Которую я нашел на сайте компании DataGenetics. Все ошибки по данной статье присылайте, пожалуйста, в личные сообщения.

В этой задаче в тюрьме сидят 100 заключенных, каждый из которых пронумерован числами от 1 до 100. Тюремщик решает дать шанс заключенным на освобождение, он рассказывает им условия испытания, и если все заключенные пройдут тест, тогда они будут освобождены. Если хотя бы один из них провалит тест, то все заключенные умрут.

Задача

Тюремщик идет в секретную комнату и подготавливает 100 коробок с крышками. На каждую коробку он наносит числа с нумерацией от 1 до 100. Затем он приносит 100 бумажных табличек, по числу заключенных, и нумерует эти таблички от 1 до 100. После этого он перемешивает 100 табличек и помещает в каждую коробку по одной табличке, закрывая крышку. Заключенные не видят, как тюремщик выполняет все эти действия.

Соревнование начинается, тюремщик отводит каждого заключенного по одному в комнату с коробками и говорит заключенным, что они должны найти коробку, в которой будет находиться табличка с номером заключенного. Заключенные пытаются найти табличку со своим номером, открывая коробки. Каждому разрешается открыть до 50-ти коробок; если каждый из заключенных найдет свой номер, то заключенных отпустят, если хотя бы один из них не найдет свой номер за 50 попыток, то все заключенные умрут.

Для того, чтобы заключенные были освобождены, ВСЕ заключенные должны пройти испытание успешно.

Так какой же шанс, что заключенных помилуют?

  • После открытия коробки заключенным и проверки им таблички она помещается обратно в коробку и крышка снова закрывается;
  • Местами таблички менять нельзя;
  • Заключенные не могут оставлять друг другу подсказки или как-то взаимодействовать друг с другом после начала испытания;
  • Заключенным разрешается обсудить стратегию до начала испытания.

Какая самая оптимальная стратегия для заключенных?

Дополнительный вопрос:

Если товарищ заключенных (не участник испытания) будет иметь возможность проникнуть в секретную комнату до начала испытания, изучить все таблички во всех коробках и (по желанию, но не обязательно) поменять местами две таблички из двух коробок (при этом у товарища не будет возможности как-то сообщить заключенным о результате своих действий), то какую стратегию он должен предпринять, чтобы увеличить шансы заключенных на спасение?

Решение маловероятно?

С первого взгляда эта задача кажется почти безнадежной. Кажется, что шанс на нахождение каждым из заключенных своей таблички микроскопически мал. К тому же, заключенные не могут обмениваться информацией между собой в процессе испытания.

Шансы одного заключенного - 50:50. Всего 100 коробок и он может открыть до 50-ти коробок в поисках своей таблички. Если он будет открывать коробки наугад и откроет половину всех коробок, то найдет свою табличку в открытой половине коробок, или его табличка останется в закрытых 50-ти коробках. Его шансы на успех - ½.

Возьмем двух заключенных. Если оба выбирают коробки наугад, для каждого из них шансы будут ½, а для двоих ½x½=¼.
(для двух заключенных успех будет в одном случае из четырех).

Для трех заключенных шансы будут ½ × ½ × ½ = ⅛.

Для 100 заключенных, шансы следующие: ½ × ½ × … ½ × ½ (перемножение 100 раз).


Это равняется

Pr ≈ 0.000000000000000000000000000008

То есть это очень маленький шанс. При таком раскладе, скорее всего, все заключенные будут мертвы.

Невероятный ответ

Если каждый заключенный будет открывать ящики наугад, то вряд ли они пройдут испытание. Существует стратегия, при которой заключенные могут рассчитывать на успех более чем в 30% случаев. Это потрясающе невероятный результат (если вы не слышали про эту математическую задачу ранее).

Больше чем 30% для всех 100 заключенных! Да это даже больше, чем шансы для двоих заключенных, при условии, что те будут открывать ящики наугад. Но как это возможно?

Понятно, что по одному у каждого заключенного шансы не могут быть выше 50% (ведь нет способа для общения между заключенными). Но не стоит забывать, что информация хранится в расположении табличек внутри коробок. Никто не перемешивает таблички между посещениями комнаты отдельными заключенными, так что мы можем использовать эту информацию.

Решение

Для начала расскажу решение, затем разъясню, почему оно работает.

Стратегия крайне легкая. Первый из заключенных открывает коробку с тем номером, который написан на его одежде. Например, заключенный номер 78 открывает коробку с номером 78. Если он находит свой номер на табличке внутри коробки, то это здорово! Если нет, то он смотрит номер на табличке в «своей» коробке и затем открывает следующую коробку с этим номером. Открыв вторую коробку, он смотрит номер таблички внутри этой коробки и открывает третью коробку с этим номером. Далее просто переносим эту стратегию на оставшиеся ящики. Для наглядности смотрим картинку:


В конце концов, заключенный либо найдет свой номер, или дойдет до предела в 50 коробок. На первый взгляд, это выглядит бессмысленно, по сравнению с простым выбором коробки наугад (и для одного отдельного заключенного это так), но так как все 100 заключенных будут использовать тот же набор коробок, это имеет смысл.

Красота этой математической задачки - не только знать результат, но и понять, почему эта стратегия работает.

Так почему же стратегия работает?

В каждой коробке по одной табличке - и эта табличка уникальна. Это означает, что табличка находится в коробке с тем же номером, или она указывает на другую коробку. Так как все таблички уникальны, то для каждой коробки есть только одна табличка, указывающая на нее (и всего один путь, как добраться до этой коробки).


Если поразмыслить над этим, то коробки образуют замкнутую круглую цепочку. Одна коробка может быть частью только одной цепочки, так как внутри коробки только один указатель на следующую и, соответственно, в предыдущей коробке только один указатель на данную коробку (программисты могут увидеть аналогию со связанными списками).

Если коробка не указывает на саму себя (номер коробки равен номеру таблички в ней), то она будет в цепочке. Некоторые цепочки могут состоять из двух коробок, некоторые длиннее.


Так как все заключенные начинают с коробки с тем же номером, что и на их одежде, они, по определению, попадают на цепочку, которая содержит их табличку (есть всего одна табличка, которая указывает на эту коробку).

Исследуя коробки по этой цепочке по кругу, они гарантированно в конечном итоге найдут свою табличку.

Единственный вопрос остается в том, найдут ли они свою табличку за 50 ходов.


Длина цепочек

Для того, чтобы все заключенные прошли испытание, максимальная длина цепочки должна быть меньше, чем 50 коробок. Если цепочка длиннее, чем 50 коробок, заключенные, имеющие номера из этих цепочек провалят испытание - и все заключенные будут мертвы.

Если максимальная длина самой длинной цепочки меньше, чем 50 коробок, тогда все заключенные пройдут испытание!

Задумайтесь об этой на секунду. Выходит, что может быть только одна цепочка, которая длиннее 50-ти коробок при любом раскладе табличек (у нас всего 100 коробок, так что если одна цепочка длиннее 50-ти, то остальные будут короче, чем 50 в итоге).


Шансы на расклад с длинной цепочкой

После того, как вы убедили себя, что для достижения успеха максимальная длина цепи должна быть меньше или равна 50, и может быть только одна длинная цепочка в любом наборе, мы можем вычислить вероятность успеха прохождения испытания:

Еще немного математики

Итак, что нам нужно, чтобы выяснить вероятность существования длинной цепочки?

Для цепочки с длиной l, вероятность того, что коробки будут вне этой цепочки равно:

В этой коллекции чисел существует (l-1)! способов расположить таблички.

Оставшиеся таблички могут быть расположены (100-l)! способами (не забываем, что длина цепочки не превосходит 50).

Учитывая это, число перестановок, которые содержат цепочку точной длины l: (>50)


Выходит, есть 100(!) способов раскладок табличек, так что вероятность существования цепочки длиной l равно 1/l. Кстати, этот результат не зависит от количества коробок.

Как мы уже знаем, может быть только один вариант, при котором существует цепочка длиной > 50, так что вероятность успеха рассчитывается по данной формуле:

Результат

31.18% - вероятность того, что размер самой длинной цепочки будет меньше 50 и каждый из заключенных сможет найти свою табличку, учитывая лимит в 50 попыток.

Вероятность того, что все заключенные найдут свои таблички и пройдут испытание 31.18%

Ниже приведен график, показывающий вероятности (по оси ординат) для всех цепей длины l (на оси абсцисс). Красный цвет означает все «неудачи» (данная кривая здесь - это просто график 1/l). Зеленый цвет означает «успех» (расчет немного сложнее для этой части графика, так как существует несколько способов для определения максимальной длины <50). Общая вероятность складывается из зеленых столбцов в 31.18% шанс на спасение.


Гармоническое число (эта часть статьи для гиков)

В математике n-м гармоническим числом называется сумма обратных величин первых n последовательных чисел натурального ряда.


Посчитаем лимит, если вместо 100а коробок мы имеем произвольное большое количество коробок (давайте считать, что у нас есть 2n коробок в итоге).


Постоянная Эйлера-Маскерони - константа, определяемая как предел разности между частичной суммой гармонического ряда и натуральным логарифмом числа.

Так как число заключенных увеличивается, то при условии, если надсмотрщик разрешает заключенным открывать половину всех коробок, то шанс на спасение стремится к числу 30.685%

(Если вы приняли решение, при котором заключенные случайно угадывают коробки, то с увеличением количества заключенных вероятность спасения стремится к нулю!)

Дополнительный вопрос

Кто-нибудь еще помнит про дополнительный вопрос? Что может сделать наш полезный товарищ, чтобы увеличить шансы на выживание?

Сейчас мы уже знаем решение, так что стратегия тут простая: он должен изучить все таблички и найти самую длинную цепочку из коробок. Если самая длинная цепочка меньше 50-ти, то ему вообще не нужно менять таблички, или поменять их так, чтобы самая длинная цепочка не стала длиннее 50-ти. Тем не менее, если он нашел цепочку длиннее 50-ти коробок, всё, что ему нужно - это поменять содержимое двух коробок из этой цепи, чтобы разбить эту цепочку на две более короткие цепи.

В результате этой стратегии не будет длинных цепочек и все заключенные гарантированно найдут свою табличку и спасение. Так что, поменяв местами две таблички, мы сводим вероятность спасения к 100%!

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .


Запомните, что объем прямоугольного параллелепипеда (или обычной коробки) равен произведению его длины, ширины и высоты. Если ваша коробка имеет прямоугольную или квадратную форму, то вам требуется лишь узнать ее длину, ширину и высоту. Для получения объема необходимо перемножить результаты замеров. Формула расчета в сокращенном виде нередко представляется следующим образом: V = Д x Ш x В.
Пример задачи: "Если длина коробки равна 10 см, ширина – 4 см, а высота – 5 см, то каков ее объем?"
V = Д x Ш x В
V = 10 см x 4 см x 5 см
V = 200 см 3
"Высота" коробки может упоминаться как "глубина". Например, в задаче могла быть указана следующая информация: "Длина коробки равна 10 см, ширина – 4 см, а глубина – 5 см."

2
Измерьте длину коробки. Если посмотреть на коробку сверху, то она предстанет перед вашими глазами в виде прямоугольника. Длиной коробки будет наиболее длинная сторона этого прямоугольника. Запишите результат замера данной стороны в качестве значения параметра "длина".
При выполнении замеров обязательно используйте единые единицы измерения. Если вы измерили одну сторону в сантиметрах, то и остальные стороны тоже необходимо измерить в сантиметрах.

3
Измерьте ширину коробки. Ширину коробки будет представлять другая, более короткая, сторона видимого сверху прямоугольника. Если визуально соединить измеряемые по длине и ширине стороны коробки, то они предстанут в виде буквы "Г". Запишите значение последнего замера в качестве "ширины".
Ширина – это всегда более короткая сторона коробки.

4
Измерьте высоту коробки. Это последний параметр, который вы еще не измерили. Он представляет собой расстояние от верхнего края коробки до нижнего. Запишите значение этого замера в качестве "высоты".
В зависимости от того, на какой бок вы положите коробку, конкретные стороны, которые вы обозначите "длиной", "шириной" или "высотой" могут быть различными. Тем не менее, это не имеет никакого значения, вам лишь необходимы результаты замеров трех разных сторон.

5
Перемножьте результаты трех замеров между собой. Как уже упоминалось, формула расчета объема выглядит следующим образом: V = Длина x Ширина x Высота; поэтому для получения объема необходимо просто перемножить все три стороны. Обязательно укажите в расчете использованные вами единицы измерения, чтобы не забыть, что именно означают полученные значения.

6
При обозначении единиц измерения объема не забудьте указать третью степень " 3 ". Рассчитанный объем имеет цифровое выражение, но без правильного указания единиц измерения ваши расчеты будут бессмысленны. Для корректного отражения единиц измерения объема их следует указать в кубе. Например, если все стороны были измерены в сантиметрах, то единицы измерения объема будут указаны как "см 3 ".
Пример задачи: "Если ящик имеет длину 2 м, ширину – 1 м, а высоту 3 м, то каков его объем? "
V = Д x Ш x В
V = 2 м x 1 м x 4 м
V = 8 м 3
Примечание: Указание кубических единиц объема позволяет понять, сколько таких кубов можно поместить внутрь коробки. Если обратиться к предыдущему примеру, то это означает, что в ящик помещается восемь кубических метров.

Расчет объема коробок других форм

Определите объем цилиндра. Цилиндр представляет собой круглую трубку с кругами на обоих концах. Для определения объема цилиндра используется формула: V = π x r 2 x h, где π = 3,14, r – радиус круглой стороны цилиндра, а h – его высота.
Для определения объема конуса, или пирамиды с круглым основанием, используется та же формула, но умноженная на 1/3. То есть объем конуса рассчитывается по формуле: V = 1/3 (π x r 2 x h)

2
Определите объем пирамиды. Пирамида – это фигура, имеющая плоское основание и сходящиеся вверху в одну точку стороны. Для определения объема пирамиды необходимо взять 1/3 от произведения площади ее основания на высоту. То есть формула расчета выглядит следующим образом: Объем пирамиды = 1/3(Площадь основания x Высота).
В большинстве случаев пирамиды имеют квадратное или прямоугольное основание. В такой ситуации площадь основания рассчитывается умножением длины основания на ширину.

Для определения объема коробки сложных форм сложите объемы отдельных ее частей. Например, вам может потребоваться измерить объем коробки, имеющей форму буквы "Г". В таком случае у коробки будет больше сторон, которые необходимо измерить. Если вы разобьете эту коробку на две части, то сможете стандартным образом измерить объем этих двух частей, а затем сложить полученные значения. В случае с коробкой в форме буквы "Г", более длинную часть можно рассматривать в качестве отдельной длинной прямоугольной коробки, а более короткую – в качестве приставленной к ней квадратной (или почти квадратной) коробки.
Если ваша коробка имеет совсем сложные формы, то знайте, что есть множество способов определения объема предметов любой формы.

Комбинаторные задачи

1 . Катя, Маша и Ира играют с мячом. Каждая из них должна по одному разу бросить мяч в сторону каждой подруги. Сколько раз каждая из девочек должна бросать мяч? Сколько всего раз будет подбрасываться мяч? Определите, сколько раз будет подбрасываться мяч, если в игре примут участие: четверо детей; пятеро детей.

2 . Даны три фасада и две крыши, имеющие одинаковую форму, но раскрашенные в различные цвета: фасады - в желтый, синий и красный цвета, а крыши - в синий и красный цвета. Какие домики можно построить? Сколько всего комбинаций?

3 . Даны три одинаковых по форме фасада домика: синий, желтый и красный - и три крыши: синяя, желтая и красная. Какие домики можно построить? Сколько всего комбинаций?

4 . Рисунки на флажках могут иметь вид круга, квадрата, треугольника или звезды, причем их можно раскрасить в зеленый или красный цвет. Сколько всего может быть разных флажков?

5. В школьной столовой на обед приготовили в качестве вторых блюд мясо, котлеты и рыбу. На сладкое - мороженое, фрукты и пирог. Можно выбрать одно второе блюдо и одно блюдо на десерт. Сколько существует различных вариантов обеда?

6. В школьной столовой на обед приготовили в качестве первых блюд суп с мясом и вегетарианский суп, на второе - мясо, котлеты и рыбу, на сладкое - мороженое, фрукты и пирог. Сколько существует различных вариантов обеда из трех блюд?

7. Сколькими способами можно рассадить в ряд на стулья трех учеников? Выписать все возможные случаи.

8 . Сколькими способами могут четыре (пять) человек стать в ряд?

9 . С разных сторон на холм поднимаются три тропинки и сходятся на вершине. Составьте множество маршрутов, по которым можно подняться на холм и спуститься с него. Решите ту же задачу, если вверх и вниз надо идти по разным тропинкам.

10 . Из Акулово в Рыбницу ведут три дороги, а из Рыбницы в Китово - четыре дороги. Сколькими способами можно проехать из Акулово в Китово через Рыбницу?

11 . Слог называется открытым, если он начинается с согласной буквы, а заканчивается гласной. Сколько открытых двухбуквенных слогов можно написать, используя буквы «а», «б», «в», «г», «е», «и», «о»? Выпишите эти слоги.

12. Сколько различных вариантов костюмов из блузки и юбки можно составить, если имеется 4 блузки и 4 юбки?

13. Когда Петя идет в школу, он иногда встречает одного или нескольких своих приятелей: Васю, Леню, Толю. Перечислить все возможные случаи, которые при этом могут быть.

14 . Записать все возможные двузначные числа, используя цифры 7 и 4.

15 . Миша запланировал купить: карандаш, линейку, блокнот и тетрадь. Сегодня он купил только два разных предмета. Что мог купить Миша, если считать, что в магазине были все нужные ему учебные принадлежности?

16 . Четыре человека обменялись рукопожатиями. Сколько было всего рукопожатий?

17 . Сколько существует двузначных чисел, в записи которых отсутствует цифра 0?

18 . Записать все возможные трехзначные числа, которые можно составить из цифр 1 и 2.

19 . Выписать все возможные четные трехзначные числа, составленные из цифр 1 и 2.

20 . Записать все возможные двузначные числа, при записи которых используются цифры 2, 8 и 5.

21 . Сколько существует различных двузначных чисел, все цифры которых нечетные?

22 . Какие трехзначные числа можно записать с помощью цифр 3, 7 и 1 при условии, что в записи числа не должно быть одинаковых цифр? Сколько таких чисел?

23 . Сколько трехзначных чисел можно составить из цифр 1, 2, 4, 6, если никакую цифру не использовать более одного раза? Сколько среди этих чисел будет четных? Сколько нечетных?

24 . В автомашине пять мест. Сколькими способами пять человек могут усесться в эту машину, если занять место водителя могут только двое из них?

25. В классе 5 одноместных парт. Сколькими способами можно рассадить на них двух (трех) вновь прибывших школьников?

26 . Вспомните басню И. Крылова «Квартет»:

Проказница Мартышка, Осел, Козел да косолапый Мишка затеяли сыграть Квартет. Ударили в смычки, дерут, а толку нет. «Стой, братцы, стой! - кричит Мартышка. - Погодите! Как музыке идти? Ведь вы не так сидите». Сколькими различными способами могут попытаться сесть эти музыканты? Может ли это улучшить качество их игры?

27 . Мальчиков и девочек рассаживают в ряд на подряд расположенные места, причем мальчики садятся на нечетные места, а девочки - на четные. Сколькими способами можно это сделать, если:

а) на 6 мест рассаживают 3 мальчиков и 3 девочек;

б) на 10 мест рассаживают 5 мальчиков и 5 девочек?

28 . На пустую шашечную доску надо поместить две шашки - черную и белую. Сколько различных положений могут они занимать на доске?

29. Пусть номер автомобиля составляется из двух букв, за которыми следуют две цифры, например АВ-53. Сколько разных номеров можно составить, если использовать 5 букв и 6 цифр?

30 . Номер автомобиля состоит из трех букв и четырех цифр. Сколько существует различных автомобильных номеров (три буквы берутся из 29 букв русского алфавита)?

31 . Пусть вам нужно было сходить в библиотеку, сберегательный банк, на почту и отдать в ремонт ботинки. Для того чтобы выбрать кратчайший маршрут, необходимо рассмотреть все возможные варианты. Сколько существует вариантов пути, если библиотека, сберегательная касса, почта и сапожная мастерская расположены далеко друг от друга?

32. Пусть вам нужно было сходить в библиотеку, сберегательный банк, на почту и отдать в ремонт ботинки. Для того чтобы выбрать кратчайший маршрут, необходимо рассмотреть все возможные варианты. Сколько существует разумных вариантов пути, если библиотека и почта находятся рядом, но значительно удалены от сберегательной кассы и сапожной мастерской, расположенных далеко друг от друга?

33. Среди пассажиров, едущих в вагоне, шло оживленное обсуждение четырех журналов. Оказалось, что каждый выписывает два журнала, причем каждая из возможных комбинаций двух журналов выписывается одним человеком. Сколько человек было в этой группе?

34 . Имеется пять кубиков, которые отличаются друг от друга только цветом: 2 красных, 1 белый и 2 черных. Есть два ящика А и Б, причем в А помещается 2 кубика, а в Б - 3. Сколькими различными способами можно разместить эти кубики в ящиках А и Б?

35. Чтобы принести царю-батюшке молодильные яблоки, должен Иван-царевич найти единственный верный путь к волшебному саду. Встретил Иван-царевич на развилке трех дорог старого ворона и вот какие советы от него услышал:

1) иди сейчас по правой тропинке;

2) на следующей развилке не выбирай правую тропинку;

3) на третьей развилке не ходи по левой тропинке.

Пролетавший мимо голубь шепнул Ивану-царевичу, что только один совет ворона верный и что обязательно надо пройти по тропинкам разных направлений. Наш герой выполнил задание и попал в волшебный сад. Каким маршрутом он воспользовался?

Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

Перестановки, сочетания и размещения без повторений

Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений »? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

яблоко / груша / банан

Вопрос первый : сколькими способами их можно переставить?

Одна комбинация уже записана выше и с остальными проблем не возникает:

яблоко / банан / груша
груша / яблоко / банан
груша / банан / яблоко
банан / яблоко / груша
банан / груша / яблоко

Итого : 6 комбинаций или 6 перестановок .

Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

Пожалуйста, откройте справочный материал (методичку удобно распечатать) и в пункте № 2 найдите формулу количества перестановок.

Никаких мучений – 3 объекта можно переставить способами.

Вопрос второй : сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний :

Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

б) Перечислим все возможные сочетания двух фруктов:

яблоко и груша;
яблоко и банан;
груша и банан.

Количество комбинаций легко проверить по той же формуле:

Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

в) И, наконец, три фрукта можно выбрать единственным способом:

Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
способами можно выбрать хотя бы один фрукт.

Читатели, внимательно изучившие вводный урок по теории вероятностей , уже кое о чём догадались. Но о смысле знака «плюс» позже.

Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

Вопрос третий : сколькими способами можно раздать по одному фрукту Даше и Наташе?

Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

яблоко и груша;
яблоко и банан;
груша и банан.

Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
яблоком можно угостить Дашу, а грушей – Наташу;
либо наоборот – груша достанется Даше, а яблоко – Наташе.

И такая перестановка возможна для каждой пары фруктов.

Рассмотрим ту же студенческую группу, которая пошла на танцы. Сколькими способами можно составить пару из юноши и девушки?

Способами можно выбрать 1 юношу;
способами можно выбрать 1 девушку.

Таким образом, одного юношу и одну девушку можно выбрать: способами.

Когда из каждого множества выбирается по 1 объекту, то справедлив следующий принцип подсчёта комбинаций: «каждый объект из одного множества может составить пару с каждым объектом другого множества».

То есть, Олег может пригласить на танец любую из 13 девушек, Евгений – тоже любую из тринадцати, и аналогичный выбор есть у остальных молодых людей. Итого: возможных пар.

Следует отметить, что в данном примере не имеет значения «история» образования пары; однако если принять во внимание инициативу, то количество комбинаций нужно удвоить, поскольку каждая из 13 девушек тоже может пригласить на танец любого юношу. Всё зависит от условия той или иной задачи!

Похожий принцип справедлив и для более сложных комбинаций, например: сколькими способами можно выбрать двух юношей и двух девушек для участия в сценке КВН?

Союз И недвусмысленно намекает, что комбинации необходимо перемножить:

Возможных групп артистов.

Иными словами, каждая пара юношей (45 уникальных пар) может выступать с любой парой девушек (78 уникальных пар). А если рассмотреть распределение ролей между участниками, то комбинаций будет ещё больше. …Очень хочется, но всё-таки воздержусь от продолжения, чтобы не привить вам отвращение к студенческой жизни =).

Правило умножения комбинаций распространяется и на бОльшее количество множителей:

Задача 8

Сколько существует трёхзначных чисел, которые делятся на 5?

Решение : для наглядности обозначим данное число тремя звёздочками: ***

В разряд сотен можно записать любую из цифр (1, 2, 3, 4, 5, 6, 7, 8 или 9). Ноль не годится, так как в этом случае число перестаёт быть трёхзначным.

А вот в разряд десятков («посерединке») можно выбрать любую из 10 цифр: .

По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

Итого, существует : трёхзначных чисел, которые делятся на 5.

При этом произведение расшифровывается так: «9 способами можно выбрать цифру в разряд сотен и 10 способами выбрать цифру в разряд десятков и 2 способами в разряд единиц »

Или ещё проще: «каждая из 9 цифр в разряде сотен комбинируется с каждой из 10 цифр разряда десятков и с каждой из двух цифр в разряде единиц ».

Ответ : 180

А теперь…

Да, чуть не забыл об обещанном комментарии к задаче № 5, в которой Боре, Диме и Володе можно сдать по одной карте способами. Умножение здесь имеет тот же смысл: способами можно извлечь 3 карты из колоды И в каждой выборке переставить их способами.

А теперь задача для самостоятельного решения… сейчас придумаю что-нибудь поинтереснее, …пусть будет про ту же русскую версию блэкджека:

Задача 9

Сколько существует выигрышных комбинаций из 2 карт при игре в «очко»?

Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и, давайте будем считать выигрышной комбинацию из двух тузов.

(порядок карт в любой паре не имеет значения)

Краткое решение и ответ в конце урока.

Кстати, не надо считать пример примитивным. Блэкджек – это чуть ли не единственная игра, для которой существует математически обоснованный алгоритм, позволяющий выигрывать у казино. Желающие могут легко найти массу информации об оптимальной стратегии и тактике. Правда, такие мастера довольно быстро попадают в чёрный список всех заведений =)

Пришло время закрепить пройденный материал парой солидных задач:

Задача 10

У Васи дома живут 4 кота.

а) сколькими способами можно рассадить котов по углам комнаты?
б) сколькими способами можно отпустить гулять котов?
в) сколькими способами Вася может взять на руки двух котов (одного на левую, другого – на правую)?

Решаем : во-первых, вновь следует обратить внимание на то, что в задаче речь идёт о разных объектах (даже если коты – однояйцовые близнецы). Это очень важное условие!

а) Молчание котов. Данной экзекуции подвергаются сразу все коты
+ важно их расположение, поэтому здесь имеют место перестановки:
способами можно рассадить котов по углам комнаты.

Повторюсь, что при перестановках имеет значение лишь количество различных объектов и их взаимное расположение. В зависимости от настроения Вася может рассаживать животных полукругом на диване, в ряд на подоконнике и т.д. – перестановок во всех случаях будет 24. Желающие могут для удобства представить, что коты разноцветные (например, белый, чёрный, рыжий и полосатый) и перечислить все возможные комбинации.

б) Сколькими способами можно отпустить гулять котов?

Предполагается, что коты ходят гулять только через дверь, при этом вопрос подразумевает безразличие по поводу количества животных – на прогулку могут выйти 1, 2, 3 или все 4 кота.

Считаем все возможные комбинации:

Способами можно отпустить гулять одного кота (любого из четырёх);
способами можно отпустить гулять двух котов (варианты перечислите самостоятельно);
способами можно отпустить гулять трёх котов (какой-то один из четырёх сидит дома);
способом можно выпустить всех котов.

Наверное, вы догадались, что полученные значения следует просуммировать:
способами можно отпустить гулять котов.

Энтузиастам предлагаю усложнённую версию задачи – когда любой кот в любой выборке случайным образом может выйти на улицу, как через дверь, так и через окно 10 этажа. Комбинаций заметно прибавится!

в) Сколькими способами Вася может взять на руки двух котов?

Ситуация предполагает не только выбор 2 животных, но и их размещение по рукам:
способами можно взять на руки 2 котов.

Второй вариант решения: способами можно выбрать двух котов и способами посадить каждую пару на руки:

Ответ : а) 24, б) 15, в) 12

Ну и для очистки совести что-нибудь поконкретнее на умножение комбинаций…. Пусть у Васи дополнительно живёт 5 кошек =) Сколькими способами можно отпустить гулять 2 котов и 1 кошку?

То есть, с каждой парой котов можно выпустить каждую кошку.

Ещё один баян для самостоятельного решения:

Задача 11

В лифт 12-этажного дома сели 3 пассажира. Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со 2-го) этаже. Сколькими способами:

1) пассажиры могут выйти на одном и том же этаже (порядок выхода не имеет значения) ;
2) два человека могут выйти на одном этаже, а третий – на другом;
3) люди могут выйти на разных этажах;
4) пассажиры могут выйти из лифта?

И тут часто переспрашивают, уточняю: если 2 или 3 человека выходят на одном этаже, то очерёдность выхода не имеет значения. ДУМАЙТЕ, используйте формулы и правила сложения/умножения комбинаций. В случае затруднений пассажирам полезно дать имена и порассуждать, в каких комбинациях они могут выйти из лифта. Не нужно огорчаться, если что-то не получится, так, например, пункт № 2 достаточно коварен.

Полное решение с подробными комментариями в конце урока.

Заключительный параграф посвящён комбинациям, которые тоже встречаются достаточно часто – по моей субъективной оценке, примерно в 20-30% комбинаторных задач:

Перестановки, сочетания и размещения с повторениями

Перечисленные виды комбинаций законспектированы в пункте № 5 справочного материала Основные формулы комбинаторики , однако некоторые из них по первому прочтению могут быть не очень понятными. В этом случае сначала целесообразно ознакомиться с практическими примерами, и только потом осмысливать общую формулировку. Поехали:

Перестановки с повторениями

В перестановках с повторениями, как и в «обычных» перестановках, участвует сразу всё множество объектов , но есть одно но: в данном множестве один или бОльшее количество элементов (объектов) повторяются. Встречайте очередной стандарт:

Задача 12

Сколько различных буквосочетаний можно получить перестановкой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

Решение : в том случае, если бы все буквы были различны, то следовало бы применить тривиальную формулу , однако совершенно понятно, что для предложенного набора карточек некоторые манипуляции будут срабатывать «вхолостую», так, например, если поменять местами любые две карточки с буквами «К» в любом слове, то получится то же самое слово. Причём, физически карточки могут сильно отличаться: одна быть круглой с напечатанной буквой «К», другая – квадратной с нарисованной буквой «К». Но по смыслу задачи даже такие карточки считаются одинаковыми , поскольку в условии спрашивается о буквосочетаниях.

Всё предельно просто – всего: 11 карточек, среди которых буква:

К – повторяется 3 раза;
О – повторяется 3 раза;
Л – повторяется 2 раза;
Ь – повторяется 1 раз;
Ч – повторяется 1 раз;
И – повторяется 1 раз.

Проверка: 3 + 3 + 2 + 1 + 1 + 1 = 11, что и требовалось проверить.

По формуле количества перестановок с повторениями :
различных буквосочетаний можно получить. Больше полумиллиона!

Для быстрого расчёта большого факториального значения удобно использовать стандартную функцию Экселя: забиваем в любую ячейку =ФАКТР(11) и жмём Enter .

На практике вполне допустимо не записывать общую формулу и, кроме того, опускать единичные факториалы:

Но предварительные комментарии о повторяющихся буквах обязательны!

Ответ : 554400

Другой типовой пример перестановок с повторениями встречается в задаче о расстановке шахматных фигур, которую можно найти на складе готовых решений в соответствующей pdf-ке. А для самостоятельного решения я придумал менее шаблонное задание:

Задача 13

Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

Формула здесь не годится, поскольку учитывает совпадающие перестановки (например, когда меняются местами силовые упражнения в среду с силовыми упражнениями в четверг). И опять – по факту те же 2 силовые тренировки могут сильно отличаться друг от друга, но по контексту задачи (с точки зрения расписания) они считаются одинаковыми элементами.

Двухстрочное решение и ответ в конце урока.

Сочетания с повторениями

Характерная особенность этого вида комбинаций состоит в том, что выборка проводится из нескольких групп, каждая из которых состоит из одинаковых объектов.

Сегодня все хорошо потрудились, поэтому настало время подкрепиться:

Задача 14

В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

Решение : сразу обратите внимание на типичный критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков. Пирожки в каждой группе, разумеется, отличаются – ибо абсолютно идентичные пончики можно смоделировать разве что на компьютере =) Однако физические характеристики пирожков по смыслу задачи не существенны, и хот-доги / ватрушки / пончики в своих группах считаются одинаковыми.

Что может быть в выборке? Прежде всего, следует отметить, что в выборке обязательно будут одинаковые пирожки (т.к. выбираем 5 штук, а на выбор предложено 3 вида). Варианты тут на любой вкус: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 + ватрушки + 2 пончика и т.д.

Как и при «обычных» сочетаниях, порядок выбора и размещение пирожков в выборке не имеет значения – просто выбрали 5 штук и всё.

Используем формулу количества сочетаний с повторениями:
способом можно приобрести 5 пирожков.

Приятного аппетита!

Ответ : 21

Какой вывод можно сделать из многих комбинаторных задач?

Порой, самое трудное – это разобраться в условии.

Аналогичный пример для самостоятельного решения:

Задача 15

В кошельке находится достаточно большое количество 1-, 2-, 5- и 10-рублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

В целях самоконтроля ответьте на пару простых вопросов:

1) Могут ли в выборке все монеты быть разными?
2) Назовите самую «дешевую» и самую «дорогую» комбинацию монет.

Решение и ответы в конце урока.

Из моего личного опыта, могу сказать, что сочетания с повторениями – наиболее редкий гость на практике, чего не скажешь о следующем виде комбинаций:

Размещения с повторениями

Из множества, состоящего из элементов, выбирается элементов, при этом важен порядок элементов в каждой выборке. И всё бы было ничего, но довольно неожиданный прикол заключается в том, что любой объект исходного множества мы можем выбирать сколько угодно раз. Образно говоря, от «множества не убудет».

Когда так бывает? Типовым примером является кодовый замок с несколькими дисками, но по причине развития технологий актуальнее рассмотреть его цифрового потомка:

Задача 16

Сколько существует четырёхзначных пин-кодов?

Решение : на самом деле для разруливания задачи достаточно знаний правил комбинаторики: способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин-кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

А теперь с помощью формулы. По условию нам предложен набор из цифр, из которого выбираются цифры и располагаются в определенном порядке , при этом цифры в выборке могут повторяться (т.е. любой цифрой исходного набора можно пользоваться произвольное количество раз) . По формуле количества размещений с повторениями:

Ответ : 10000

Что тут приходит на ум… …если банкомат «съедает» карточку после третьей неудачной попытки ввода пин-кода, то шансы подобрать его наугад весьма призрачны.

И кто сказал, что в комбинаторике нет никакого практического смысла? Познавательная задача для всех читателей сайт:

Задача 17

Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами) .

Сколько различных номерных знаков можно составить для региона?

Не так их, кстати, и много. В крупных регионах такого количества не хватает, и поэтому для них существуют по несколько кодов к надписи RUS.

Решение и ответ в конце урока. Не забываем использовать правила комбинаторики;-) …Хотел похвастаться эксклюзивом, да оказалось не эксклюзивом =) Заглянул в Википедию – там есть расчёты, правда, без комментариев. Хотя в учебных целях, наверное, мало кто прорешивал.

Наше увлекательное занятие подошло к концу, и напоследок я хочу сказать, что вы не зря потратили время – по той причине, что формулы комбинаторики находят ещё одно насущное практическое применение: они встречаются в различных задачах по теории вероятностей ,
и в задачах на классическое определение вероятности – особенно часто =)

Всем спасибо за активное участие и до скорых встреч!

Решения и ответы :

Задача 2: Решение : найдём количество всех возможных перестановок 4 карточек:

Когда карточка с нулём располагается на 1-м месте, то число становится трёхзначным, поэтому данные комбинации следует исключить. Пусть ноль находится на 1-м месте, тогда оставшиеся 3 цифры в младших разрядах можно переставить способами.

Примечание : т.к. карточек немного, то здесь несложно перечислить все такие варианты:
0579
0597
0759
0795
0957
0975

Таким образом, из предложенного набора можно составить:
24 – 6 = 18 четырёхзначных чисел
Ответ : 18

Задача 4: Решение : способами можно выбрать 3 карты из 36.
Ответ : 7140

Задача 6: Решение : способами.
Другой вариант решения : способами можно выбрать двух человек из группы и и
2) Самый «дешёвый» набор содержит 3 рублёвые монеты, а самый «дорогой» – 3 десятирублёвые.

Задача 17: Решение : способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить: .
способами можно составить буквенную комбинацию автомобильного номера.
По правилу умножения комбинаций, всего можно составить:
автомобильных номера
(каждая цифровая комбинация сочетается с каждой буквенной комбинацией).
Ответ : 1726272