Пусть имеется квадратная матрица A размером n x n .
Определение. Определителем называется алгебраическая сумма всевозможных произведений элементов, взятых по одному из каждого столбца и каждой строки матрицы A . Если в каждом таком произведении (члене определителя) множители расположены в порядке следования столбцов (т.е. вторые индексы элементов a ij в произведении расположены в порядке возрастания), то со знаком (+) берутся те произведения, у которых перестановка первых индексов чётная, а со знаком (-) – те, ­ у которых она нечетная.
.
Здесь - число инверсий в перестановке индексов i 1 , i 2 , …, i n .

Методы нахождения определителей

  1. Определитель матрицы разложением по строкам и столбцам через миноры.
  2. Определитель методом приведения к треугольному виду (методом Гаусса)

Свойство определителей

  1. При транспонировании матрицы её определитель не меняется.
  2. Если поменять местами две строки или два столбца определителя, то определитель изменит знак, а по абсолютной величине не изменится.
  3. Пусть C = AB где A и B квадратные матрицы. Тогда detC = detA ∙ detB .
  4. Определитель с двумя одинаковыми строками или с двумя одинаковыми столбцами равен 0. Если все элементы некоторой строки или столбца равны нулю, то и сам определитель равен нулю.
  5. Определитель с двумя пропорциональными строками или столбцами равен 0.
  6. Определитель треугольной матрицы равен произведению диагональных элементов. Определитель диагональной матрицы равен произведению элементов стоящих на главной диагонали.
  7. Если все элементы строки (столбца) умножить на одно и то же число, то определитель умножится на это число.
  8. Если каждый элемент некоторой строки (столбца) определителя представлен в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки (столбцы) кроме данной, прежние, а в данной строке (столбце) в первом определителе стоят первые, а во втором - вторые слагаемые.
  9. Теорема Якоби: Если к элементам некоторого столбца определителя прибавить соответствующие элементы другого столбца, умноженные на произвольный множитель λ, то величина определителя не изменится.
Таким образом, определитель матрицы остается без изменения, если:
  • транспонировать матрицу;
  • прибавить к какой-либо строке другую строку, умноженную на любое число.

Задание 1 . Вычислить определитель, разлагая его по строке или столбцу.
Решение :xml :xls
Пример 1 :xml :xls

Задание 2 . Вычислить определитель двумя способами: а) по правилу «треугольников»; б) разложением по строке.

Решение .
а) Слагаемые, входящие в со знаком «минус», строятся таким же образом относительно побочной диагонали.

2 2 1
-1 0 4
-2 2 0
=
= 2 0 0 - 2 4 2 - (-1) 2 0 + (-1) 1 2 + (-2) 2 4 - (-2) 1 0 = -34
б) Запишем матрицу в виде:
A =
2 2 1
-1 0 4
-2 2 0

Главный определитель:
∆ = 2 (0 0-2 4)-(-1 (2 0-2 1))+(-2 (2 4-0 1)) = -34

Задание 3 . Укажите, чему равен определитель квадратной матрицы A четвертого порядка, если ее ранг r(A)=1.
Ответ: det(A) = 0.


Понятие определителя является одним из основных в курсе линейной алгебры. Это понятие присуще ТОЛЬКО КВАДРАТНЫМ МАТРИЦАМ, этому понятию и посвящена данная статья. Здесь мы будем говорить об определителях матриц, элементами которых являются действительные (или комплексные) числа. В этом случае определитель есть действительное (или комплексное) число. Все дальнейшее изложение будет ответом на вопросы как вычислять определитель, и какими свойствами он обладает.

Сначала дадим определение определителя квадратной матрицы порядка n на n как сумму произведений перестановок элементов матрицы. На основании этого определения запишем формулы для вычисления определителей матриц первого, второго, третьего порядков и подробно разберем решения нескольких примеров.

Далее перейдем к свойствам определителя, которые будем формулировать в виде теорем без доказательства. Здесь будет получен метод вычисления определителя через его разложение по элементам какой-либо строки или столбца. Этот метод позволяет свести вычисление определителя матрицы порядка n на n к вычислению определителей матриц порядка 3 на 3 или меньшего. Обязательно покажем решения нескольких примеров.

В заключении остановимся на вычислении определителя методом Гаусса. Этот метод хорош при нахождении значений определителей матриц порядка выше 3 на 3 , так как требует меньших вычислительных усилий. Также разберем решение примеров.

Навигация по странице.

Определение определителя матрицы, вычисление определителя матрицы по определению.

Напомним несколько вспомогательных понятий.

Определение.

Перестановкой порядка n называется упорядоченный набор чисел, состоящий из n элементов.

Для множества, содержащего n элементов, существует n! (n факториал) перестановок порядка n . Перестановки отличаются друг от друга лишь порядком следования элементов.

Например, рассмотрим множество, состоящее из трех чисел: . Запишем все перестановки (всего их шесть, так как ):

Определение.

Инверсией в перестановке порядка n называется всякая пара индексов p и q , для которой p-ый элемент перестановки больше q-ого .

В предыдущем примере инверсией перестановки 4 , 9 , 7 является пара p=2 , q=3 , так как второй элемент перестановки равен 9 и он больше третьего, равного 7 . Инверсией перестановки 9 , 7 , 4 будут три пары: p=1 , q=2 (9>7 ); p=1 , q=3 (9>4 ) и p=2 , q=3 (7>4 ).

Нас будет больше интересовать количество инверсий в перестановке, а не сама инверсия.

Пусть - квадратная матрица порядка n на n над полем действительных (или комплексных) чисел. Пусть – множество всех перестановок порядка n множества . Множество содержит n! перестановок. Обозначим k–ую перестановку множества как , а количество инверсий в k-ой перестановке как .

Определение.

Определитель матрицы А есть число, равное .

Опишем эту формулу словами. Определителем квадратной матрицы порядка n на n является сумма, содержащая n! слагаемых. Каждое слагаемое представляет собой произведение n элементов матрицы, причем в каждом произведении содержится элемент из каждой строки и из каждого столбца матрицы А . Перед k-ым слагаемым появляется коэффициент (-1) , если элементы матрицы А в произведении упорядочены по номеру строки, а количество инверсий в k-ой перестановке множества номеров столбцов нечетно.

Определитель матрицы А обычно обозначается как , также встречается обозначение det(A) . Также можно услышать, что определитель называют детерминантом.

Итак, .

Отсюда видно, что определителем матрицы первого порядка является элемент этой матрицы .

Вычисление определителя квадратной матрицы второго порядка - формула и пример.

порядка 2 на 2 в общем виде.

В этом случае n=2 , следовательно, n!=2!=2 .

.

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 2 на 2 , она имеет вид .

Пример.

порядка .

Решение.

В нашем примере . Применяем полученную формулу :

Вычисление определителя квадратной матрицы третьего порядка - формула и пример.

Найдем определитель квадратной матрицы порядка 3 на 3 в общем виде.

В этом случае n=3 , следовательно, n!=3!=6 .

Оформим в виде таблицы необходимые данные для применения формулы .

Имеем

Таким образом, мы получили формулу для вычисления определителя матрицы порядка 3 на 3 , она имеет вид

Аналогично можно получить формулы для вычисления определителей матриц порядка 4 на 4 , 5 на 5 и более высоких. Они будут иметь очень громоздкий вид.

Пример.

Вычислите определитель квадратной матрицы порядка 3 на 3 .

Решение.

В нашем примере

Применяем полученную формулу для вычисления определителя матрицы третьего порядка:

Формулы для вычисления определителей квадратных матриц второго и третьего порядков очень часто применяются, так что рекомендуем их запомнить.

Свойства определителя матрицы, вычисление определителя матрицы с использованием свойств.

На основании озвученного определения справедливы следующие свойства определителя матрицы .

    Определитель матрицы А равен определителю транспонированной матрицы А Т , то есть, .

    Пример.

    Убедитесь, что определитель матрицы равен определителю транспонированной матрицы.

    Решение.

    Воспользуемся формулой для вычисления определителя матрицы порядка 3 на 3 :

    Транспонируем матрицу А :

    Вычислим определитель транспонированной матрицы:

    Действительно, определитель транспонированной матрицы равен определителю исходной матрицы.

    Если в квадратной матрице все элементы хотя бы одной из строк (одного из столбцов) нулевые, определитель такой матрицы равен нулю.

    Пример.

    Проверьте, что определитель матрицы порядка 3 на 3 равен нулю.

    Решение.


    Действительно, определитель матрицы с нулевым столбцом равен нулю.

    Если переставить местами две любые строки (столбца) в квадратной матрице, то определитель полученной матрицы будет противоположен исходному (то есть, изменится знак).

    Пример.

    Даны две квадратные матрицы порядка 3 на 3 и . Покажите, что их определители противоположны.

    Решение.

    Матрица В получена из матрицы А заменой третьей строки на первую, а первой на третью. Согласно рассмотренному свойству определители таких матриц должны отличаться знаком. Проверим это, вычислив определители по известной формуле.

    Действительно, .

    Если в квадратной матрице хотя бы две строки (два столбца) одинаковы, то ее определитель равен нулю.

    Пример.

    Покажите, что определитель матрицы равен нулю.

    Решение.

    В данной матрице второй и третий столбцы одинаковы, так что согласно рассмотренному свойству ее определитель должен быть равен нулю. Проверим это.

    На самом деле определитель матрицы с двумя одинаковыми столбцами есть ноль.

    Если в квадратной матрице все элементы какой-либо строки (столбца) умножить на некоторое число k , то определитель полученной матицы будет равен определителю исходной матрицы, умноженному на k . Например,

    Пример.

    Докажите, что определитель матрицы равен утроенному определителю матрицы .

    Решение.

    Элементы первого столбца матрицы В получены из соответствующих элементов первого столбца матрицы А умножением на 3 . Тогда в силу рассмотренного свойства должно выполняться равенство . Проверим это, вычислив определители матриц А и В .

    Следовательно, , что и требовалось доказать.

    ОБРАТИТЕ ВНИМАНИЕ.

    Не путайте и не смешивайте понятия матрицы и определителя! Рассмотренное свойство определителя матрицы и операция умножения матрицы на число это далеко не одно и то же.
    , но .

    Если все элементы какой-либо строки (столбца) квадратной матрицы представляют собой сумму s слагаемых (s – натуральное число, большее единицы), то определитель такой матрицы будет равен сумме s определителей матриц, полученных из исходной, если в качестве элементов строки (столбца) оставить по одному слагаемому. Например,

    Пример.

    Докажите, что определитель матрицы равен сумме определителей матриц .

    Решение.

    В нашем примере , поэтому в силу рассмотренного свойства определителя матрицы должно выполняться равенство . Проверим его, вычислив соответствующие определители матриц порядка 2 на 2 по формуле .

    Из полученных результатов видно, что . На этом доказательство завершено.

    Если к элементам некоторой строки (столбца) матрицы прибавить соответствующие элементы другой строки (столбца), умноженные на произвольное число k , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Пример.

    Убедитесь, что если к элементам третьего столбца матрицы прибавить соответствующие элементы второго столбца этой матрицы, умноженные на (-2) , и прибавить соответствующие элементы первого столбца матрицы, умноженные на произвольное действительное число , то определитель полученной матрицы будет равен определителю исходной матрицы.

    Решение.

    Если отталкиваться от рассмотренного свойства определителя, то определитель матрицы, полученной после всех указанных в задаче преобразований, будет равен определителю матрицы А .

    Сначала вычислим определитель исходной матрицы А :

    Теперь выполним необходимые преобразования матрицы А .

    Прибавим к элементам третьего столбца матрицы соответствующие элементы второго столбца матрицы, предварительно умножив их на (-2) . После этого матрица примет вид:

    К элементам третьего столбца полученной матрицы прибавим соответствующие элементы первого столбца, умноженные на :

    Вычислим определитель полученной матрицы и убедимся, что он равен определителю матрицы А , то есть, -24 :

    Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения .

    Здесь - алгебраическое дополнение элемента матрицы , .

    Это свойство позволяет вычислять определители матриц порядка выше чем 3 на 3 путем сведения их к сумме нескольких определителей матриц порядка на единицу ниже. Иными словами – это рекуррентная формула вычисления определителя квадратной матрицы любого порядка. Рекомендуем ее запомнить в силу достаточно частой применимости.

    Разберем несколько примеров.

    Пример.

    порядка 4 на 4 , разложив его

    • по элементам 3-ей строки,
    • по элементам 2-ого столбца.

    Решение.

    Используем формулу разложения определителя по элементам 3-ей строки

    Имеем

    Так задача нахождения определителя матрицы порядка 4 на 4 свелась к вычислению трех определителей матриц порядка 3 на 3 :

    Подставив полученные значения, приходим к результату:

    Используем формулу разложения определителя по элементам 2-ого столбца


    и действуем аналогично.

    Не будем подробно расписывать вычисление определителей матриц третьего порядка.

    Пример.

    Вычислите определитель матрицы порядка 4 на 4 .

    Решение.

    Можно разложить определитель матрицы по элементам любого столбца или любой строки, однако выгоднее выбирать строку или столбец, содержащую наибольшее количество нулевых элементов, так как это поможет избежать лишних вычислений. Разложим определитель по элементам первой строки:

    Вычислим полученные определители матриц порядка 3 на 3 по известной нам формуле:

    Подставляем результаты и получаем искомое значение

    Пример.

    Вычислите определитель матрицы порядка 5 на 5 .

    Решение.

    В четвертой строке матрицы наибольшее количество нулевых элементов среди всех строк и столбцов, поэтому целесообразно разложить определитель матрицы именно по элементам четвертой строки, так как в этом случае нам потребуется меньше вычислений.

    Полученные определители матриц порядка 4 на 4 были найдены в предыдущих примерах, так что воспользуемся готовыми результатами:

    Пример.

    Вычислите определитель матрицы порядка 7 на 7 .

    Решение.

    Не следует сразу бросаться раскладывать определитель по элементам какой либо строки или столбца. Если внимательно посмотреть на матрицу, то можно заметить, что элементы шестой строки матрицы можно получить умножением соответствующих элементов второй строки на двойку. То есть, если к элементам шестой строки прибавить соответствующие элементы второй строки, умноженные на (-2) , то определитель не изменится в силу седьмого свойства, а шестая строка полученной матрицы будет состоять из нулей. Определитель такой матрицы равен нулю по второму свойству.

    Ответ:

    Следует отметить, что рассмотренное свойство позволяет вычислить определители матриц любых порядков, однако приходится выполнять массу вычислительных операций. В большинстве случаев определитель матриц порядка выше третьего выгоднее находить методом Гаусса, который мы рассмотрим ниже.

    Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю.

    Пример.

    Покажите, что сумма произведений элементов третьего столбца матрицы на алгебраические дополнения соответствующих элементов первого столбца равна нулю.

    Решение.


    Определитель произведения квадратных матриц одного порядка равен произведению их определителей, то есть, , где m – натуральное число большее единицы, A k , k=1,2,…,m – квадратные матрицы одного порядка.

    Пример.

    Убедитесь, что определитель произведения двух матриц и равен произведению их определителей.

    Решение.

    Найдем сначала произведение определителей матриц А и В :

    Сейчас выполним умножение матриц и вычислим определитель получившейся матрицы:

    Таким образом, , что и требовалось показать.

Вычисление определителя матрицы методом Гаусса.

Опишем суть этого метода. Матрица А с помощью элементарных преобразований приводится к такому виду, чтобы в первом столбце все элементы, кроме стали нулевыми (это сделать всегда возможно, если определитель матрицы А отличен от нуля). Эту процедуру опишем чуть позже, а сейчас поясним, для чего это делается. Нулевые элементы получаются для того, чтобы получить самое простое разложение определителя по элементам первого столбца. После такого преобразования матрицы А , учитывая восьмое свойство и , получим

где - минор (n-1)-ого порядка , получающийся из матрицы А вычеркиванием элементов ее первой строки и первого столбца.

С матрицей, которой соответствует минор , проделывается такая же процедура получения нулевых элементов в первом столбце. И так далее до окончательного вычисления определителя.

Теперь осталось ответить на вопрос: «Как получать нулевые элементы в первом столбце»?

Опишем алгоритм действий.

Если , то к элементам первой строки матрицы прибавляются соответствующие элементы k-ой строки, в которой . (Если все без исключения элементы первого столбца матрицы А нулевые, то ее определитель равен нулю по второму свойству и не нужен никакой метод Гаусса). После такого преобразования «новый» элемент будет отличен от нуля. Определитель «новой» матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Теперь мы имеем матрицу, у которой . При к элементам второй строки прибавляем соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на . И так далее. В заключении к элементам n-ой строки прибавляем соответствующие элементы первой строки, умноженные на . Так будет получена преобразованная матрица А , все элементы первого столбца которой, кроме , будут нулевыми. Определитель полученной матрицы будет равен определителю исходной матрицы в силу седьмого свойства.

Разберем метод при решении примера, так будет понятнее.

Пример.

Вычислить определитель матрицы порядка 5 на 5 .

Решение.

Воспользуемся методом Гаусса. Преобразуем матрицу А так, чтобы все элементы ее первого столбца, кроме , стали нулевыми.

Так как изначально элемент , то прибавим к элементам первой строки матрицы соответствующие элементы, например, второй строки, так как :

Знак « ~ » означает эквивалентность.

Теперь прибавляем к элементам второй строки соответствующие элементы первой строки, умноженные на , к элементам третьей строки – соответствующие элементы первой строки, умноженные на , и аналогично действуем вплоть до шестой строки:

Получаем

С матрицей проводим ту же процедуру получения нулевых элементов в первом столбце:

Следовательно,

Сейчас выполняем преобразования с матрицей :

Замечание.

На некотором этапе преобразования матрицы по методу Гаусса может возникнуть ситуация, когда все элементы нескольких последних строк матрицы станут нулевыми. Это будет говорить о равенстве определителя нулю.

Подведем итог.

Определителем квадратной матрицы, элементы которой есть числа, является число. Мы рассмотрели три способа вычисления определителя:

  1. через сумму произведений сочетаний элементов матрицы;
  2. через разложение определителя по элементам строки или столбца матрицы;
  3. методом приведения матрицы к верхней треугольной (методом Гаусса).

Были получены формулы для вычисления определителей матриц порядка 2 на 2 и 3 на 3 .

Мы разобрали свойства определителя матрицы. Некоторые из них позволяют быстро понять, что определитель равен нулю.

При вычислении определителей матриц порядка выше 3 на 3 целесообразно использовать метод Гаусса: выполнить элементарные преобразования матрицы и привести ее к верхней треугольной. Определитель такой матрицы равен произведению всех элементов, стоящих на главной диагонали.

Постановка задачи

Задание подразумевает знакомство пользователя с основными понятиями численных методов, такими как определитель и обратная матрица , и различными способами их вычислений. В данном теоретическом отчете простым и доступным языком сначала вводятся основные понятия и определения, на основании которых проводится дальнейшее исследование. Пользователь может не иметь специальных знаний в области численных методов и линейной алгебры , но с легкостью сможет воспользоваться результатами данной работы. Для наглядности приведена программа вычисления определителя матрицы несколькими методами, написанная на языке программирования C++. Программа используется как лабораторный стенд для создания иллюстраций к отчету. А также проводится исследование методов для решения систем линейных алгебраических уравнений . Доказывается бесполезность вычисления обратной матрицы, поэтому в работе приводится более оптимальные способы решения уравнений не вычисляя ее. Рассказывается почему существует такое количество различных методов вычисления определителей и обратных матриц и разбираются их недостатки. Также рассматриваются погрешности при вычислении определителя и оценивается достигнутая точность. Помимо русских терминов в работе используются и их английские эквиваленты для понимания, под какими названиями искать численные процедуры в библиотеках и что означают их параметры.

Основные определения и простейшие свойства

Определитель

Введем определение определителя квадратной матрицы любого порядка. Это определение будет рекуррентным , то есть чтобы установить, что такое определитель матрицы порядка , нужно уже знать, что такое определитель матрицы порядка . Отметим также, что определитель существует только у квадратных матриц.

Определитель квадратной матрицы будем обозначать или det .

Определение 1. Определителем квадратной матрицы второго порядка называется число .

Определителем квадратной матрицы порядка , называется число

где - определитель матрицы порядка , полученной из матрицы вычеркиванием первой строки и столбца с номером .

Для наглядности запишем, как можно вычислить определитель матрицы четвертого порядка:

Замечание. Реальное вычисление определителей для матриц выше третьего порядка на основе определения используется в исключительных случаях. Как правило, вычисление ведется по другим алгоритмам, которые будут рассмотрены позже и которые требуют меньше вычислительной работы.

Замечание. В определении 1 было бы точнее сказать, что определитель есть функция, определенная на множестве квадратных матриц порядка и принимающая значения в множестве чисел.

Замечание. В литературе вместо термина "определитель" используется также термин "детерминант", имеющий тот же самый смысл. От слова "детерминант" и появилось обозначение det .

Рассмотрим некоторые свойства определителей, которые сформулируем в виде утверждений.

Утверждение 1. При транспонировании матрицы определитель не меняется, то есть .

Утверждение 2. Определитель произведения квадратных матриц равен произведению определителей сомножителей, то есть .

Утверждение 3. Если в матрице поменять местами две строки, то ее определитель сменит знак.

Утверждение 4. Если матрица имеет две одинаковые строки, то ее определитель равен нулю.

В дальнейшем нам потребуется складывать строки и умножать строку на число. Эти действия над строками (столбцами) мы будем выполнять так же, как действия над матрицами-строками (матрицами-столбцами), то есть поэлементно. Результатом будет служить строка (столбец), как правило, не совпадающая со строками исходной матрицы. При наличии операций сложения строк (столбцов) и умножения их на число мы можем говорить и о линейных комбинациях строк (столбцов), то есть суммах с числовыми коэффициентами.

Утверждение 5. Если строку матрицы умножить на число , то ее определитель умножится на это число.

Утверждение 6. Если матрица содержит нулевую строку, то ее определитель равен нулю.

Утверждение 7. Если одна из строк матрицы равна другой, умноженной на число (строки пропорциональны), то определитель матрицы равен нулю.

Утверждение 8. Пусть в матрице i-ая строка имеет вид . Тогда , где матрица получается из матрицы заменой i-ой строки на строку , а матрица - заменой i-ой строки на строку .

Утверждение 9. Если к одной из строк матрицы добавить другую, умноженную на число, то определитель матрицы не изменится.

Утверждение 10. Если одна из строк матрицы является линейной комбинацией других ее строк, то определитель матрицы равен нулю.

Определение 2. Алгебраическим дополнением к элементу матрицы называется число, равное , где - определитель матрицы, полученной из матрицы вычеркиванием i-ой строки и j-ого столбца. Алгебраическое дополнение к элементу матрицы обозначается .

Пример. Пусть . Тогда

Замечание. Используя алгебраические дополнения, определение 1 определителя можно записать так:

Утверждение 11. Разложение определителя по произвольной строке.

Для определителя матрицы справедлива формула

Пример. Вычислите .

Решение. Воспользуемся разложением по третьей строке, так выгоднее, поскольку в третьей строке два числа из трех - нули. Получим

Утверждение 12. Для квадратной матрицы порядка при выполнено соотношение .

Утверждение 13. Все свойства определителя, сформулированные для строк (утверждения 1 - 11), справедливы и для столбцов, в частности, справедливо разложение определителя по j-ому столбцу и равенство при .

Утверждение 14. Определитель треугольной матрицы равен произведению элементов ее главной диагонали.

Следствие. Определитель единичной матрицы равен единице, .

Вывод. Перечисленные выше свойства позволяют находить определители матриц достаточно высоких порядков при сравнительно небольшом объеме вычислений. Алгоритм вычислений следующий.

Алгоритм создания нулей в столбце. Пусть требуется вычислить определитель порядка . Если , то поменяем местами первую строку и любую другую, в которой первый элемент не нуль. В результате определитель , будет равен определителю новой матрицы с противоположным знаком. Если же первый элемент каждой строки равен нулю, то матрица имеет нулевой столбец и по утверждениям 1, 13 ее определитель равен нулю.

Итак, считаем, что уже в исходной матрице . Первую строку оставляем без изменений. Прибавим ко второй строке первую строку, умноженную на число . Тогда первый элемент второй строки будет равен .

Остальные элементы новой второй строки обозначим , . Определитель новой матрицы по утверждению 9 равен . Первую строку умножим на число и прибавим к третьей. Первый элемент новой третьей строки будет равен

Остальные элементы новой третьей строки обозначим , . Определитель новой матрицы по утверждению 9 равен .

Процесс получения нулей вместо первых элементов строк продолжим дальше. Наконец, первую строку умножим на число и прибавим к последней строке. В результате получается матрица, обозначим ее , которая имеет вид

причем . Для вычисления определителя матрицы используем разложение по первому столбцу

Так как , то

В правой части стоит определитель матрицы порядка . К нему применим тот же алгоритм, и вычисление определителя матрицы сведется к вычислению определителя матрицы порядка . Процесс повторяем до тех пор, пока не дойдем до определителя второго порядка, который вычисляется по определению.

Если матрица не обладает какими-то специфическими свойствами, то заметно уменьшить объем вычислений по сравнению с предложенным алгоритмом не удается. Еще одна хорошая сторона этого алгоритма - по нему легко составить программу для компьютера для вычисления определителей матриц больших порядков. В стандартных программах вычисления определителей используется этот алгоритм с не принципиальными изменениями, связанными с минимизацией влияния ошибок округления и погрешностей входных данных при вычислениях компьютера.

Пример. Вычислите определитель матрицы .

Решение. Первую строку оставляем без изменения. Ко второй строке прибавляем первую, умноженную на число :

Определитель не меняется. К третьей строке прибавляем первую, умноженную на число :

Определитель не меняется. К четвертой строке прибавляем первую, умноженную на число :

Определитель не меняется. В результате получаем

По тому же алгоритму считаем определитель матрицы порядка 3, стоящий справа. Первую строку оставляем без изменений, ко второй строке прибавляем первую, умноженную на число :

К третьей строке прибавляем первую, умноженную на число :

В результате получаем

Ответ. .

Замечание. Хотя при вычислениях использовались дроби, результат оказался целым числом. Действительно, используя свойства определителей и то, что исходные числа - целые, операций с дробями можно было бы избежать. Но в инженерной практике числа крайне редко бывают целыми. Поэтому, как правило, элементы определителя будут десятичными дробями и применять какие-то ухищрения для упрощения вычислений нецелесообразно.

Обратная матрица

Определение 3. Матрица называется обратной матрицей для квадратной матрицы , если .

Из определения следует, что обратная матрица будет квадратной матрицей того же порядка, что и матрица (иначе одно из произведений или было бы не определено).

Обратная матрица для матрицы обозначается . Таким образом, если существует, то .

Из определения обратной матрицы следует, что матрица является обратной для матрицы , то есть . Про матрицы и можно говорить, что они обратны друг другу или взаимно обратны.

Если определитель матрицы равен нулю, то обратная к ней не существует.

Так как для нахождения обратной матрицы важно, равен ли определитель марицы нулю или нет, то введем следующие определения.

Определение 4. Квадратную матрицу назовем вырожденной или особенной матрицей , если , и невырожденной или неособенной матрицей , если .

Утверждение. Если обратная матрица существует, то она единственна.

Утверждение. Если квадратная матрица является невырожденной, то обратная для нее существует и (1) где - алгебраические дополнения к элементам .

Теорема. Обратная матрица для квадратной матрицы существует тогда и только тогда, когда матрица - невырожденная, обратная матрица единственна, и справедлива формула (1).

Замечание. Следует обратить особое внимание на места, занимаемые алгебраическими дополнениями в формуле обратной матрицы: первый индекс показывает номер столбца , а второй - номер строки , в которые нужно записать вычисленное алгебраическое дополнение.

Пример. .

Решение. Находим определитель

Так как , то матрица - невырожденная, и обратная для нее существует. Находим алгебраические дополнения:

Составляем обратную матрицу, размещая найденные алгебраические дополнения так, чтобы первый индекс соответствовал столбцу, а второй - строке: (2)

Полученная матрица (2) и служит ответом к задаче.

Замечание. В предыдущем примере было бы точнее ответ записать так:
(3)

Однако запись (2) более компактна и с ней удобнее проводить дальнейшие вычисления, если таковые потребуются. Поэтому запись ответа в виде (2) предпочтительнее, если элементы матриц - целые числа. И наоборот, если элементы матрицы - десятичные дроби, то обратную матрицу лучше записать без множителя впереди.

Замечание. При нахождении обратной матрицы приходится выполнять довольно много вычислений и необычно правило расстановки алгебраических дополнений в итоговой матрице. Поэтому велика вероятность ошибки. Чтобы избежать ошибок следует делать проверку: вычислить произведение исходной матрицы на итоговую в том или ином порядке. Если в результате получится единичная матрица, то обратная матрица найдена правильно. В противном случае нужно искать ошибку.

Пример. Найдите обратную матрицу для матрицы .

Решение. - существует.

Ответ: .

Вывод. Нахождение обратной матрицы по формуле (1) требует слишком много вычислений. Для матриц четвертого порядка и выше это неприемлемо. Реальный алгоритм нахождения обратной матрицы будет приведен позже.

Вычисление определителя и обратной матрицы с помощью метода Гаусса

Метод Гаусса можно использовать для нахождения определителя и обратной матрицы .

Именно, определитель матрицы равен det .

Обратная матрица находится решением систем линейных уравнений методом исключения Гаусса:

Где есть j-тый столбец единичной матрицы , - искомый вектор.

Полученные векторы решений - образуют, очевидно, столбцов матрицы , поскольку .

Формулы для определителя

1. Если матрица невырожденная, то и (произведение ведущих элементов).

Определители матриц часто используются в вычислениях, в линейной алгебре и аналитической геометрии. Вне академического мира определители матриц постоянно требуются инженерам и программистам, в особенности тем, кто работает с компьютерной графикой. Если вы уже знаете, как найти определитель матрицы размерностью 2x2, то из инструментов для нахождения определителя матрицы 3x3 вам будут необходимы только сложение, вычитание и умножение.

Шаги

Поиск определителя

    Запишите матрицу размерностью 3 x 3. Запишем матрицу размерностью 3 x 3, которую обозначим M, и найдем ее определитель |M|. Далее приводится общая форма записи матрицы, которую мы будем использовать, и матрица для нашего примера:

    • M = (a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33) = (1 5 3 2 4 7 4 6 2) {\displaystyle M={\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}}={\begin{pmatrix}1&5&3\\2&4&7\\4&6&2\end{pmatrix}}}
  1. Выберите строку или столбец матрицы. Эта строка (или столбец) будет опорной. Результат будет одинаков, независимо от того, какую строку или какой столбец вы выберете. В данном примере давайте возьмем первую строку. Чуть позже вы найдете несколько советов касательно того, как выбирать строку или столбец, чтобы упростить вычисления.

    • Давайте выберем первую строку матрицы M в нашем примере. Обведите числа 1 5 3. В общей форме обведите a 11 a 12 a 13 .
  2. Зачеркните строку или столбец с первым элементом. Обратитесь к опорной строке (или к опорному столбцу) и выберите первый элемент. Проведите горизонтальную и вертикальную черту через этот элемент, вычеркнув таким образом столбец и строку с этим элементом. Должно остаться четыре числа. Будем считать эти элементы новой матрицей размерностью 2 x 2.

    • В нашем примере, опорной строкой будет 1 5 3. Первый элемент находится на пересечении первого столбца и первой строки. Вычеркните строку и столбец с этим элементом, то есть первую сроку и первый столбец. Запишите оставшиеся элементы в виде матрицы 2 x 2 :
    • 1 5 3
    • 2 4 7
    • 4 6 2
  3. Найдите определитель матрицы 2 x 2. Запомните, что определитель матрицы (a b c d) {\displaystyle {\begin{pmatrix}a&b\\c&d\end{pmatrix}}} вычисляется как ad - bc . Опираясь на это, вы можете вычислить определитель полученной матрицы 2 x 2, которую, если хотите, можете обозначить как X. Умножьте два числа матрицы X, соединенных по диагонали слева направо (то есть так: \). Затем вычтите результат умножения двух других чисел по диагонали справа налево (то есть так: /). Используйте эту формулу, чтобы вычислить определитель матрицы, которую вы только что получили.

    Умножьте полученный ответ на выбранный элемент матрицы M. Вспомните, какой элемент из опорной строки (или столбца) мы использовали, когда вычеркивали другие элементы строки и столбца, чтобы получить новую матрицу. Умножьте этот элемент на полученный минор (определитель матрицы 2x2, которую мы обозначили X).

    • В нашем примере мы выбирали элемент a 11 , который равнялся 1. Умножим его на -34 (определитель матрицы 2x2), и у нас получится 1*-34 = -34 .
  4. Определите знак полученного результата. Далее вам понадобится умножить полученный результат на 1, либо на -1, чтобы получить алгебраическое дополнение (кофактор) выбранного элемента. Знак кофактора будет зависеть от того, в каком месте матрицы 3x3 стоит элемент. Запомните эту простую схему знаков, чтобы знать знак кофактора:

  5. Повторите все вышеописанные действия со вторым элементом опорной строки (или столбца). Вернитесь к исходной матрице размерностью 3x3 и строке, которую мы обвели в самом начале вычислений. Повторите все действия с этим элементом:

    • Вычеркните строку и столбец с этим элементом. В нашем примере мы должны выбрать элемент a 12 (равный 5). Вычеркнем первую строку (1 5 3) и второй столбец (5 4 6) {\displaystyle {\begin{pmatrix}5\\4\\6\end{pmatrix}}} матрицы.
    • Запишите оставшиеся элементы в виде матрицы 2x2. В нашем примере матрица будет иметь вид (2 7 4 2) {\displaystyle {\begin{pmatrix}2&7\\4&2\end{pmatrix}}}
    • Найдите определитель этой новой матрицы 2x2. Воспользуйтесь вышеприведенной формулой ad - bc. (2*2 - 7*4 = -24)
    • Умножьте полученный определитель на выбранный элемент матрицы 3x3. -24 * 5 = -120
    • Проверьте, нужно ли умножить результат на -1. Воспользуемся формулой (-1) ij , чтобы определить знак алгебраического дополнения. Для выбранного нами элемента a 12 в таблице указан знак «-», аналогичный результат дает и формула. То есть мы должны изменить знак: (-1)*(-120) = 120 .
  6. Повторите с третьим элементом. Далее вам понадобится найти еще одно алгебраическое дополнение. Вычислите его для последнего элемента опорной строки или опорного столбца. Далее приводится краткое описание того, как вычисляется алгебраическое дополнение для a 13 в нашем примере:

    • Зачеркните первую строку и третий столбец, чтобы получить матрицу (2 4 4 6) {\displaystyle {\begin{pmatrix}2&4\\4&6\end{pmatrix}}}
    • Ее определитель равен 2*6 - 4*4 = -4.
    • Умножьте результат на элемент a 13: -4 * 3 = -12.
    • Элемент a 13 имеет знак + в приведенной выше таблице, поэтому ответ будет -12 .
  7. Сложите полученные результаты. Это последний шаг. Вам необходимо сложить полученные алгебраические дополнения элементов опорной строки (или опорного столбца). Сложите их вместе, и вы получите значение определителя матрицы 3x3.

    • В нашем примере определитель равен -34 + 120 + -12 = 74 .

    Как упростить задачу

    1. Выбирайте в качестве опорной строки (или столбца) ту, что имеет больше нулей. Помните, что в качестве опорной вы можете выбрать любую строку или столбец. Выбор опорной строки или столбца не влияет на результат. Если вы выберете строку с наибольшим количеством нулей, вам придется выполнять меньше вычислений, поскольку вам будет необходимо вычислить алгебраические дополнения только для ненулевых элементов. Вот почему:

      • Допустим, вы выбрали 2 строку с элементами a 21 , a 22 , and a 23 . Чтобы найти определитель, вам будет необходимо найти определители трех различных матриц размерностью 2x2. Давайте назовем их A 21 , A 22 , and A 23 .
      • То есть определитель матрицы 3x3 равен a 21 |A 21 | - a 22 |A 22 | + a 23 |A 23 |.
      • Если оба элемента a 22 и a 23 равны 0, то наша формула становится намного короче a 21 |A 21 | - 0*|A 22 | + 0*|A 23 | = a 21 |A 21 | - 0 + 0 = a 21 |A 21 |. То есть необходимо вычислить только алгебраическое дополнение одного элемента.
    2. Используйте сложение строк, чтобы упростить матрицу. Если вы возьмете одну строку и прибавите к ней другую, то определитель матрицы не изменится. То же самое верно и для столбцов. Подобные действия можно выполнять несколько раз, кроме того, вы можете умножать значения строки на постоянную (перед сложением) для того, чтобы получить как можно больше нулей. Подобные действия могут сэкономить массу времени.

      • Например, у нас есть матрица из трех строк: (9 − 1 2 3 1 0 7 5 − 2) {\displaystyle {\begin{pmatrix}9&-1&2\\3&1&0\\7&5&-2\end{pmatrix}}}
      • Чтобы избавиться от 9 на месте элемента a 11 , мы можем умножить вторую строку на -3 и прибавить результат к первой. Новая первая строка будет + [-9 -3 0] = .
      • То есть мы получаем новую матрицу (0 − 4 2 3 1 0 7 5 − 2) {\displaystyle {\begin{pmatrix}0&-4&2\\3&1&0\\7&5&-2\end{pmatrix}}} Попробуйте проделать то же самое со столбцами, чтобы получить на месте элемента a 12 нуль.
    3. Помните, что вычислять определитель треугольных матриц намного проще. Определитель треугольных матриц вычисляется как произведение элементов на главной диагонали, от a 11 в верхнем левом углу до a 33 в нижнем правом углу. Речь в данном случае идет о треугольных матрицах размерностью 3x3. Треугольные матрицы могут быть следующих видов, в зависимости от расположения ненулевых значений:

      • Верхняя треугольная матрица: Все ненулевые элементы находятся на главной диагонали и выше нее. Все элементы ниже главной диагонали равны нулю.
      • Нижняя треугольная матрица: Все ненулевые элементы находятся ниже главной диагонали и на ней.
      • Диагональная матрица: Все ненулевые элементы находятся на главной диагонали. Является частным случаем вышеописанных матриц.
      • Описанный метод распространяется на квадратные матрицы любого ранга. Например, если вы используете его для матрицы 4x4, то после «вычеркивания» будут оставаться матрицы 3x3, для которых определитель будет вычисляться вышеупомянутым способом. Будьте готовы к тому, что вычислять определитель для матриц таких размерностей вручную - очень трудоемкая задача!
      • Если все элементы строки или столбца равны 0, то определитель матрицы тоже равен 0.

Определитель матрицы

Нахождение определителя матрицы является очень частой задачей в высшей математике и алгебре. Как правило, без значения определителя матрицы не обойтись при решении сложных систем уравнений. На вычислении определителя матрицы построен метод Крамера решения систем уравнений. С помощью определения детермината определяют наличие и единственность решения систем уравнений. Поэтому сложно переоценить важность умения правильно и точно находить определитель матрицы в математике. Методы решения определителей являются теоретически довольно простыми, однако с увеличением размера матрицы вычисления становятся очень громоздкими и требуют огромной внимательности и много времени. Очень легко в таких сложных математических вычислениях допустить незначительную ошибку или описку, что приведет к ошибке в окончательном ответе. Поэтому даже если вы находите определитель матрицы самостоятельно, важно проверить полученный результат. Это позволяет сделать наш сервис Нахождение определителя матрицы онлайн . Наш сервис выдает всегда абсолютно точный результат, не содержащий ни ошибок, ни описок. Вы можете отказаться от самостоятельных вычислений, поскольку с прикладной точки зрения, нахождение определителя матрицы не имеет обучающего характера, а просто требует много времени и числовых вычислений. Поэтому если в вашей задачи определение детерминанта матрицы являются вспомогательными, побочными вычислениями, воспользуйтесь нашим сервисом и найдите определитель матрицы онлайн !

Все вычисления проводятся автоматически с высочайшей точностью и абсолютно бесплатны. У нас очень удобный интерфейс для ввода матричных элементов. Но главное отличие нашего сервиса от аналогичных - возможность получения подробного решения. Наш сервис при вычислении определителя матрицы онлайн всегда использует самый простой и короткий метод и подробно описывает каждый шаг преобразований и упрощений. Так что вы получаете не просто значение детерминанта матрицы, окончательный результат, но и целое подробное решение.