биогенных элементов, необходимых для жизни организмов на Земле в целом и на каждом конкретном участке на ее поверхности, небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни.

Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы — древнейшее свойство жизни.

С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Концепция экосистемы

Основным объектом изучения экологии являются экологические системы, или экосистемы. Экосистема занимает следующее после биоценоза место в системе уровней живой природы. Говоря о биоценозе, мы имели в виду только живые организмы. Если же рассматривать живые организмы (биоценоз) в совокупности с факторами окружающей среды, то это уже экосистема. Таким образом, экосистема — природный комплекс (биокосная система), образованный живыми организмами (биоценоз) и средой их обитания (например, атмосфера — косной, почва, водоем — биокосной и т.д.), связанными между собой обменом веществ и энергии.

Общепринятый в экологии термин «экосистема» ввел в 1935 г. английский ботаник А. Тенсли. Он считал, что экосистемы, «с точки зрения эколога представляют собой основные природные единицы на поверхности земли», в которые входит «не только комплекс организмов, но и весь комплекс физических факторов, образующих то, что мы называем средой биома, — факторы местообитания в самом широком смысле». Тенсли подчеркивал, что для экосистем характерен разного рода обмен веществ не только между организмами, но и между органическим и неорганическим веществом. Это не только комплекс живых организмов, но и сочетание физических факторов.

Экосистема (экологическая система) — основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания, любая совокупность совместно обитающих живых организмов и условий их существования (рис. 8).

Рис. 8. Различные экосистемы: а — пруда средней полосы (1 — фитопланктон; 2 — зоопланктон; 3 — жуки-плавунцы (личинки и взрослые особи); 4- молодые карпы; 5 — щуки; 6 — личинки хорономид (комаров-дергунцов); 7- бактерии; 8 — насекомые прибрежной растительности; б — луга (I — абиотические вещества, т.е. основные неорганические и органические слагаемые); II- продуценты (растительность); III- макроконсументы (животные): А — травоядные (кобылки, полевые мыши и т.д.); В — косвенные или питающиеся детритом консументы, или сапробы (почвенные беспозвоночные); С- «верховые» хищники (ястребы); IV- разлагатели (гнилостные бактерии и грибы)

Понятие «экосистема» можно применить к объектам различной степени сложности и величины. Примером экосистемы может служить тропический лес в определенном месте и в конкретный момент времени, населенный тысячами видов живущих вместе растений, животных и микробов и связанный происходящими между ними взаимодействиями. Экосистемами являются такие природные образования, как океан, море, озеро, луг, болото. Экосистемой может быть кочка на болоте и гниющее дерево в лесу с живущими на них и в них организмами, муравейник с муравьями. Самой большой экосистемой является планета Земля.

Каждая экосистема может характеризоваться определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» безранговое. Она обладает признаком безразмерности, ей не свойственны территориальные ограничения. Обычно экосистемы разграничиваются элементами абиотической среды, например рельефом, видовым разнообразием, физико-химическими и трофическими условиями и т.н. Размер экосистем не может быть выражен в физических единицах измерения (площадь, длина, объем и т.д.). Он выражается системной мерой, учитывающей процессы обмена веществ и энергии. Поэтому под экосистемой обычно понимают совокупность компонентов биотической (живые организмы) и абиотической среды, при взаимодействии которых происходит более или менее полный биотический круговорот, в котором участвуют продуценты, консументы и редуценты. Термин «экосистема» применяется и по отношению к искусственным образованиям, например экосистема парка, сельскохозяйственная экосистема (агроэкосистема).

Экосистемы можно разделить на микроэкосистемы (дерево в лесу, прибрежные заросли водных растений), мезоэкосистемы (болото, сосновый лес, ржаное поле) и макроэкосистемы (океан, море, пустыня).

О равновесии в экосистемах

Равновесными называются такие экосистемы, которые «контролируют» концентрации биогенов, поддерживая их равновесие с твердыми фазами. Твердые же фазы (остатками живых организмов) являются продуктами жизнедеятельности биоты. Равновесными будут и те сообщества и популяции, которые входят в равновесную экосистему. Такой вид биологического равновесия называется подвижным , поскольку процессы отмирания непрерывно компенсируются появлением новых организмов.

Равновесные экосистемы подчиняются принципу устойчивости Лe Шателье. Следовательно, эти экосистемы обладают гомеоста- зом, — иными словами, способны минимизировать внешнее воздействие при сохранении внутреннего равновесия. Устойчивость экосистем достигается не смещением химических равновесий, а путем изменения скоростей синтеза и разложения биогенов.

Особый интерес представляет способ поддержания устойчивости экосистем, основанный на вовлечении в биологический круговорот органического веществ, ранее произведенного экосистемой и отложенного «про запас» — древесины и мортмассы (торф, гумус, подстилка). В этом случае древесина служит как бы индивидуальным материальным богатством, а мортмасса — коллективным, принадлежащим экосистеме в целом. Это «материальное богатство» увеличивает запас устойчивости экосистем, обеспечивая их выживание при неблагоприятных изменениях климата, стихийных бедствиях и др.

Устойчивость экосистемы тем больше, чем больше она по размеру и чем богаче и разнообразнее ее видовой и популяционный состав.

Экосистемы разного типа используют различные варианты индивидуальных и коллективных способов запасания устойчивости при различном соотношении индивидуального и коллективного материального богатства.

Таким образом, основная функция совокупности живых существ (сообщества), входящих в экосистему, — обеспечить равновесное (устойчивое) состояние экосистемы на основе замкнутого круговорота веществ.

Любой биоценоз взаимодействует с факторами физико-хим. среды. Экосистема объединяет е себе биоценоз и биотоп (А.Тенсли). В.Н.Сукачев предложил понятие - биогеоценоз. В экосистеме потоками вещества и энергии объединяются в единое целое все составные части биоценоза, включая трофические уровни, а также почва, грунт, воды и часть атмосферы.

Границы экосистем обычно в такой же степени определенны или условны. Наибольшая экосистема нашей планеты - биосфера. В ней различают отдельные биомы - круп. экосистемы, занимающие ландшафтную зону, высотный пояс в горах или остров. Для земного шара обычно называют несколько десятков осн. биомов, при необходимости кол-во выделяемых биомов м.б. увеличено. В масштабах одного материка м.б. выделено несколько сот экосистем разных типов. В пределах каждого типа выделяемых экосистем, биоценозов или фитоценозов обнаруживается множество вариантов. Каждый конкретный биоценоз обладает своими индивидуальными особенностями. Возможно выделение экосистемы лесной лужицы или экосистемы в масштабе организма жвачного млекопитающего.

Круговорот вещества, потоки энергии и информации в экосистемах. Троф. уровни, пищевые цепи и сети биоценозов представляют собой звенья потоков вещества и энергии, которые объединяют подсистемы экосистем в единое целое. Энергия Солнца в основном и обеспечивает деятельность живых систем биосферы.

Энергия солнечного света и хим. превращений, извлекаемая фотосинтетиками и хемосинтетиками из неорг. природы, переходит с одного троф. уровня на др. с большими потерями. Н-р, раст.ядные животные полностью не съедают всю раст. массу, т.ж. как и хищники обычно не уничтожают полностью популяции своих жертв. Часть биомассы любой популяции идет на жизнедеятельность организмов (рост, развитие, размножение, поиски пищи), аккумулируется в теле многолетних организмов и на следующий троф.уровень попадает (аккумулируется в телах организмов) от 1 до 10% от кол-ва энергии на предыдущем уровне. Потоки энергии в экосистемах подобны пересыхающим рекам и постепенно теряются в пространстве экосистемы.

Вся совокупность организмов, живущих за счет энергиии Солнца, называется фотобиосом. Организмы, использующие хим. энергию, составляют хемобиос.

В пищевых объектах совмещаются энергия и в-во, необходимые для жизнедеятельности биосистем. Однако для лучшего понимания этого процесса полезно рассматривать потоки энергии и вещества порознь. Одно из своеобразий потоков вещества - их частичная замкнутость (цикличность). В экосистемах действуют биогеохимические циклы (по Вернадскому), которые объединяют живую часть экосистемы (биоценоз) с неорг.

В наземных экосистемах хим. в-ва извлекаются органами растений из ОС и входят в состав их тел. Часть растительной массы (менее 10%) потребляется консументами, остальная (свыше 90%) поступает в детритиые пищевые цепи - это опад (листья, ветки, лепестки цветов и т.д.), сухостой, валежник, ветошь трав, к/е подвергаются относительно медленному разложению благодаря деятельности редуцентов. Продукты жизнедеятельности продуцентов, консументов и редуцентов (вода, газы, неорг. и отн. простые орг. вещества) оказываются во внешней среде и вновь могут быть вовлечены в круговорот вещества.

Фитомасса суши обновляется в ср. каждые 14 лет. В лесах скорость круговорота в-в отн. ниже (деревья живут десятки и сотни лет), чем в луговых сообществах. Еще быстрее круговорот в-ва происходит в морских экосистемах, где среди продуцентов велика доля фотосинтезирующих бактерий и одноклеточных водорослей с очень коротким жизненным циклом. Биомасса МО обновляется в среднем за 33 дня, а фитомасса - за 1 день.

Информационные процессы экосистем пока изучены недостаточно. У каждой клетки и многоклеточного организма свои информационные системы, среди которых важное место занимают нуклеиновые кислоты. Популяции имеют свои информационные системы: это их генофонд, коммуникативные системы. Биоценозы и экосистемы включают в себя информационные системы популяций, а также имеют информационные системы своего уровня.

Палеонтолог и палеоэколог познает и реконструирует экосистемы прошлых геолог. эпох, извлекая и "прочитывая" информацию ископаемых отложений. Н-р, амер. ученые извлекли из желудка ископаемой мухи, прекрасно сохранившейся в куске янтаря возрастом 40 млн.л, жизнеспособные споры бактерий. Образец предоставил возможность установить: возраст находки; строение ДНК ископаемой мухи и спор бактерии; пузырьки воздуха в янтаре позволяют уточнить состав атмосферы того времени.

Продуктивность экосистем. Важное значение имеет биолог. продуктивность ест. и искус. экосистем, к/я складывается из продуктивности местных популяций. Продуктивность продуцентов (растений) назыв. первичной, продуктивность консументов - вторичной. Вновь созданная продукция биомассы за вычетом трат на жизнедеятельность называется чистой продукцией. Чистая первичная продук-ть (ЧПП), выражаемая в количестве растительной биомассы, вновь созданной на единице площади в единицу времени. Обычно используются значения воздушно-сухой биомассы.

ЧПП экосистем тундры составляет 0,1-0,5 т/га в год; в широколиственных лесах умеренных широт она варьируется от 0,9 до 2, в дождевых лесах - от 6 до 50 т/ га. Чистая вторичная продуктивность (продуктивность животных) меньше чем ЧПП на 1 - 2 порядка.

Продуктивность биоценозов зависит от кол-ва солнечной энергии, к/е приходит в экосистему, длительности вегетационного сезона, обеспеченности водой и питательными веществами и некоторых других факторов, включая антропогенные.

Потоки вещества

Как не удивительно, но по сравнению с потоками энергии в значительно меньшей степени исследованы потоки вещества и их структура в экосистемах различных водоемов. Пожалуй, можно сказать, что больше всего работ посвящено изучению биогенных элементов, главным образом фосфора и азота. В большинстве водоемов исследовались количества этих веществ или разных их форм, сезонные их изменения в водоемах разного трофического статуса. В экосистемах некоторых из них изучались различные аспекты количественной оценки участия разных гидробионтов в процессах круговорота веществ в водных экосистемах. В результате таких исследований были получены сведения, которые позволили количественно выразить скорости экскреции фосфора и азота гидробионтами как функциюих массы и линейных размеров (Kuenzler, 1961; Johannes,1964; Tatrai, 1982,1987; Fukuchara, Yasuda,1985,1989; Гутельмахер, 1986 и др.). Это позволило количественно оценить участие организмов зоопланктона, зообентоса и рыб в процессах круговорота фосфора в озерных экосистемах (Andersson,1988), выявлена роль бентосных организмов в удалении азота и фосфора из донных отложений (Мартынова, 1985). Так, например, вместе с имаго хирономид выносится из озер Вашингтон, Мендота, Балатон от 0.9 до 6.3 , из Саратовского, Рыбинского, Можайского водохранилищ - от 0.7 до 15 % азота и от 0.6 до 12 и от 0.1 до 3.6 % фосфора, соответственно, от их количества, накопленного на дне этих водоемов. Изучена эволюция круговорота фосфора при эвтрофировании природных вод (Эволюция круговорота..., 1988). Получена зависимость между потоками фосфора (Р, мг/м 2 сутки) и биомассой животных макробентоса(В, г/м 2)(Жукова, Нагорская, 1994):

Р = 0.071* В + 10.53.

При этом экспериментально показано, что увеличение активности макрозообентоса пиводит к возрастанию потока фосфора в 0.3 - 3 раза (Mitrasemski, Ushmanski, 1988).

Скорость экскреции азота и фосфора и масса тела у животных связаны строгой зависимостью, аналогичной связи скорости обмена и массы тела (Гутельмахер, 1986), которая по отношению к зоопланктону при температуре 20 о может быть описана уравнением:

 = 1.047* W 0.801 , (44)

где:  - экскреция, мкг Р/ сутки; W - сухая масса, мг.

Экскреция минерального фосфора животными планктона зависит как от их массы так и от температуры (Жукова, 1989):

Rotatoria -  р = 0.0154*W -1.27 *e 0.096 T , (45)

Cladocera -  р = 0.519*W -0.230 *e 0.039 T , (46)

Copepoda -  р = 0.299*W -0.645 *e 0.039 T , (47)

где: Е р - экскреция мкг/мг сух. массы в час; W -масса, мкг; Т - средняя за вегетационный сезон температура воды

Около 50% вариабельности экскреции фосфора зоопланктоном обусловлено влиянием температуры при этом величина коэффициента Q 10 - 2.46 (Gulati et al., 1995).

Аналогичным образом экскреция фосфора донными животными так же зависит от температуры (Fukuchara, Yasuda, 1985):

Chaoborus flavicans - log  р = 0.022T - 0565, (48)

Limnodrilus spp. - log  р = 0.03 T - 1.760, (49)

где: Е р - экскреция, мкг/ мг сухой массы; Т - температура о С.

Скорость экскреции фосфора животными бентоса (мкг/сутки) так же зависит от их сухой массы (W, мг) (Fukuchara, Yоsuda, 1989):

 р = 0.045 W 0.622 . (50)

Скорость экскреции азота животными зависит от их массы либо линейно (Tatrai, 1982):

личинки хирономид -  N = 27.2 + 29.18W, (51)

либо в виде степенной зависимости:

личинки хирономид (Fukuhara, Yosuda, 1989) -  N = 1.66 W -0.625 , (52)

где: W – масса животных (мкг/ мг сух. массы в сутки),

лещ при 20 о С (Tatrai,1987) -  N = 0.98 W 0.62 , (53)

где:  N – скорость экскреции (мг/сутки); W - г сыр.массы.

Экскреция азота животными, так же как и фосфора зависит и от температуры - для карпов (Iwata, 1989):  N = 0.035*W 0.096 *T 0.860 , где:  N - мг/сутки; W-г сыр. массы,.и она возрастает с увеличением активности рыб (Iwata, 1987).

Анализируя взаимосвязи зоопланктона и фитопланктона и рассматривая метаболизм планктона как целого, Б.Л. Гутельмахер (1986) убедительно показал количественно, что животные планктона имеют большое значение в регенерации биогенных элементов, присутствие животных стимулирует фотосинтез и прирост биомассы, ускоряет биотический круговорот. Это же может быть отнесено и к рыбам, увеличение количества которых в водоеме приводит к возрастанию интенсивности процессов в его экосистеме. Например, обезрыбливание небольшого шведского озера привело к снижению в нем первичной продукции и увеличению прозрачности воды (Stenson, 1978).Прекращение разведения рыб в озерах приводило к изменениям количества и времени поступления фосфора в эпилимнион из более глубоких слоев воды (Uchmanski, 1988). Значительна роль донных животных в обмене фосфором между придонными слоями воды и донными отложениями. Так, например, в некоторых польских озерах донные животные используют до 30% фосфора, поступающего в придонные слои воды (Mitraszewski, Uchmanski , 1988).

Бюджет общего фосфора в озере может быть рассчитан согласно равенству(Vollenweider,1975):

d M/d t = I - O - S р,

где: М - масса общего фосфора в воде озера; I-скорость поступления его в воду с водосбора, атмосферы; О - скорость оттока его из озера; S р - скорость его поступления в седименты.

Средняя концентрация общего фосфора в воде (Р) связана с его массой в воде и объемом озера (v): P= M/v.

Тогда равенство для бюджета фосфора следует записать:

(d P/d t)v = I - O - S p .

Однако при расчетах скоростей и количеств поступления и оттока фосфора из озера кроме чисто физико-химических факторов следует принимать во внимание роль живых организмов в этих процессах, которая, как было показано выше, может иметь существенное значение.

Согласно модели Фолленвейдера (Vollenweider, 1975) при стационарном режиме осредненная концентрация фосфора в озерной воде:

P = L р (1- R y)/z r b,

где L р - фосфорная нагрузка (г/м 2 год);R y -коэффициент удержания фосфора (в долях от единицы);z - средняя глубина озера, м;r b -коэффициент водообмена, год -1 .

Хотя седиментация очень сложный процесс и зависит от многих факторов, но существует связь седиментации и площади озера:

S = M = P*v,

где:  - коэффициент седиментации фосфора; М - площадь поверхности озера.

Расчеты коэффициента седиментации показали, что его величина определяется средней глубиной озера и фосфорной нагрузкой (L р):

По Фолленвейдер (Vollenweider, 1975):

или (Саnfield, Bachmann, 1981):

 = 0.162 (L р /z) 0.458 ,  = 0.114 (L р /z) 0.598

Для 18 польских озер с низкой весенней концентрацией фосфора в воде (менее 100 мгР/м 3) коэффициент седиментации фосфора составил 0.288 год -1 . (Uchmanski, Szeligiewicz, 1988).

Оценка потоков фосфора была проведена в системе Нарочанских озер, в которых режим круговорота фосфора в общих чертах типичен для водоемов умеренной зоны (Жукова, 1989). Важнейшей составной частью биотического круговорота вещества в водоеме является ассимиляция фосфора автотрофными организмами в процессе создания первичной продукции в экосистеме водоема. Она нарастает по мере увеличения первичной продукции озер (табл. 16).

Таблица 16

Оценка потоков фосфора, обеспечивающих первичную продукцию в Нарочанских озерах (по Жукова, 1989)

Показатели

Баторино

Первичная продукция, ккал/м 2 сезон

Ассимиляция фосфора автотрофами, г/м 2 сезон

Поступление с водосбора, г/м 2 год

% от ассимиляции

Поступление из донных отложений, г/м 2 год

% от ассимиляции

Экскреция фосфора зоопланктоном, г/м 2 сезон

% от ассимиляции

Из табл.16 следует, что суммарный годовой приток фосфора в озера с водосбора составляет лишь около 10% потребностей в нем автотрофных организмов. Это свидетельствует о высокой скорости рециркуляции фосфора микрофлорой и водными животными. Экскреция фосфора животными планктона составляет в этих озерах 23 - 36% от потребностей автотрофов. Т.В. Жукова приходит к важнейшему выводу, что,поскольку поток фосфора через бактериопланктон в этих озерах составляет не более 12 - 18% от ассимиляции автотрофами, а экскреция фосфора бентосом и нектоном не была учтена, именно минеральный фосфор, экскретируемый животными, служит основным источником для обеспечения первичной продукции. Скорость оборота запаса фосфора в изученных озерах возрастала с увеличением продуктивности озер и составила, соответственно 14.1; 28.2; 40.9 и она может характеризовать напряженность биотических процессов в экосистемах озер.

В одном из голландских озер (площадь 4.7 га) потребности фитопланктона в фосфоре удовлетворялись за счет регенерации зоопланктоном, которая в разные месяцы года составляла от 22 до 239% от его содержания в воде при скорости оборота фосфора 95 - 178 час (Gulati et al.,1995).

Исследования бюджета фосфора, проведенные на трех польских эвтрофных озерах (Lawacz, 1985) показали, что количество седиментированного в озере фосфора было в 3 - 8 раз больше по сравнению с поступлением его в воду озера из внешних источников. Аналогичные величины были отмечены и в Нарочанских озерах. При этом, в озерах наиболее высокие скорости седиментации отмечались в начале весенних и осенних месяцев. Зимой, напротив, скорости седиментации фосфора были самые низкие, но зато возрастали скорости выхода его в воду из донных отложений. Содержание фосфора в детрите в этих озерах составляло от 43 до 97% от общего его запаса.

Коэффициент удержания фосфора - важная характеристика водоема как отстойника, зависит от времени водообмена в нем и концентрации фосфора в воде. В озерах он изменяется от 0.51 до 0.84, в водохранилищах - от 0.18 до 0.6 (Мартынова, 1984), для 25 разных озер Европы и Америки - от 0.2 до 0.9 (Мусатов, 1994). Этот коэффициент выше в озерах сильно заросших по сравнению с не заросшими озерами. В некоторых польских озерах удержание фосфора составляло от 23 до 45 % от его запаса (Lawacz, 1985).

В фосфорных потоках большую роль играют животные. Так, например, в одном из Мазурских озер, в котором разводится радужная форель, количество фосфора, содержащееся в рыбах, кормах для них и продуктах метаболизма рыб и их фекалиях, превышает в 2.8 раза количество фосфора, которое поступает в воду озера с площади его водосбора и воздушным путем. В то же время количество фосфора, выносимого из озера с выловленной форелью, составляло 86 % от количества фосфора, выносимого с водой вытекающей из озера реки (по данным Penczak et al.,1985; Lawacz, 1985).

Расчет годового бюджета азота в оз. Балатон (Tatrai, 1987;Татраи, 1987) показал, что экскреция азота животными бентоса составляла 34, рыбами - 10.2 % от его поступления в озеро, удержание азота бентосом - 10.7, рыбами - 12.9 % от годового его экспорта, при этом вместе рыбами удаляется примерно 1% от общего количества удаляемого из озера азота. Общее количество поступающего в озеро азота и фосфора в результате экскреции и биотурбации личинками хирономид соизмеримо с количеством биогенных элементов, поступающих в оз. Балатон с поверхностным стоком.

Проанализировать всю систему сложно переплетенных потоков вещества в экосистемах чрезвычайно трудно. Трудно еще и потому, что пока нет проверенных практикой методов совместного анализа совокупности потоков. Выбор и апробирование какого-либо показателя полезного для выявления характерных особенностей системы потоков вещества в экосистемах конкретных водоемов наталкивается на такие трудности как большая трудоемкость, продолжительность и стоимость натурных исследований. Помочь в этом отношении может анализ ситуаций и выбранной методики исследований на имитационной модели экосистемы водоема.

Как уже говорилось, для оценки сложности структуры отдельных компонентов экосистем в экологии успешно используется показатель информационной энтропии Шеннона. Он был так же успешно использован для описания структурной организации агросистем как сети потоков энергии и сравнения их между собой (Денисенко и др.). Как и следовало ожидать однородность структуры потоков связана со степенью ее сложности: увеличение однородности потоков указывает на возрастание сложности структуры и, наоборот, при снижении однородности структура потоков упрощается. Попробуем определить способность индекса Шеннона выявлять особенности системы потоков в экосистемах водоемов.

С этой целью была использована модель потоков цезия в водоеме, разработанная совместно с А. А. Умновым. За основу была взята модель, созданная А.А. Умновым в связи с необходимостью анализа круговорота цезия в водоемах после чернобыльской трагедии. Эта модель была адаптирована для наших целей. Цезий в ней рассматривался только как вещество, которое включается в общий круговорот веществ в водоеме, а в биологических системах представляет аналог калия и натрия. Цезий рассматривался в модели как некий маркер, с помощью которого оценивались возможности использования шенноновского индекса как показателя сложности структуры потоков веществ в экосистеме озера. Блок-схема модели представлена на рис. 36.

При структурировании модели экосистемы были выделены четыре блока: эпилимнион, гиполимнион, дно литорали и дно профундали. Каждый из блоков, в свою очередь, подразделен на два подблока: 1 - твердая фракция, представленная в эпи- и гиполимнионе сестоном, а на дне бентосом и активным слоем донных отложений; 2 - вода (или поровая вода на дне) с растворенными в ней веществами.

Выделенные компоненты модели связаны между собой системой потоков: 0 - сорбция свободного цезия в эпилимнионе, сестоном в эпилимнионе, 1 - садиментация связанного цезия в гипо- и эпилимнионе, 2 - седиментация на дно литорали цезия, связанного в эпилимнионе, 3 - ресуспензия связанного цезия со дна литорали в эпилимнион, 4- диффузия связанного цезия между эпи- и гиполимнионом, 5 - сорбция свободного цезия эпилимнона донными отложениями литорали, 6 - диффузия свободного цезия между эпи- и гиполимнионами, 7 - диффузия свободного цезия между поровой водой донных отложений в литорали и водой эпилимниона, 8 - сорбция свободного цезия в гиполимнионе сестоном гиполимниона, 9 - седиментация связанного цезия в гиполимнионе на дно профундали, 10 - ресуспензия связанного цезия дном профундали в гиполимнион, 11 - сорбция свободного цезия гиполимниона донными отложениями профундали, 12 - диффузия свободного цезия между поровой водой донных отложений профундали и водой гиполимниона, 13 - десорбция связанного цезия донных отложений профундали в поровую воду донных отложений профундали, 14 - десорбция связанного цезия донных отложений в литорали в поровую воду донных отложений литорали.

Даже эта сравнительно простая система потоков имитационной модели экосистемы требует для своего анализа каких-то специальных методов. Рассмотрим на примере этой модели возможности индекса Шеннона для выявления интегральных особенностей системы потоков. С этой целью исследовалось влияние на систему потоков вещества следующих факторов: изменение площади профундали как показатель изменения средней глубины водоема, перемешивание водной толщи за счет ветрового воздействия разной силы, различная рыхлость грунтов, толщина активного слоя дна, в котором главная роль принадлежит донным организмам, содержание сестона в эпи- и гиполимнионе, скорость ресуспензии в литорали и профундали.

Полученные на модели результаты, приведенные на рис. 37 - 42, показали, что при увеличении скорости ресуспензии в литорали и профундали, увеличении рыхлости грунтов в литорали, увеличении количества сестона в профундали возрастала однородность потоков или неопределенность. Снижение однородности потоков, т.е. возрастание доминирования некоторых из них отмечалось при увеличении площади профундали, а значит и средней глубины водоема, и незначительно при увеличении рыхлости грунтов в профундали. Степень однородности потоков не зависела от толщины слоя активного слоя донных отложений, как в литорали так и в профундали, а так же от количества сестона в эпилимнионе.

Увеличение средней глубины озера приводило к снижению однородности и увеличению неопределенности структуры потоков, т.е. упрощению их структуры.

Поскольку соотношение минимальных и максимальных за год биомасс сообществ животных, находящееся в прямой зависимости от значений индекса Шеннона, меняется обратно пропорционально средней глубине водоема (Алимов, 1991), следует ожидать закономерной связи между оцениваемой индексом Шеннона сложностью структуры потоков и сложностью структуры сообществ гидробионтов. В более глубоких озерах организуется более простая структура потоков вещества и сообществ жиотных, по сравнению с более мелководными озерами. Этот важный вывод не приходит в противоречие с наблюдениями на конкретных озерах, а подтверждается ими.

Однородность потоков вещества возрастает при увеличении силы ветрового перемешивания водной толщи с одновременным возрастанием скорости ресуспензии веществ в литорали и профундали водоема. При этом изменение толщины активного слоя дна не отражалось на структуре потоков, увеличение же количества сестона в профундали приводило только к очень слабому увеличению однородности потоков вещества. Изменение рыхлости грунта различно влияло на структуру потоков в разных частях озера. Так если увеличение рыхлости грунтов приводило к возрастанию однородности потоков в литорали, то однородность их снижалась в профундали. Структура потоков не менялась при изменении количества сестона в эпилимнионе, но при увеличении количества сестона в гиполимнионе она в слабой степени становилась более однородной. Если рассматривать количество сестона как некую характеристику продуктивности водоема, то можно сказать, что потоки цезия не зависят от нее.

Таким образом, для оценки сложности структуры потоков вещества (не только цезия) успешно может быть использован индекс Шеннона. В то же время ясно, что необходимы дальнейшие работы в этом направлении.

Потоки информации

Второй закон термодинамики установил критерий, позволяющий различать обратимые и необратимые процессы. При его формулировке вводится новая функция - энтропия, которая возрастает в случае необратимых процессов. Энтропия (S) служит мерой необратимого рассеяния энергии и согласно принципу Больцмана связана с числом состояний системы (вероятностей) (p):

где k - универсальная постоянная Больцмана (1.38054*10 -23 дж/Т); Т - кельвиновская температура.

Единицы энтропии могут быть получены из единиц энергии, поделенных на температуру Кельвина.

С позиций термодинамики информация (I) связана с энтропией, представляя собой негэнтропию:

I = - S = - k*lnp.

Негэнтропия - мера информации

С учетом сказанного выше поток энергии (F) связан с потоком информации (I): F/T = I.

Э. Шрёдингер (1972), рассматривая термодинамику биологических систем, писал, что организм производит положительную энтропию и для того, чтобы оставаться живым, он должен постоянно извлекать из среды отрицательную энтропию. Отрицательную энтропию (информацию) организм получает, преобразуя вещества, которые он получает с пищей или кванты световой энергии, или химические соединения в энергоносителях, используя их в биохимических реакциях. При этом разрушение вещества ведет к увеличению энтропии, а их созидание к ее снижению.

Используя понятие энтропии, можно сказать, что информация есть мера количества неопределенности, которое исчезает при получении сообщения.

Биологические системы представляют собой сложные и упорядоченные объекты, обладающие уникальной способностью сохранять и передавать информацию в виде структур и функций, возникших в результате длительной эволюции. Синтез веществ и аккумуляция энергоносителей, их трансформация и разрушение любых веществ в живых организмах идет только при участии АТФ и других макроэргов, в том числе нуклеозидов.

Нуклеозиды, являясь составными частями ДНК и РНК, участвуют в переносе генетической информации, и они же участвуют в процессах трансформации энергии, а значит и увеличении или уменьшении энтропии.

По мнению Ю.Одума (1986) эколог, построивший схемы потоков вещества и энергии в экосистеме понимает их несовершенство из-за отсутствия оценки информационных связей. Известны примеры, когда малые по биомассе популяции, через которые протекает ничтожно малая часть энергии от трансформирующейся в экосистеме, оказывают сильнейшее влияние на величины и направленности в ней потоков вещества и энергии. Таким образом, в основе внутренней структуры экосистемы лежат вещественные, энергетические и информационные связи. Эти связи играют главенствующую организующую роль в связях между популяциями отдельных видов, относящихся к одному или разным функциональным блокам. Они, а так же информационные связи с неживыми частями системы, составляют ту информационную сеть, которая и определяет все внутренние процессы (Ивашов, 1991).Трофические связи являются наиболее важными компонентами экосистем и сообществ, в узлах трофической сети, представленных организмами, накапливается информация и принимаются решения (Маргалеф, 1992). Поэтому исследования информационных связей и потоков информации и их связей с вещественно-энергетическими потоками необходимы для понимания механизма функционирования экосистем.

Само понятие информации имеет много трактовок. Образно говоря, информация является «кровью» любой системы (Маргалеф, 1992). Биологически наиболее близкое определение и понимание информации предложено Л.Н. Серавиным (1997). Информация - это существование явлений в несвойственной их природе материальной форме, но в форме отображений, изображений или сообщений. Она возникает как изменение структуры, формы, свойств или энергии объекта - носителя. Этим же автором было предложено восемь качественных законов информации. Не рассматривая все эти законы, выделим лишь некоторые из них. Закон исчезновения информации говорит о том, что в отличие от вещества и энергии она может исчезать бесследно, ни во что не превращаясь. Информация может быть передана другой системе путем переноса информации вместе с объектом-носителем, матричной передачей от объекта к объекту или через специальные каналы связи с помощью подвижных сигналов. При этом важно, что передача через каналы связи может осуществляться только путем перекодирования; прямая передача информации в этом случае невозможна. Соединение понятий «информация» и разнообразие в биологии впервые предложил И.И. Шмальгаузен (1968), рассматривая количество информации как меру многообразия.

Понятие о потоках информации было использовано Э. Лекявичусом (1986) в виде потоков от системы к ее компонентам и обратных. По его мнению, управление в биосистемах идет от целого к частям: ограничения на поведение частей накладываются с учетом результатов их взаимодействия. Такой тип управления назван координацией. Однако компоненты системы могут использовать структуры в своих собственных «целях», которые не всегда совпадают с «целями» всей системы. Такое поведение компонента было названо селфингом. “Конфликт” между кооординацией и селфингом и определяет развитие системы.

В биологии чаще всего передача информации изучается и описывается независимо от вещества и энергии. Но на самом деле есть материальные носители информации, например, энергия, которая необходима при записи и считывании информации. Информация присутствует как в структурах организмов, так и в потоках между структурами. Сложные структуры представляются пассивными носителями информации, но они обладают энергией, которая может реактивироваться и обеспечить различные уровни трансляции через соответствующие каналы (Маргалеф, 1992). Паттен (Patten, 1961) принимает, что потоки энергии и массы в экосистемах служат для переноса информации. При этом каждый перенос энергии и массы в петлях обратной связи вызывает встречный поток информации (Меншуткин, 1971).

Информационные сети включают потоки физических и химических сигналов, связывающие все части системы и управляющие (или регулирующие) экосистемой как единым целым. Поэтому можно считать, что экосистемы имеют кибернетическую природу и управляющие функции сосредоточены внутри них (Одум,1986).

Носителями информации могут выступать все известные для биологических объектов каналы связи: химический (метаболиты, аттрактанты и др.), оптические (зрительный образ, фотопериод), механические колебания среды обитания, электромагнитные волны (Зеликман, 1977). Следует отметить, что энергетически слабые сигналы, принимаемые организмами (такие, например, как фотопериод, гормоны и т.п.) имеют огромное значение и большие возможности управления функционированием сложных биологических систем. Важное значение имеет химическая регуляторная коммуникация. В водных экосистемах вода служит переносчиком регуляторных веществ, которые влияют на темпы роста и развития популяций, соотношение полов, выживаемости особей, соотношение видов и т.д. - словом на все стороны жизнедеятельности различных представителей биоты. Растворенные органические вещества (РОВ) по своему количеству в пресноводных водоемах могут превышать количество органических веществ в организмах, а их молекулы могут быть источниками энергии и информации для водных организмов. Лабильные РОВ, особенно такие, как свободные аминокислоты, действуют как источники информации для гидробионтов (Thomas, 1997).

Исследованиями на марикультуре мидий (Кулаковский, 1996) была показана важная роль биологически активных веществ, входящих в состав РОВ.При этом было показано, что на 1 га мидиевого хозяйства из потребленной моллюсками пищи поступает до 12.5% от количества РОВ. Биологическая значимость РОВ определяется тем, что многие его компоненты и являются такими регуляторными веществами, обеспечивающими гомеостаз экосистемы в целом и ее отдельных компонентов. Биологически активные вещества, занимая ключевые позиции в регуляции внутриклеточного обмена, функционируют как морфогены, гамоны, гормоны, нейромодуляторы, нейромедиаторы или их комбинации, в зависимости от стадии развития и степени организации организмов. При этом передача информации с сигнальными молекулами сахаров представляется универсальной (Плеханова и др.,1996). Сахара секретируются в воду водорослями фитопланктона и потребляются микроорганизмами. Опыты показали, что низкие концентрации (10 -7 - 10 -5 М) глюкозы, сахарозы и фруктозы вызывают сильные изменения теплоустойчивости у Daphnia magna , влияют на выживаемость рачков, причем глюкоза и сахароза в зависимости от условий эксперимента и концентрации вызывают как стимуляцию, так и ингибирование гибели рачков. Таким образом, в водных экосистемах на уровне фитопланктона начинаются не только потоки вещества и энергии, но и потоки информации. Несомненно, нельзя сводить информационные сигналы лишь к химическим. Имеется по крайней мере десять сигналов,которые способна потенциально Daphnia воспринимать одномоментно: зрительное восприятие пищи, избегание токсинов, макрофитов, хищников (минимум три сигнала для Chaoborus, Notonecta, рыб), различение особей своих и чужих видов, оценка скоплений, обнаружения пола и сигналы приводящие к копуляции у особей одного вида (Larsson, Dodson, 1993). Однако информационное значение химических веществ как сигналов огромно.

В число управляющих механизмов на уровне экосистемы входят микробные субсистемы, которые регулируют накопление и высвобождение биогенных элементов, поведенческие механизмы и субсистемы «хищник-жертва», регулирующие плотности популяций отдельных видов и многое другое. Слабые, но очень многочисленные связи между энергией и химической информацией в экосистеме были названы «невидимыми проводами природы» (H. Odum, 1971, цит. по Е. Одум, 1986).

При изучении информационных связей и потоков информации в экосистемах необходимо учитывать, что первичную информацию принимают отдельные организмы, составляющие популяции отдельных видов. Изучение информационных связей предполагает определение источника и потребителя информации, установление канала связи, идентификация кода передачи (химическая формула, фотопериод и т.п.), определения радиуса действия сигнала, выяснение формы ответа на сигнал, изучение устройства передатчика и приемника сигналов (Алексеев, 1990).

Имеется ряд успешных исследований, в которых определялись направления и способы передачи информации организмами и популяциями (Шварц и др., 1976; Хайлов, 1971, 1974).В этом плане интересны работы по изучению взаимного поведения хищников и их жертв: радиус реакции хищника на жертву, и жертвы на хищника, удачность атак хищников и способность жертвы избегать их и т.д. Экспериментально было установлено, что планктонные животные способны, выделяя химические вещества, защищаться от хищников под влиянием химических сигналов, испускаемых хищниками, некоторые виды планктонных ракообразных способны, меняя направление суточных миграций, спасаться от них, образовывать защитные морфологические структуры (шлемы, шипы и т.п.), включать или выключать механизмы полового или партеногенетического размножения, образования эфиппиев и т.д. (Larsson, Dodson,1993). В лабораторных экспериментах было показано, что хищные пелагические клещи Piona australica Vietes, накормленные дафниями, оказывали прямое стимулирующее воздействие на рост большинства планктонных водорослей, что осуществлялось вероятно через продукты экскреции клещей (Matveeva, Matveev, 1995). Опыты на простейших (Protozoa, Ciliata) показали, что хищные Litonotus lamella находит жертву по выделяемому ею белковому веществу с мол. массой 10 - 30 кДа, а его жертва Euplotes crassus выделяет вещество небелковой природы с молекулярной массой < 5 кДа, которое отпугивает хищника (Morelli, Verni , 1996). Информация о риске нападения хищников играет важную роль в структурировании популяции жертв, снижая их пищедобывательную активность и, как следствие, скорость роста и плодовитость (Gliwicz, Jachner, 1992).

Информацию в экологии чаще всего сводят к разнообразию, благодаря чему получил широкое применение в экологических исследованиях индекс Шеннона. Однако из такого понимания информации трудно получить представления о структуре потоков информации и количественно их выразить. Для понимания и оценки информационных процессов в экосистемах информацию следует рассматривать как некую характеристику внутренней организации системы, которая проявляется при воздействии объектов и процессов.

В последние время появились представления о том, что потоки информации в экосистемах могут быть определены по потокам фосфора (Покаржевский, 1991; Покаржевский, Криволуцкий, 1992). Это связано с тем, что при передаче энергии и ее трансформации, следовательно, уменьшении или увеличении энтропии в биологических системах большую роль играют соединения фосфора. Фосфолипиды участвуют в клеточных мембранах, регулируя потоки, в том числе и информации. При отщеплении фосфат-иона от макроэнергетической связи происходит не только передача энергии, но и передача информации объемом в 1 бит. Таким образом, очевидна связь фосфат-ионов с потоком энергии и информации внутри экосистем. Последовательность реакций - это канал связи, а отщепление фосфат-иона - сигнал в 1 бит, передающийся по этому каналу. Поэтому такой подход позволяет подойти к измерению потока информации в биологических системах и в экосистемах через поток фосфат - ионов, проходящий через живые организмы, так как только они передают и воспринимают информацию. Это, несомненно, позволяет оценить запасы информации в организмах, популяциях, сообществах организмов, экосистемах. Конечно, все информационные потоки не могут быть сведены только к потокам фосфора. Кроме энергетических сигналов организмы и их популяции обмениваются массой других сигналов, несущих информацию. Важно, что поступление и вынос биогенных элементов в экосистему почти всегда невелики по сравнению с их содержанием в биомассе, т.е. количеством, циркулируюшим внутри экосистемы. Так количество фосфора, которое вовлекается в круговорот в луговой степи, достигает 100 кг/га, что соответствует ежегодному потоку информации около 2*10 27 бит/га, что на три порядка ниже величины, рассчитанной Паттеном для озера (Покаржевский, 1991). Для сравнения, количество информации, сконцентрированное в книгах, написанных человечеством, примерно на 13 порядков ниже, чем количество информации, передаваемое в биоте на 1 га площади в течение года.

Таблица 17.

название

Источник

Fukuhara, Yosuda, 1980

Мартынова, 1985

Фосфор в окружающей среде, 1977

0.2 - 0.49 

фитопланктон

Мириофиллум

Валлеснерия

Потамогетон

смешанный зоопланктон

Жукова, 1989

Примечание: - сырая масса

У донных животных содержание фосфора изменяется от 0.27 (моллюски с раковиной), 0.62 (без раковины) до!.23% у других животных от сухой массы их тела (Маккентун, 1977; Fukuhara, Yasuda, 1985; Мартынова, 1985).

Зная атомный вес фосфора и его содержание в теле организмов, нетрудно рассчитать количество молей фосфора. Каждый моль фосфора, проходящий через живые организмы, несет количество информации в битах, соответствующее числу Авогадро(6.023 10 23).Помножив количество молей на это число, получаем запас информации в конкретном организме в битах. Приняв во внимание скорость обращения биомассы (Р/B-коэффициент) за некоторый отрезок времени, нетрудно определить количество информации в продуцируемом организмами органическом веществе за то же время. Одновременно с накоплением фосфора в биомассе или продукции организмы экскретируют фосфор. Органическое вещество, минерализованное ими, так же содержит информацию. Информация в продуцируемом животными сообщества органическом веществе передается на следующий трофический уровень при потреблении животных хищниками (например, потребление рыбами органических веществ по количеству равных продукции сообществ планктона или бентоса). Информация, содержащаяся в экскретируемом животными органическом веществе, используется продуцентами. Таким образом, образуются потоки информации в экосистеме.

Рассмотрим возможность реализации такого подхода на примере сообществ донных животных. Как было показано выше, скорость экскреции фосфора водными животными () связана с сухой их массой (W) и эта связь хорошо описывается уравнениями (45 - 50). Рассчитав информацию в продуцируемом органическом веществе («информация в продукции» - I p = I b *P/B) и в экскретируемом веществе («информация в экскреции»,I ),можно по аналогии с потоком энергии определить в первом приближении поток информации(): = I p + I  .

Приведем расчет потока информации на примере сообщества донных животных в оз. Большой Окуненок Ленинградской области (Биотические взаимоотношения..., 1993). Средние за вегетационный сезон численность и биомасса животных бентоса в этом озере в 1986 г. составляли 1637 экз./м 2 и 1.24 ккал/м 2 , средняя масса животных в сообществе не превышала 0.08 мг сух. массы. В этой биомассе содержалось 0.04 моля фосфора или 0.046.02310 23 = I B бит/м 2 за сезон («информация в биомассе»). Поскольку величина Р/В - коэффициента для сообщества донных животных в озере составила в этом году 5.64 за сезон, «информация в продукции» сообщества - I P = 0.241  10 23  5.64 = 1.3610 23 бит/м 2 за сезон. Для расчета информации в экскретируемом веществе использованы уравнения связи экскреции и сухой массы животных, учитывались средняя за сезон численность животных в сообществе и средняя температура. В результате «информация в экскреции « составила I  = 1.7110 23 бит/м 2 за сезон. Следовательно, поток информации в сообществе донных животных, рассчитанный через поток фосфат-ионов, составляет - 3.110 23 бит/м 2 за сезон.

Аналогичные расчеты были выполнены для сообществ донных животных в р. Ижоре (Ленинградская обл.), на станциях, подверженных в разной степени загрязнению (Алимов, Финогенова, 1976), оз. Щучьего в Бурятии (Исследования взаимосвязи...,1987) и оз. Б.Окуненок, различавшегося в разные годы количеством рыбы (табл.18)

Таблица 18

Потоки информации (бит/м 2 *10 23 за сезон) и энергии (A b , ккал/м 2 за сезон), траты на обмен (R b , ккал/м 2 за сезон), индекс разнообразия (Н, бит/экз.) в сообществах донных животных

название водоема, водотока

р.Ижора:ст.1

оз.Щучье, 1981 г.

оз. Б. Окуненок, 1986 г.

оз. Арахлей

Примечание: другие обозначения в тексте; ст.2 в р. Ижоре - наиболее загрязненная.

Из данных табл. 18 и рис.43 видно, что в изученных сообществах донных животных соотношение между количеством информации в экскреции и энергетическими тратами на обмен у животных не зависели от степени сложности структурной организации сообществ животных, оцененной индексом разнообразия Шеннона (Н). Величина этого соотношения менялась незакономерно и составляла в среднем 0.18 10 23 бит/ккал. С другой стороны, поток информации всегда составлял некоторую долю от потока энергии, которая возрастала по мере усложнения структуры сообществ (рис. 44). В более сложно организованных сообществах, которые характеризовались более высокими значениями индекса Н, поток информации возрастал с большей скоростью по сравнению с потоком энергии. Это подтверждает известное положение о том, что усложнение организации биологических систем сопровождается возрастанием информационных связей в них.

Приведенные материалы и их анализ, конечно же, не описывают все возможные потоки информации в сложных биологических системах. Предстоит еще выявить многие аспекты и особенно количественное выражение сигнальной информации.

Информационные связи и потоки информации в экосистемах столь многочисленны и сложны, что для их определения, изучения и количественного выражения необходимо выполнить огромный объем работ, направления и методы которых еще не вполне ясны и пока трудно определяемы. Можно говорить лишь об общем направлении исследований и о понимании их необходимости. Следует вероятно согласиться с В.Р.Алексеевым (1990), что такой объем работ сопоставим разве что с расшифровкой генетического кода и выполнение его может быть отнесено уже к достижениям ХХ1 века. Однако именно сегодня следует начинать движение по этому трудному пути.

Любая единица (биосистема), включающая все совместно функционирующие организмы (биотическое сообщество) на данном участке и взаимодействующая с физической средой таким образом, что поток энергии создает четко определенные биотические структуры и круговорот вещества между живой и неживой частями, представляет собой экологическую систему, или экосистему… Экосистемы представляют собой открытые системы, поэтому важной составной частью концепции является среда на входе и среда на выходе” Ю. Одум.

Рис. 2.1

Важнейшее понятие - “сложность системы” может быть оценена на двух уровнях:

  • · сложность на "структурном уровне", которая определяется числом элементов системы и связей между ними (морфологическая сложность);
  • · сложность на "поведенческом уровне" - набор реакций системы на внешние возмущения или степень эволюционной динамики (функциональная сложность).

Определить, что такое "сложная система" на структурном уровне не представляется реалистичным, хотя большинство биологов интуитивно убеждены, что все экосистемы имеют морфологически сложное строение. Б.С. Флейшман предложил пять принципов усложняющегося поведения систем, представленных на схеме и позволяющих оценить функциональную сложность:


Сложность поведения систем первого уровня определяется только законами сохранения в рамках вещественно-энергетического баланса (такие системы изучает классическая физика). Особенностью систем второго уровня является появление обратных связей; определяющим для них становится принцип гомеостаза, что и задает более сложное их поведение (функционирование таких систем изучает кибернетика). Еще более сложным поведением обладают системы третьего уровня, у которых появляется способность "принимать решение", т.е. осуществлять некоторый выбор из ряда вариантов поведения ("стимул - реакция"). Так, Н.П. Наумов показал, что возможен опосредованный через среду обитания обмен опытом между особями, поколениями одного вида и разными видами, т.е., по существу, обмен информацией. Системы четвертого уровня выделяются по наличию достаточно мощной памяти (например, генетической) и способности осуществлять перспективную активность или проявлять опережающую реакцию ("реакция - стимул") на возможное изменение ситуации - эффект преадаптации (см., например, [Кулагин, 1980]). Наконец, пятый уровень сложности объединяет системы, связанные поведением интеллектуальных партнеров, предугадывающих многоходовые возможные действия друг друга. Этот тип поведения имеет отношение, в основном, к социальным аспектам взаимодействия "Человек - Природа" (хотя на практике встречается лишь в партиях хороших шахматистов).

Наконец, все свойства сложных систем делятся на простые (аддитивные; например, биомасса некоторого сообщества) и сложные (неаддитивные; например, устойчивость экосистемы).

Описание любой сложной системы состоит из трех компонентов: морфологической, функциональной и информационной [Дружинин, Конторов, 1976].

Под элементом понимается подсистема, внутрь которой морфологическое описание уже не проникает. Элементный состав может содержать однотипные (гомогенные системы) и разнотипные (гетерогенные системы) элементы. Однотипность не означает полной идентичности и определяет только близость основных свойств. Важным признаком морфологии является природа элементов, где можно отметить вещественные, энергетические и информационные элементы. Применять, однако, к естественным элементам емкий термин “назначение” следует с определенной осторожностью, т.к. многое зависит от позиции наблюдателя. Рассматривая биоэнергетические процессы, эколог будет вполне прав, утверждая, что популяция несет энергетическую функцию в системе; в то же время является большим искушением принять генетически обособленный вид за информационный элемент некоторой сверхсистемы.

Традиционно выделяют прямые, обратные и нейтральные связи. Первые из них предназначены для передачи вещества, энергии, информации и их комбинаций от одного элемента к другому в соответствии с последовательностью выполняемых функций и пропускной способностью канала передачи. Обратные связи реализуют функции управления или адаптации (поддержание гомеостаза) и носят, как правило, информационный характер.

Структурные свойства систем определяются характером и устойчивостью отношений между элементами. По характеру отношений между элементами структуры делятся на многосвязные и иерархические. Очень трудно найти примеры сложных иерархических систем - все они имеют, как правило, сетевую организацию, когда один и тот же элемент структуры может входить (в зависимости от точки зрения или по определению) в несколько подсистем более высокого уровня. Например, один и тот же вид организмов в зависимости от условий может трактоваться как "хищный" или "нехищный". Различают также детерминированные, стохастические и хаотические структуры. Детерминизм, как и индетерминизм, имеет свою иерархию совершенства. Например, типично вероятностные структуры экосистем на нижнем уровне (особь, группа организмов) претерпевают чисто случайные изменения, но на более высоких уровнях эти изменения становятся целенаправленными за счет естественного отбора и эволюции.

Композиционные свойства систем определяются способом объединения элементов в функциональные группы и соотношением этих групп. Различают следующие группы элементов и подсистем:

  • · эффекторные - способные преобразовывать воздействия и воздействовать веществом и энергией на другие подсистемы (например, техногенные компоненты экосистем);
  • · рецепторные - способные преобразовывать внешние воздействия в информационные сигналы, передавать и переносить информацию (биоиндикаторные компоненты);
  • · рефлексивные - способные воспроизводить внутри себя процессы на информационном уровне (измеряющие компоненты).

Морфологическое описание входит составной частью в тезаурус системы - совокупность полезной внутренней информации системы о себе, которая определяет ее способность распознавать ситуацию и управлять собой. Для полноты картины остановимся на формальных определениях основных объектов морфологической структуры экологических систем, которые мы будем использовать в последующем изложении (Бигон с соавт.).

Функциональное описание. Сложная система, как правило, многофункциональна. Функции любой системы можно распределить по возрастающим рангам, примерно следующим образом:

  • o пассивное существование (материал для других систем);
  • o обслуживание системы более высокого порядка;
  • o противостояние другим системам или среде (выживание);
  • o поглощение других систем и среды (экспансия);
  • o преобразование других систем и среды.

Функциональное описание системы, как и морфологическое описание, как правило, иерархично. Для каждого элемента, частной подсистемы и всей системы в целом функциональность задается набором параметров морфологического описания Х (включая воздействия извне), числовым функционалом Y, оценивающим качество системы, и некоторым математическим оператором детерминированного или стохастического преобразования? , определяющим зависимость между состоянием входа Х и состоянием выхода Y:

Y = ? (X) . (2.1)

Как видно из приведенной выше схемы принципов усложняющегося поведения, функция отклика Y подсистемы верхнего уровня зависит от функций, описывающих внутренние процессы подчиненных подсистем.

Из общей теории моделирования физических систем принято выделять пять групп параметров с точки зрения способа их использования в моделях:

  • 1. входные параметры - V = (v 1 ,v 2 ,…,v k), - значения которых могут быть измерены, но возможность воздействия на них отсутствует (применительно к моделям экосистем, к таковым можно отнести солнечную активность, глобальные климатические явления, неуправляемую хозяйственную деятельность человека и т.д.);
  • 2. управляющие параметры - U = (u 1 ,u 2 ,…,u r), - с помощью которых можно оказывать прямое воздействие в соответствии с теми или иными требованиями, что позволяет управлять системой (к ним можно отнести ряд целенаправленных мероприятий по охране и восстановлению природной среды);
  • 3. возмущающие (стохастические) воздействия - ? = (? 1 ,? 2 ,…,? l), - значения которых случайным образом меняются с течением времени и которые недоступны для измерения, создавая дисперсию неучтенных условий или шум;
  • 4. параметры состояния - X = (x 1 ,x 2 ,…,x n) - множество внутренних параметров, мгновенные значения которых определяются текущим режимом функционирования экосистемы и, в конечном итоге, являются результатом суммарного воздействия входных, управляющих и возмущающих факторов, а также взаимного влияния других внутрисистемных компонентов;
  • 5. выходные (целевые или результирующие) параметры - Y = (y 1 ,y 2 ,…,y m) - некоторые специально выделенные параметры состояния (либо некоторые функции от них), которые являются предметом изучения (моделирования, оптимизации) и которые используются в качестве критерия "благополучия" всей экосистемы.

По отношению к экосистеме входные и управляющие параметры являются внешними, что подчеркивает независимость их значений от процессов внутри нее. Возмущающие факторы при этом могут иметь как внешнюю, так и внутреннюю природу.

Информационное описание также должно давать представление об организации системы. При этом сам термин “информация” имеет несколько значений:

  • · в биологии - совокупность биохимически закодированных сигналов, передающихся от одного живого объекта к другому (от родителей к потомкам) или от одних клеток другим в процессе развития особи;
  • · в математике, кибернетике - количественная мера устранения энтропии (неопределенности) или мера организации системы.

Если трактовать информацию как меру упорядоченности системы, то ее количество будет соответствовать негэнтропии, выражающей потенциальную меру предсказуемости будущего системы (или оценку возможности экстраполяции ее состояния). Чтобы экосистема действовала и взаимодействовала со средой, она должна потреблять информацию из среды и сообщать информацию среде. Этот процесс называется информационным метаболизмом, который совместно с вещественным и материальным метаболизмом образует полный метаболизм.

Создание финансовой экосистемы становится важным фактором в борьбе финансово-кредитных организаций за клиента и одновременно способом повысить доходность бизнеса. При этом создание таких экосистем стало возможным только при условии должного уровня развития ИТ-систем, которые позволяют собирать и обрабатывать огромное количество данных о пользователях как онлайн, так и офлайн, выстраивать эффективные коммуникации по любым доступным каналам и предоставлять множество услуг дистанционно.

Сегодня развитие технологий позволяет объединять все финансовые продукты, сервисы и услуги в рамках единой финансовой экосистемы. Речь идет о том, что различные организации формируют наборы сервисов для наиболее полного удовлетворения нужд клиента в какой-либо области. Это может быть недвижимость, медицина, малый бизнес или что-то иное. Для клиента главное то, что через одну из компаний экосистемы он может получить доступ ко всем остальным входящим в нее связанным сервисам, нередко с привилегированными, существующими только в этой экосистеме условиями.

Следует подчеркнуть, что построение сети организаций, входящих в экосистему, осуществляется вокруг единой технологической платформы, что дает возможность пользоваться ее услугами для формирования предложений клиентам и доступа к ним. Пожалуй, наиболее яркие примеры крупнейших мировых экосистем - это американские Google, Amazon, Facebook, китайские Tencent и Alibaba. Согласно прогнозам Сбербанка, к 2025 году на такие экосистемы придется около 30% глобальной выручки организаций и более 40% их общей прибыли.

Многие из нас уже привыкли, что получение услуг становится все удобнее благодаря решению всех вопросов в режиме онлайн. Финансовая экосистема - это логическое продолжение решения всех вопросов в режиме онлайн, в том числе с помощью мобильных приложений, чат-ботов, онлайн-помощников и т.д. В настоящее время переход в цифровой мир стал общим трендом для всех участников рынка. Существуют даже прогнозы от компании KPMG, согласно которым к 2030 году все банки станут для клиентов невидимыми и скроются в электронном виде под видом сервисов, личных помощников и всевозможных приложений.

От финансовых супермаркетов к экосистемам

Несколько лет назад банки начали практиковать создание финансовых супермаркетов, где для клиента был представлен широкий спектр продуктов и услуг, не только банковских, но и предложений компаний-партнеров банка. Такой подход оказался выгодным для всех задействованных сторон: для клиентов, для самих банков и их партнеров, которые получили возможность масштабировать продажи своих продуктов за счет клиентов финансово-кредитных организаций.

Финансовая экосистема - это гораздо больше, чем финансовый супермаркет, подчеркивает управляющий Санкт-Петербургским филиалом Росгосстрах Банка Елена Веревочкина. «Экосистема объединяет на одной ИT-платформе множество услуг различного характера, причем их провайдерами являются не только сами банки и их дочерние компании, но и сторонние организации. Помимо этого, предлагаемый сервис становится крайне простым и понятным для потребителя. Другими словами, клиент получает в одном месте на одной платформе все услуги, в которых у него есть потребность в текущий момент. Это, безусловно, невероятное конкурентное преимущество для любого банка. И это становится одним из необходимых условий для увеличения доходности банковского бизнеса. Именно по этой причине банки сегодня очень внимательно смотрят в сторону экосистем», - уверена эксперт Росгосстрах Банка.

«Развитие собственных экосистем позволяет банкам успешно существовать в рамках обостряющейся конкуренции на рынке банковских услуг, на котором сейчас активно представлены такие игроки, как ретейл и телеком, - считает директор департамента цифровых услуг банка «ДельтаКредит» Алексей Тартышев. - Кроме того, это дает возможность рассчитывать на комиссионный доход, доля которого становится все больше в общей прибыли банков, активно занимающихся развитием экосистем».

По мнению первого заместителя председателя правления Банка «Зенит» Андрея Добрынина, создание экосистем - это некий способ получить возобновляемый бизнес. «Экосистема действительно похожа на маркетплейс, потому что, по сути, речь идет о том, что банк не просто отдельно продает свой продукт, а встроен в некую цепочку взаимоотношений других экономических контрагентов (поставщик - покупатель). При этом банк регулярно обслуживает эти товаропотоки посредством различных инструментов, допустим, банковских гарантий или платежей, или оказывает какие-то транзакционные услуги, тем самым являясь частью этой системы. Банк выступает как сервисный оператор, помогает этой системе функционировать. В чем здесь позитивный момент для банка? В том, что ему нет необходимости каждый раз искать новых клиентов, потому что это весьма затратно и в общем влияет на доходность организации. Банк, будучи встроенным в технологическую платформу, постоянно генерирует некий бизнес, клиентский поток с большим количеством операций, т.е. налицо возобновляемый цикл».

Для банка создание экосистемы представляет собой целый комплекс вопросов, подчеркивает Андрей Добрынин. С одной стороны, это маркетинг, потому что это конкурентный рынок и многие банки встраиваются в похожие платформы, а значит, необходимо предоставить клиентам лучшее предложение и при этом не потерять, а заработать на том или ином продукте. С другой стороны, это вопрос технологий: здесь имеет значение, как работают внутренние процессы банка, конвейеры и т.д. Кроме того, необходимо учитывать все возникающие риски.

ИТ как главный фактор развития банковских экосистем

Развитие ИT-технологий - главный фактор в формировании банковских экосистем, уверен директор департамента цифрового бизнеса блока малого и среднего бизнеса банка «Открытие» Валентин Окунев. «Ключевая тенденция развития рынка экосистем - активная борьба за клиента и долю предоставляемых ему продуктов и сервисов. В центре любой экосистемы всегда находится клиент. Экосистема дает возможность создавать технологии и предоставлять услуги далеко за пределами банковского сектора. Финансовые сервисы, потребительские товары, строительство, здравоохранение, лайфстайл, телеком, электронная коммерция, B2B-услуги представляют собой отрасли, на которых многие банки сейчас концентрируют свое внимание».

Искусственный интеллект - главный драйвер в развитии экосистем банков и переходе на новый уровень, подчеркивает Валентин Окунев. Переход к технологиям машинного обучения внесло значительный вклад в формирование экосистем для банков, начавших внедрять эти технологии.

Для того чтобы создать экосистему, банку нужно прежде всего очень сильное и адаптированное технологическое решение, считает Елена Веревочкина. «Сложность заключается в том, что пока сейчас на рынке нет готовых ИT-решений, которые можно было бы купить и начать использовать как готовую платформу для внедрения экосистемы. Сегодня это ИT-решения конкретного банка. Помимо ИT-подготовки, у банка должна быть большая клиентская база, а также договоренности с партнерами по наполнению экосистемы продуктами и услугами».

Сегодняшний бум экосистем во всех сферах бизнеса связан в первую очередь с развитием информационных технологий и проникновением их в повседневную жизнь, считает Алексей Тартышев. Они позволяют собирать и обрабатывать огромное количество данных о пользователях как онлайн, так и офлайн, выстраивать эффективные коммуникации по любым доступным каналам и предоставлять многие услуги дистанционно.

Создание экосистем назрело

Безусловно, создание экосистем именно сейчас стало возможным благодаря развитию технологий и онлайн-сервисов. Наряду с этим возник запрос со стороны общества.

Использовать всевозможные сервисы для осуществления операций становится слишком обременительно для клиента: везде нужно зарегистрироваться, запомнить пароли, установить приложения, осуществлять большое количество действий для проведения операций и пр. Это, как ни странно, заставляет многих клиентов отказываться от использования тех или иных услуг, объясняет управляющий Санкт-Петербургским филиалом Росгосстрах Банка. В результате у клиента в активном пользовании остается ограниченный круг необходимых лично для него услуг.

«На мой взгляд, создание экосистемы назрело, и сейчас самое время предлагать клиентам удобные качественные сервисы, которые не просто охватывают широкий спектр услуг, а предлагают это сделать на одной технологической платформе, - считает Елена Веревочкина. - Это позволит существенно расширить круг потребляемых клиентами продуктов и услуг внутри экосистемы. Здесь же отмечу, что, помимо технологий и многообразия различных сервисов, немаловажную роль в развитии индустрии экосистем сегодня играет изменение действующего законодательства по части удаленной идентификации клиентов».

Для создания успешно работающей экосистемы необходимо сочетание нескольких факторов, объясняет Алексей Тартышев. Во-первых, это наличие достаточно большой клиентской базы клиентов, которые доверяют банку и могут быть заинтересованы в возможности получения различных услуг и сервисов от его партнеров. Во-вторых, это готовность банка отойти от традиционных методов ведения бизнеса. Нужно выстраивать общую стратегию развития в тесной взаимосвязи со стратегией внедрения ИТ- технологий. В третьих, для создания экосистем необходимо вкладываться в разработку технологических решений - это облачные технологии, большие банные, электронные системы учета и т.п. Так как с технической точки зрения экосистема представляет собой комплекс различных ИТ-решений, веб- и мобильных приложений, CRM, связанных между собой, важно наличие единого стандарта пользовательского интерфейса, который обеспечивал бы возможность объединить различные системы с точки зрения дизайна и опыта взаимодействия, подчеркивает эксперт банка «ДельтаКредит».

Только для крупных?

Возникает вопрос: создание экосистем - это только для крупных банков или же у небольших и средних банков это тоже может получиться, конечно, при наличии у них такого желания?

«В теории технически любой банк может отстроить экосистему, - считает Елена Веревочкина. - Но здесь встает вопрос экономической целесообразности: я считаю, что только банкам с многомиллионной клиентской базой создание экосистемы может быть экономически целесообразно. Это связано с тем, что расходы на экосистему могут не окупиться, если она будет обслуживать сравнительно небольшое количество клиентов. Партнеров в экосистему небольшому банку также будет сложно привлечь именно по причине отсутствия объемов. Но, например, нишевый региональный банк может создать какой-либо сервис, который будет упрощать продажу того или иного продукта с конкретным партнером. И это делать непременно нужно. Я бы назвала это элементом экосистемы».
Действительно небольшие банки-монолайнеры тоже могут стать частью экосистемы.

«Мы, как ипотечный банк, понимаем, что потребность у наших клиентов заключается не в ипотеке, а в комфортном жилье, - делится своими мыслями директор департамента цифровых услуг банка «ДельтаКредит». - Это и кредит, и покупка недвижимости, и налоговые вычеты, и ремонт, и мебель. И все это желательно получить сразу и в одном месте. Сейчас клиент вынужден тратить очень много времени на поиск, проверку информации, мониторинг рейтингов различных компаний, банков, специалистов. Мы считаем, что рано или поздно все это объединится в одну экосистему, где клиент сможет получить полный комплекс услуг. Вот в нее ипотека и должна влиться».

Расширение экосистем: пределы может ограничить только фантазия и законодательство

Экосистема банка может постоянно расширяться и включать в себя все новые элементы. «Пределы ограничиваются только фантазиями собственников и топ-менеджеров банков, создающих экосистемы, и финансовыми возможностями этих банков, а также действующим законодательством», - отмечает Елена Веревочкина.

Долгосрочная стратегия банков - избавить предпринимателей от любой рутины, связанной с сопровождением бизнеса, считает директор департамента цифрового бизнеса блока малого и среднего бизнеса банка «Открытие». В связи с этим встраиваются в экосистему банка и околофинансовые сервисы. Это все, что связано с регистрацией бизнеса и бухгалтерией, эксклюзивные условия и спецпредложения от компаний из сфер ИT и HR. За счет доступа к небанковским сервисам происходит в том числе и рост доходов банков.

Например, банк «Открытие» формирует экосистему сервисов вокруг своего основного банковского бизнеса - для онлайн-банкинга, для аутсорсинга бухгалтерии через интернет. Для клиента полезными могут быть удобный платежный сервис, качественные и скоростные услуги связи, гибкая технологическая платформа, функциональный маркетплейс. «На первом месте здесь выступает понятие ценности для клиента», - подчеркивает Валентин Окунев.

Будущее - за крупными экосистемами

Все опрошенные нами эксперты считают, что в перспективе финансовые экосистемы будут развиваться. Безусловно, экосистемы станут наилучшим решением для клиента, поскольку он избавится от множества лишних хлопот.

«Рано или поздно экосистемы банков и нефинансовых компаний придут в некое равновесное состояние со своими устоявшимися продуктовыми линейками и лояльной базой клиентов, - отмечает Алексей Тартышев. - Скорее всего, в ближайшем будущем на рынке будет представлено несколько крупных экосистем, ориентированных на различ-ные аудитории, с максимально широким
спектром предложений, а также несколько относительно небольших, узкоспециализированных игроков».

«Я думаю, в дальнейшем банки будут уже конкурировать не своими продуктами, а экосистемами, - говорит Елена Веревочкина. - Для этого они будут привлекать в систему лучшие инновационные сервисы из различных отраслей, включая не только традиционные финансовые и околофинансовые, но и многие другие, вплоть до предоставления клиентам бытовых услуг в рамках одной экосистемы. Другими словами, банки в глазах клиентов уже перестанут быть просто финансово-кредитными организациями, они станут центрами услуг».

Сбербанк: создание экосистемы к концу 2018 года

В материале о финансовых экосистемах нельзя не сказать об одном из пионеров этого движения - Сбербанке. Наблюдательный совет крупнейшего банка России еще в ноябре 2016 года одобрил трансформацию кредитной организации в финансовую экосистему к концу 2018 года. «Мы создаем принципиально новую платформу, которую должны до конца 2018 года закончить. Мы движемся в рамках плана, целый ряд сервисов мы уже внедрили», - заявил тогда Герман Греф.

По его словам, при создании экосистемы будет использована концепция открытого кода, которая подразумевает встраивание в платформу Сбербанка различных партнеров. Они смогут пользоваться открытыми данными и кодами банка.

«Концепция открытого кода, open source​, дает нам возможность постоянно быть в тренде инноваций. Мы используем решения open source, которые сотни, тысячи участников постоянно модифицируют, и мы имеем доступ к ним», - сказал Г. Греф.

«Мы для себя наметили свое будущее: платформенная организация с развитой экосистемой вокруг. Причем часть системы - это наши дочерние сервисы, предприятия, где мы участвуем, также это независимые компании, может быть, малые, средние компании, которые получают доступ сразу же к большому объему данных и большому объему клиентов», - отметил глава Сбербанка.

По его словам, платформа строится сразу с открытым API (application programming interface, интерфейс программирования приложений). Кроме того, она должна включать следующие компоненты: open source (программное обеспечение с открытым кодом), облачность, поддержку режима in memory processing (формат работы с открытыми данными). Также платформа должна быть основана на deep learning (алгоритме машинного обучения) и artificial intelligence (искусственном интеллекте). «Много компаний захотят к ней подключиться. Нам важно иметь не только платформу, которая сможет обращаться к data factory, к анализу больших данных, но и иметь доступ к клиентам», - отметил он.

Банк «Зенит» создает экосистему с ГК «Татнефть»

Многие банки предпринимает активные шаги к созданию экосистем. Так, председатель правления банка «Зенит» Олег Машталяр заявил о том, что среди основных целей и приоритетов стратегии корпоративного бизнеса финансово-кредитной организации на ближайшие три года является построение экосистемы с ГК «Татнефть». Он объяснил, что речь идет не о создании каких-то специальных условий по работе с ГК «Татнефть», а о том, что банк будет встраиваться в корпоративную систему закупок ГК «Татнефть». У этой компании есть торгово-закупочная площадка, по сути, это аукцион, на котором поставщики услуг и различной продукции, которую компания потребляет, предлагают, соответственно, ГК «Татнефть» выбирает лучшие предложения. Встроившись в эту систему, банк имеет возможность работать с этими контрагентами - поставщиками продукции и услуг, а также предоставлять им свои финансовые услуги и сервисы, например, банковские гарантии, аккредитивы, кредитование оборотных средств и т.д. Такая схема работы позволяет банку, с одной стороны, контролировать риски, а с другой, наращивать кредитный портфель с приемлемой доходностью.

Начальник управления развития и корпоративного сопровождения стратегических проектов ПАО «Татнефть» им. В.Д. Шашина Александр Тищенко, комментируя создание экосистемы банка «Зенит» и ГК «Татнефть», отметил, что речь идет о том, чтобы финансово-кредитная организация стала для корпорации наиболее быстрым и комфортным при рыночных условиях инструментом для работы. Естественно, ГК «Татнефть» всегда проводит тендер, выбирает наилучшие условия. И уже от самого банка зависит, как сложится дальнейшее взаимодействие: сможет ли он предложить более быстрые, комфортные, надежные услуги и сервисы, чем другие организации.

«Со своей стороны, такие крупные компании, как Татнефть, нацелены на получение быстрых качественных услуг, где крупные банки могут просто не успеть в силу своих размеров, большого документооборота и т.д.», - подчеркнул Александр Тищенко.

В марте 2018 года банк «Зенит» подписал рамочный договор с Внешэкономбанком. По словам Олега Машталяра, работа с госкорпорациями - это тоже одно из направлений построения экосистем.

УБРиР планирует создание экосистемы

30 марта текущего года Уральский банк реконструкции и развития (УБРиР) объявил о своих планах по созданию экосистемы. До 2020 года банк намерен запустить полноценную экосистему сервисов для частных клиентов.

Основная идея концепции заключается в том, что принципиально изменится подход к предоставлению услуг в дистанционных каналах, банк будет нацелен на персональные коммуникации с клиентами, на создание продуктов, отвечающих потребностям конкретного человека.

В течение 2018 года на первом этапе будет доработан функционал действующего интернет-банка и состоится переход на новое программное обеспечение, на втором (в 2019-2020 годах) банк приступит к созданию полноценной экосистемы.

В УБРиР сообщили, что обновления уже начались: в марте в интернет-банке начал функционировать новый формат выписки по операциям со счета. Помимо основной функции - показа операций с деньгами по привязанным картам, - в новом формате выписки отображается подробная информация по кэшбеку, а также анализируются расходы по категориям трат («Медицина», «Красота», «Одежда и обувь», «Спортивные товары», «Авиабилеты», «Телекоммуникационные услуги», «Продукты»).

На сайте банка сообщается, что в этом году в мобильной версии интернет-банка планируется полностью обновить приложение. Интерфейс станет проще и понятнее: функционал будет подстраиваться под конкретного пользователя за счет анализа его поведения в интернет-банке, клиенту будут предлагаться персональные банковские и небанковские сервисы.

В будущем интернет-банк УБРиР должен стать полноценной экосистемой, когда клиент получает не просто набор финансовых и нефинансовых сервисов, таких как покупка страховки, получение налогового вычета и так далее, а услуги, необходимые конкретному человеку.

Мы фиксируем рост интереса к интернет-каналам: за полтора года количество активных пользователей увеличилось на 30%. Вместе с тем растут и требования клиентов к дистанционным сервисам. Анализируя обратную связь от клиентов, мы видим, каких изменений они ждут от нас, и учли их пожелания в новой концепции. Но наша задача еще и в том, чтобы предвосхитить потребности пользователей наших дистанционных каналов, предоставить им полноценного помощника в решении финансовых вопросов», - сообщил директор департамента электронного бизнеса УБРиР Вадим Белопольский.