- (равенство устар.), равенства, ср. (книжн.). 1. только ед. отвлеч. сущ. к равный, одинаковость, полное сходство (по величине, качеству, достоинству и т.п.). «Без колхозов неравенство, в колхозах равенство прав.» Сталин. Равенство сил. Равенство… … Толковый словарь Ушакова

- (equality) Фактическое и/или нормативное утверждение равной компетенции или равного положения лиц, порождающее право на справедливое распределение (distributive justice). Квазиэмпирическое равенство индивидов относится к сугубо физическим… … Политология. Словарь.

Все люди рождаются свободными и равными в своем достоинстве и правах. Всеобщая декларация прав человека (1948 г.) Все люди рождаются равными и до самой смерти против этого борются. Лешек Кумор Люди рождаются свободными и неравными. Грант Аллен… … Сводная энциклопедия афоризмов

Одно из основных понятий социальной философии и самой социальной жизни. Основанием для всех видов Р. является формальное Р., которое в зависимости от сферы применения и выбора ценностной основы уравнивания формирует различные содержательные… … Философская энциклопедия

Социальное, характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… … Современная энциклопедия

Социальное характеристика определенного общественного состояния, составная часть многих социальных идеалов. Требования политического и социального равенства играли активную, часто революционную роль в историческом процессе. Стоицизм выработал… …

- (equality) Обладание одинаковым значением. Обозначается знаком равенства (=) и применимо к числам или алгебраическим выражениям. Если х и у являются действительными числами, выражение х=у означает, что х и у одинаковы. Если х и у – комплексные… … Экономический словарь

Равенство - Равенство ♦ Égalité Два существа равны, когда они одной величины или обладают одним и тем же количеством чего либо. Таким образом, понятие обретает смысл только относительно и предполагает наличие некой эталонной величины. Так, мы говорим … Философский словарь Спонвиля

См … Словарь синонимов

равенство - 1. Полное сходство, подобие (по величине, качеству, достоинству). 2. Качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы… … Справочник технического переводчика

В логике и математике отношение взаимной заменяемости объектов, которые именно в силу этой заменяемости и считаются равными (а = b). Отношение равенства обладает свойствами рефлексивности (каждый объект равен самому себе), симметричности (если а … Большой Энциклопедический словарь

Книги

  • Равенство , Дэнни Дорлинг. Книга Дэнни Дорлинга `Равенство` богата очень интересными идеями. Большая степень равенства улучшает реальное качество жизни для подавляющего большинства населения. Она улучшает ка чество…

Пусть даны 2 числовых выражения А иВ . Соединив их знаком равенства, получим некоторое высказывание, называемое числовым равенством.

Равенство А =В считается истинным тогда и только тогда, когда оба выраженияА иВ имеют числовые значения, причем эти значения одинаковы.

Пример . 1) 16: 2 = 3 + 5 – истинное числовое равенство, т.к. левая и правая части этого неравенства имеют значение 8;

2) 3 ∙ 4 = 15 – 4 – ложное равенство, т.к. значение левой части равно 12, а правой 11;

3) 15: (10 – 10) = 15 – ложно, т.к. выражение в левой части не имеет значения.

Из данного выше определения вытекает, что если истинны равенства А =В иС =D , гдеА ,В ,С, D – числовые выражения, то при условии выполнимости соответствующих операций, истинны и равенства (А ) + (С ) = (В ) + (D ), (А ) – (С ) = (В ) – (D ), (А ) ∙ (С ) = (В ) ∙ (D ), (А ) : (С ) = (В ) : (D ), т.е. числовые равенства можно почленно складывать, вычитать, умножать, делить.

Отношение равенства числовых выражений обладает свойствами:

1) рефлексивности (А =А );

2) симметричности (А =В В =А );

3) транзитивности (А =В В =С А =С ), т.о. данное отношение является отношением эквивалентности и множество числовых выражений разбивается на классы эквивалентности, состоящие из выражений, имеющих одно и то же значение;

4) если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) + (С ) = (В ) + (С ));

5) если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) ∙ (С ) = (В ) ∙ (С ));

6) если обе части истинного числового равенства возвести в одну и ту же нечетную степень, то получим истинное числовое равенство (если п А =В (А ) п = (В ) п ;

7) если обе части истинного числового равенства, левая и правая части которого имеют неотрицательное значение, возвести в одну и ту же четную степень, то получим истинное числовое равенство (если п – четное натуральное число, значения числовых выраженийА иВ неотрицательны, тоА =В (А ) п = (В ) п . Если снять условие, что значения числовых выраженийА иВ неотрицательны, то вместо эквивалентности будем иметь лишь импликациюА =В (А ) п = (В ) п .

§ 3. Числовые неравенства и их свойства

Пусть А иВ – два числовых выражения. Соединив их знаком > или <, получим некоторое высказывание, называемое числовым неравенством. НеравенствоА <В считается истинным, еслиА иВ имеют числовые значения, причем числовое значение выраженияА меньше числового значения выраженияВ .

Пример . 2 + 5 < 3 ∙ 4 – истинное неравенство, т.к. левая часть имеет значение 7, правая имеет значение 12 и 7 < 12.

Неравенство А В является дизъюнкцией неравенстваА <В и равенстваА =В. Оно истинно тогда и только тогда, когда истинно хотя бы одно из данных элементарных высказываний.

Неравенство А <В <С является конъюнкцией неравенствА <В иВ <С. Оно истинно тогда и только тогда, когда истинны оба неравенства.

Выполнив указанные в числовых выражениях действия, мы получим в левой и правой части неравенства соответствующие числа. Пусть а , b ,с ,d – соответствующие значения числовых выраженийА ,B ,C ,D .

Свойства числовых неравенств

1) если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство (А <В (А ) + (С ) < (В ) + (С ));

2) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее положительное значение, то полученное числовое неравенство будет также истинным (А <В (А ) ∙ (С ) < (В ) ∙ (С ));

3) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее отрицательное значение, то, чтобы получить истинное числовое неравенство, необходимо знак неравенства поменять на противоположный (А <В (А ) ∙ (С ) > (В ) ∙ (С ));

4) неравенства одного знака можно почленно складывать (А <В ,С <D (А ) + (С ) < (В ) + (D ));

5) неравенства одного знака, имеющие положительные значения, можно почленно перемножать (если А <В ,С <D , причема , b ,с ,d > 0, то (А ) ∙ (С ) < (В ) ∙ (D ));

6) обе части истинного числового неравенства можно возвести в одну и ту же нечетную степень (если п – нечетное натуральное число, тоА <В (А ) п < (В ) п );

7) возводить в четную степень обе части неравенства можно лишь в том случае, если обе они имеют неотрицательные значения (если п – четное натуральное число иа , b ≥ 0, тоА <В (А ) п < (В ) п );

8) если а , b < 0,А <В  > .

«Равенство» - это тема, которую ученики проходят еще в начальной школе. Сопутствует ей также ей «Неравенства». Эти два понятия тесно взаимосвязаны. Кроме того, с ними связывают такие термины, как уравнения, тождества. Итак, что такое равенство?

Понятие равенства

Под этим термином понимают высказывания, в записи которых есть знак «=». Равенства разделяются на верные и неверные. Если в записи вместо = стоит <, >, тогда речь идет о неравенствах. Кстати, первый признак равенства говорит о том, что обе части выражения идентичны по своему результату или записи.

Кроме понятия равенства, в школе изучают также тему «Числовое равенство». Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака =. К примеру, 2*5+7=17. Обе части записи равны между собой.

В числовых выражениях подобного типа могут использоваться скобки, влияющие на порядок действий. Итак, существует 4 правила, которые следует учесть при вычислении результатов числовых выражений.

  1. Если в записи нет скобок, тогда действия выполняются с высшей ступени: III→II→I. Если есть несколько действий одной категории, тогда они выполняются слева направо.
  2. Если в записи есть скобки, тогда действие выполняется в скобках, а затем с учетом ступеней. Возможно, в скобках будет несколько действий.
  3. Если выражение представлено в виде дроби, тогда вычислять нужно сначала числитель, потом знаменатель, затем числитель делится на знаменатель.
  4. Если в записи есть вложенные скобки, тогда вычисляется сначала выражение во внутренних скобках.

Итак, теперь понятно, что такое равенство. В дальнейшем будут рассмотрены понятия уравнения, тождества и способы их вычисления.

Свойства числовых равенств

Что такое равенство? Изучение этого понятия требует знания свойств числовых тождеств. Приведенные ниже текстовые формулы позволяют лучше изучить данную тему. Конечно, эти свойства больше подходят для изучения математики в старших классах.

1. Числовое равенство не будет нарушено, если в обеих его частях прибавить одно и то же число к существующему выражению.

А = В ↔ А + 5 = В + 5

2. Не будет нарушено уравнение, если обе его части умножить или разделить на одно и то же число или выражение, которые отличны от нуля.

Р = О ↔ Р ∙ 5 = О ∙ 5

Р = О ↔ Р: 5 = О: 5

3. Прибавив к обеим частям тождества одинаковую функцию, которая имеет смысл при любых допустимых значениях переменной, мы получим новое равенство, равносильное первоначальному.

F(X) = Ψ (X) F(X) + R(X) = Ψ (X) + R(X)

4. Любое слагаемое или выражение можно перенести по другую сторону знака равенства, при этом нужно поменять знаки на противоположные.

Х + 5 = У - 20 Х = У - 20 - 5 Х = У - 25

5. Умножив или разделив обе части уравнения на одну и ту же функцию, отличную от нуля и имеющую смысл для каждого значения Х из ОДЗ, мы получим новое уравнение, равносильное первоначальному.

F(X) = Ψ(X) F(X) ∙ R(X) = Ψ(X) ∙ R(X)

F(X) = Ψ (X) F(X) : G(X) = Ψ (X) : G(X)

Приведенные правила в явной степени указывают на принцип равенства, который существует при определенных условиях.

Понятие пропорции

В математике существует такое понятие, как равенство отношений. В этом случае подразумевается определение пропорции. Если разделить А на В, то результатом будет отношение числа А к числу В. Пропорцией называют равенство двух отношений:

Иногда пропорция записывается следующим образом: A: B = C: D. Отсюда вытекает основное свойство пропорции: A * D = D * C , где A и D - крайние члены пропорции, а В и С - средние.

Тождества

Тождеством называют равенство, которое будет верно при всех допустимых значениях тех переменных, которые входят в задание. Тождества могут быть представлены как буквенные или числовые равенства.

Тождественно равными называются выражения, содержащие в обеих частях равенства неизвестную переменную, которая способна приравнять две части одного целого.

Если проводить замены одного выражения другим, которое будет равно ему, тогда речь идет о тождественном преобразовании. В этом случае можно воспользоваться формулами сокращенного умножения, законами арифметики и прочими тождествами.

Чтобы сократить дробь, нужно провести тождественные преобразования. К примеру, дана дробь. Чтобы получить результат, следует воспользоваться формулами сокращенного умножения, разложением на множители, упрощением выражений и сокращением дробей.

При этом стоит учесть, что данное выражение будет тождественным тогда, когда знаменатель не будет равен 3.

5 способов доказать тождество

Чтобы доказать равенство тождественное, нужно провести преобразование выражений.

I способ

Необходимо провести равносильные преобразования в левой части. В результате получается правая часть, и можно говорить о том, что тождество доказано.

II способ

Все действия по преобразованию выражения происходят в правой части. Итогом проделанных манипуляций является левая часть. Если обе части идентичны, то тождество доказано.

III способ

«Трансформации» происходят в обеих частях выражения. Если в результате получатся две идентичные части, тождество доказано.

IV способ

Из левой части вычитается правая. В результате равносильных преобразований должен получиться нуль. Тогда можно говорить о тождественности выражения.

V способ

Из правой части вычитается левая. Все равносильные преобразования сводятся к тому, чтобы в ответе стоял нуль. Только в таком случае можно говорить о тождественности равенства.

Основные свойства тождеств

В математике зачастую используют свойства равенств, чтобы ускорить процесс вычисления. Благодаря основным алгебраическим тождествам процесс вычисления некоторых выражений займет считанные минуты вместо долгих часов.

  • Х + У = У + Х
  • Х + (У + С) = (Х + У) + С
  • Х + 0 = Х
  • Х + (-Х) = 0
  • Х ∙ (У + С) = Х∙У + Х∙С
  • Х ∙ (У - С) = Х∙У - Х∙С
  • (Х + У) ∙ (С + Е) = Х∙С + Х∙Е + У∙С + У∙Е
  • Х + (У + С) = Х + У + С
  • Х + (У - С) = Х + У - С
  • Х - (У + С) = Х - У - С
  • Х - (У - С) = Х - У + С
  • Х ∙ У = У ∙ Х
  • Х ∙ (У ∙ С) = (Х ∙ У) ∙ С
  • Х ∙ 1 = Х
  • Х ∙ 1/Х = 1, где Х ≠ 0

Формулы сокращенного умножения

По своей сути формулы сокращенного умножения являются равенствами. Они помогают решить множество задач в математике благодаря своей простоте и легкости в обращении.

  • (А + В) 2 = А 2 + 2∙А∙В + В 2 - квадрат суммы пары чисел;
  • (А - В) 2 = А 2 - 2∙А∙В + В 2 - квадрат разности пары чисел;
  • (С + В) ∙ (С - В) = С 2 - В 2 - разность квадратов;
  • (А + В) 3 = А 3 + 3∙А 2 ∙В + 3∙А∙В 2 + В 3 - куб суммы;
  • (А - В) 3 = А 3 - 3∙А 2 ∙В + 3∙А∙В 2 - В 3 - куб разности;
  • (Р + В) ∙ (Р 2 - Р∙В + В 2) = Р 3 + В 3 - сумма кубов;
  • (Р - В) ∙ (Р 2 + Р∙В + В 2) = Р 3 - В 3 - разность кубов.

Формулы сокращенного умножения зачастую применяются, если необходимо привести многочлен к привычному виду, упростив его всеми возможными способами. Представленные формулы доказываются просто: достаточно раскрыть скобки и привести подобные слагаемые.

Уравнения

После изучения вопроса, что такое равенство, можно приступать к следующему пункту: Под уравнением понимается равенство, в котором присутствуют неизвестные величины. Решением уравнения называют нахождение всех значений переменной, при которых обе части всего выражения будут равны. Также встречаются задания, в которых нахождение решений уравнения невозможно. В таком случае говорят, что корней нет.

Как правило, равенства с неизвестными в качестве решения выдают целые числа. Однако возможны случаи, когда корнем являются вектор, функция и другие объекты.

Уравнение является одним из важнейших понятий в математике. Большинство научных и практических задач не позволяют измерить или вычислить какую-либо величину. Поэтому необходимо составлять соотношение, которое удовлетворит все условия поставленной задачи. В процессе составления такого соотношения появляется уравнение или система уравнений.

Обычно решение равенства с неизвестным сводится к преобразованию сложного уравнения и сведению его к простым формам. Необходимо помнить, что преобразования нужно проводить относительно обеих частей, в противном случае на выходе получится неверный результат.

4 способа решить уравнение

Под решением уравнения понимают замену заданного равенства другим, которое равносильно первому. Подобная подмена известна как тождественное преобразование. Чтобы решить уравнение, необходимо воспользоваться одним из способов.

1. Одно выражение заменяется другим, которое в обязательном порядке будет тождественно первому. Пример: (3∙х+3) 2 =15∙х+10. Это выражение можно преобразовать в 9∙х 2 +18∙х+9=15∙х+10.

2. Перенесение членов равенства с неизвестным из одной стороны в другую. В таком случае необходимо правильно менять знаки. Малейшая ошибка сгубит всю проделанную работу. В качестве примера возьмем предыдущий «образец».

9∙х 2 + 12∙х + 4 = 15∙х + 10

9∙х 2 + 12∙х + 4 - 15∙х - 10 = 0

3. Перемножение обеих частей равенства на равное число или выражение, которые не равняются 0. Однако стоит напомнить, что если новое уравнение не будет равносильным равенству до преобразований, тогда количество корней может существенно измениться.

4. Возведение в квадрат обеих частей уравнения. Этот способ просто замечательный, особенно когда в равенстве есть иррациональные выражения, то есть и выражение под ним. Тут есть один нюанс: если возвести уравнение в четную степень, тогда могут появиться посторонние корни, которые исказят суть задания. И если неправильно извлечь корень, тогда смысл вопроса в задаче будет неясен. Пример: │7∙х│=35 → 1) 7∙х = 35 и 2) - 7∙х = 35 → уравнение будет решено верно.

Итак, в этой статье упоминаются такие термины, как то уравнения и тождества. Все они происходят от понятия «равенство». Благодаря различного рода равносильным выражениям решение некоторых задач в значительной мере облегчено.

1) качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы подчеркнуть наличие равенства и неравенства в положении отдельных социальных групп; 2) математическое тождество, уравнение.

Отличное определение

Неполное определение ↓

РАВЕНСТВО

один из принципов права. Понятие Р. - определенная абстракция, т.е. результат сознательного (мыслительного) абстрагирования от тех различий, которые присущи уравниваемым объектам. Правовое Р. не столь абстрактно. Основанием (и критерием) правового уравнения различных людей является свобода индивидов в общественных отношениях, признаваемая и утверждаемая в форме их правоспособности и правосубъектности. В этом специфика правового Р. и права вообще. Р. имеет рациональный смысл, логически и практически возможно в социальном мире именно и только правовое (формально-правовое, формальное) Р. История права - это история прогрессирующей эволюции содержания, объема, масштаба и меры формального (правового) Р. при сохранении самого этого принципа как принципа любой системы права, права вообще. Таким образом, принцип формального Р. представляет собой постоянно присущий праву принцип с исторически изменяющимся содержанием. В целом историческая эволюция содержания, объема, сферы действия принципа формального Р. не опровергает, а, наоборот, подкрепляет значение данного принципа в качестве отличительной особенности права в его соотношении с иными видами социальной регуляции (моральной, религиозной и т.д.). Исходные фактические различия между людьми, рассмотренные и урегулированные с точки зрения правового принципа Р. (равной меры), предстают в итоге в виде неравенства в уже приобретенных правах (по их структуре, содержанию и объему прав различных субъектов права). Право как форма отношений по принципу Р. не уничтожает (и не может уничтожить) исходных различий между разными субъектами права, оно лишь формализует и упорядочивает эти различия по единому основанию, трансформирует неопределенные фактические различия в формально- определенные права свободных, независимых друг от друга, равных личностей. В этом, по существу, состоит специфика, смысл и ценность правовой формы опосредования, регуляции и упорядочения общественных отношений. Правовое Р. и правовое неравенство однопорядко- вые правовые определения. Принцип правового Р. различных субъектов предполагает, что приобретаемые ими реальные субъективные права будут неравны. Благодаря праву хаос различий преобразуется в правовой порядок равенств и неравенств, согласованных по единому основанию и общей норме. Признание различных индивидов формально равными означает признание их равной правоспособности, возможности приобрести те или иные права на соответствующие блага, конкретные объекты и т.д. Формальное право - это лишь способность, абстрактная возможность приобрести, в согласии с общим масштабом и равной мерой правовой регуляции, свое, индивидуально-определенное право на данный объект. Различие в приобретенных правах у разных лиц является необходимым результатом именно соблюдения, а не нарушения принципа формального (правового) Р. этих лиц, не нарушает и не отменяет принципа формального (правового) Р. Для всех, чьи отношения опосредуются правовой формой, право выступает как всеобщая форма, как общезначимый и равный для всех этих лиц (различных по своему фактическому, физическому, умственному, имущественному положению и т.д.) одинаковый масштаб и мера. Само Р. состоит в том, что поведение и положение субъектов данного общего круга отношений и явлений подпадают под действие единого для всех закона, единой (общей, равной) меры. Лит.: Нерсесянц В.С. Право и закон. Из истории правовых учений. М, 1983; Его же. Право - математика свободы. М, 1996; Его же. Ценность права как триединства свободы, равенства и справедливости / / Проблемы ценностного подхода в праве: традиции и обновление. М., 1996. В.С. Нерсесянц


Получив общее представление о равенствах в математике , можно переходить к более детальному изучению этого вопроса. В этой статье мы, во-первых, разъясним, что такое числовые равенства, а, во-вторых, изучим .

Навигация по странице.

Что такое числовое равенство?

Знакомство с числовыми равенствами начинается на самом начальном этапе изучения математики в школе. Обычно это происходит в 1 классе сразу после того, как становятся известными первые числа от 1 до 9 и после того, как обретает смысл фраза «столько же». Тогда то и появляются первые числовые равенства, например, 1=1 , 3=3 и т.п., которые на этом этапе обычно называют просто равенствами без уточняющего определения «числовые».

Равенствам указанного вида на этом этапе придается количественный или порядковый смысл, который вкладывается в . К примеру, числовое равенство 3=3 отвечало картинке, на которой изображены две ветки дерева, на каждой из которых сидят по 3 птицы. Или когда в двух очередях третьими по порядку стоят наши товарищи Петя и Коля.

После изучения арифметических действий, появляются более разнообразные записи числовых равенств, например, 3+1=4 , 7−2=5 , 3·2=6 , 8:4=2 и т.п. Дальше начинают встречаться числовые равенства еще более интересного вида, содержащие в своих частях различные , к примеру, (2+1)+3=2+(1+3) , 4·(4−(1+2))+12:4−1=4·1+3−1 и тому подобные. Дальше происходит знакомство с другими видами чисел, и числовые равенства приобретают все более и более разнообразный вид.

Итак, достаточно ходить вокруг да около, пора уже дать определение числового равенства:

Определение.

Числовое равенство – это равенство, в обеих частях которого находятся числа и/или числовые выражения.

Свойства числовых равенств

Принципы работы с числовыми равенствами определяются их свойствами. А на свойствах числовых равенств в математике завязано очень многое: от свойств решения уравнений и некоторых методов решения систем уравнений до правил работы с формулами, связывающими различные величины. Этим объясняется необходимость подробного изучения свойства числовых равенств.

Свойства числовых равенств полностью согласуются с тем, как определены действия с числами, а также находятся в согласии с определением равных чисел через разность : число a равно числу b тогда и только тогда, когда разность a−b равна нулю. Ниже при описании каждого свойства мы будем прослеживать эту связь.

Основные свойства числовых равенств

Обзор свойств числовых равенств стоит начать с трех основных свойств, характерных всем без исключения равенствам. Итак, основные свойства числовых равенств это:

  • свойство рефлексивности: a=a ;
  • свойство симметричности: если a=b , то b=a ;
  • и свойство транзитивности: если a=b и b=c , то a=c ,

где a , b и c – произвольные числа.

Свойство рефлексивности числовых равенств относится к тому факту, что число равно самому себе. Например, 5=5 , −2=−2 , и т.п.

Несложно показать, что для любого числа a справедливо равенство a−a=0 . Действительно, разность a−a можно переписать в виде суммы a+(−a) , а из свойств сложения чисел мы знаем, что для любого числа a существует единственное −a , и сумма противоположных чисел равна нулю.

Свойство симметричности числовых равенств утверждает, что если число a равно числу b , то число b равно числу a . Например, если 2 3 =8 (смотрите ), то 8=2 3 .

Обоснуем это свойство через разность чисел. Условию a=b отвечает равенство a−b=0 . Покажем, что b−a=0 . Правило раскрытия скобок, перед которыми стоит знак минус, позволяет переписать разность b−a как −(a−b) , она в свою очередь равна −0 , а число, противоположное нулю, есть нуль. Следовательно, b−a=0 , откуда следует, что b=a .

Свойство транзитивности числовых равенств утверждает равенство двух чисел, когда они оба равны третьему числу. Например, из равенств (смотрите ) и 4=2 2 следует, что .

Это свойство также согласуется с определением равных чисел через разность и свойствами действий с числами. Действительно, равенствам a=b и b=c отвечают равенства a−b=0 и b−c=0 . Покажем, что a−c=0 , откуда будет следовать равенство чисел a и c . Так как прибавление нуля не изменяет число, то a−c можно переписать как a+0−c . Нуль заменим суммой противоположных чисел −b и b , при этом последнее выражение примет вид a+(−b+b)−c . Теперь можно выполнить группировку слагаемых следующим образом: (a−b)+(b−c) . А разности в скобках есть нули, следовательно, и сумма (a−b)+(b−c) равна нулю. Этим доказано, что при условии a−b=0 и b−c=0 справедливо равенство a−c=0 , откуда a=c .

Другие важные свойства

Из основных свойств числовых равенств, разобранных в предыдущем пункте, вытекает еще ряд свойств, имеющих ощутимую практическую ценность. Давайте разберем их.

    Начнем с такого свойства: если к обеим частям верного числового равенства прибавить (или вычесть) одно и то же число, то получится верное числовое равенство. С помощью букв оно может быть записано так: если a=b , где a и b – некоторые числа, то a+c=b+c для любого числа c .

    Для обоснования составим разность (a+c)−(b+c) . Ее можно преобразовать к виду (a−b)+(c−c) . Так как a=b по условию, то a−b=0 , и c−c=0 , поэтому (a−b)+(c−c)=0+0=0 . Этим доказано, что (a+c)−(b+c)=0 , следовательно, a+c=b+c .

    Идем дальше: если обе части верного числового равенства умножить на любое число или разделить на отличное от нуля число, то получится верное числовое равенство. То есть, если a=b , то a·c=b·c для любого числа c , и если c отличное от нуля число, то и a:c=b:c .

    Действительно, a·c−b·c=(a−b)·c=0·c=0 , откуда следует равенство произведений a·c и b·c . А деление на отличное от нуля число c можно рассматривать как умножение на 1/c .

    Из разобранного свойства числовых равенств вытекает одно полезное следствие: если a и b отличные от нуля и равные числа, то обратные им числа тоже равны. То есть, если a≠0 , b≠0 и a=b , то 1/a=1/b . Последнее равенство легко доказывается: для этого достаточно обе части исходного равенства a=b разделить на отличное от нуля число, равное произведению a·b .

И остановимся еще на двух свойствах, позволяющих складывать и умножать соответствующие части верных числовых равенств.

    Если почленно сложить верные числовые равенства, то получится верное равенство. То есть, если a=b и c=d , то a+c=b+d для любых чисел a , b , c и d .

    Обоснуем это свойство числовых равенств, отталкиваясь от уже известных нам свойств. Известно, что к обеим частям верного равенства мы можем прибавить любое число. В равенстве a=b прибавим число c , а в равенстве c+d прибавим число b , в результате получим верные числовые равенства a+c=b+c и c+b=d+b , последнее из которых перепишем как b+c=b+d . Из равенств a+c=b+c и b+c=b+d по свойству транзитивности следует равенство a+c=b+d , которое и требовалось доказать.

    Заметим, что можно почленно складывать не только два верных числовых равенства, но и три, и четыре, и любое конечное их число.

    Завершаем обзор свойств числовых равенств следующим свойством: если почленно перемножить два верных числовых равенства, то получится верное равенство. Сформулируем его формально: если a=b и c=d , то a·c=b·d .

    Доказательство озвученного свойства похоже на доказательство предыдущего. Мы можем умножить обе части равенства на любое число, умножим a=b на c , а c=d на b , получаем верные числовые равенства a·c=b·c и c·b=d·b , последнее из которых перепишем в виде b·c=b·d . Тогда по свойству транзитивности из равенств a·c=b·c и b·c=b·d следует доказываемое равенство a·c=b·d .

    Заметим, что озвученное свойство справедливо для почленного умножения трех и большего числа верных числовых равенств. Из этого утверждения следует, что если a=b , то a n =b n для любых чисел a и b , и любого натурального числа n .

В заключение этой статьи запишем все разобранные свойства числовых равенств в таблицу:

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.