Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему трубочек и полостей, пронизывающих цитоплазму клетки. ЭПС образована мембраной, которая имеет такое же строение, как и плазматическая мембрана. Трубочки и полости ЭПС могут занимать до 50% объема клетки и нигде не обрываются и не открываются в цитоплазму. Различают гладкую и шероховатую (гранулярную) ЭПС. На шероховатой ЭПС расположено множество рибосом. Именно здесь синтезируется большинство белков. На поверхности гладкой ЭПС идет синтез углеводов и липидов.

Функции гранулярной эндоплазматической сети:

  • · синтез белков, предназначенных для выведения из клетки ("на экспорт");
  • · отделение (сегрегация) синтезированного продукта от гиалоплазмы;
  • · конденсация и модификация синтезированного белка;
  • · транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;
  • · синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

  • · участие в синтезе гликогена;
  • · синтез липидов;
  • · дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Комплекс (аппарат) Гольджи.

Система внутриклеточных цистерн, в которых накапливаются вещества, синтезированные клеткой, носит название комплекса (аппарата) Гольджи. Здесь же эти вещества претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и переносятся в те места цитоплазмы, где они необходимы, или же транспортируются к клеточной мембране и выходят за пределы клетки (рис. 32). Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с ее каналами. Поэтому все вещества, синтезированные на мембранах ЭПС, переносятся в комплекс Гольджи внутри мембранных пузырьков, отпочковывающихся от ЭПС и сливающихся затем с комплексом Гольджи. Еще одна важная функция комплекса Гольджи -- это сборка мембран клетки. Вещества, из которых состоят мембраны (белки, липиды), поступают в комплекс Гольджи из ЭПС, в полостях комплекса Гольджи собираются участки мембран, из которых изготовляются особые мембранные пузырьки. Они передвигаются по цитоплазме в те места клетки, где требуется достроить мембрану.

Функции аппарата Гольджи:

  • · сортировку, накопление и выведение секреторных продуктов;
  • · накопление молекул липидов и образование липопротеидов;
  • · образование лизосом;
  • · синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений;
  • · формирование клеточной пластинки после деления ядра в растительных клетках;
  • · формирование сократимых вакуолей простейших.

Данная часть живой клетки была названа фамилией знаменитого ученого из Италии, который занимался исследованием и открытием . Комплекс может быть различных форм, включает в себя несколько полостей, находящихся в мембранах. Основная его цель – образовать лизосомы и синтезировать различные вещества, направлять их к эндоплазматической сети.

Структура аппарата

Эта часть клетки имеет второе название комплекс Гольджи, который представляет собой органеллы эукариотов одномембранного типа. Данный комплекс отвечает за функционирование и создание новых лизосом в клетке, а также за и сохранность многих жизнедеятельных веществ, которые выходят из клеток человека или животного.

По своему строению или конструкции аппарат Гольджи напоминает небольшие мешочки, в медицине их еще называют цистерны, которые состоят из различных по форме пузырьков и целой системы клеточных трубок. Мешочки аппарата считаются полярными, так как с одного полюса находятся пузырьки со специальным веществом, которые раскрываются в зоне формирования (ЭПС), а с другой части полюса образуются пузырьки, отделяющиеся в созревающей зоне. Клеточный комплекс Гольджи локализуется возле самого ядра, а затем распределяется по всем эукариотам. При этом структура и строение аппарата различна, все зависит от организма, в котором он находится.

Например, если говорить о растительных клетках, то в них выделяется диктиосомы – это структурные единицы. Оболочки данного аппарата создаются гранулярной ЭПС, которая к ней прилегает. В период разделения клетки комплекс распадается на единичные структуры, они в хаотичном порядке разносятся и переходят в дочерние клетки.

Характеристики

Основными свойствами аппарата являются:


Читайте также:

Пиво для роста волос: самые результативные средства

Какие функции выполняет комплекс?

Роли данного комплекса интересны и по-своему многообразны. К таким функциям биологи относят следующее:

  • секреторные составляющие сортируются и накапливаются до необходимого количества, после чего аппарат их выводит
  • образование новых лизосом
  • скопление липидных молекул и развитие липопротеидов
  • посттрансляционная модификация различных белков, необходимых для функционирования клетки
  • синтезирование полисахаридов для развития камеди, гликопротеинов, слизи, восков и матриксного вещества, отвечающего за структуру стеночных клеток растения, животного или человека
  • принимает активное участие в образовании акросом
  • отвечает за формирование простейших сократимых вакуолей
  • после того, как происходит деление ядра, образуется клеточная пластина

Это описание не всех функций, за которые отвечает комплекс Гольджи. До сих пор при длительных исследованиях обнаруживаются новые достоинства и не столь значимые функции комплекса Гольджи, на сегодняшний день тщательно изучаются транспортная функция аппарата и синтезирование белка.

Что собой представляют лизосомы, их функция?

Так как аппарат Гольджи – первоисточник для формирования лизосом, то следует обратить внимание, что такое лизосомы и как они функционируют.

Лизосомы – это очень мелкие элементы клеток, диаметр которых составляет приблизительно один микрометр. Лизосома на поверхности имеет три слоя мембраны, внутри которой находится множество различных ферментов. Эти ферменты в организме отвечают за расщепление жизненно важных элементов. Каждая отдельная клетка содержит в себе до десяти лизосом, а новые уже формируются благодаря аппарату Гольджи.

Чтобы изучить развитие клетки, для начала следует идентифицировать лизосомы и проверить их реакцию на фосфатаз.

Функция лизосом:

  1. Аутофагия – это процесс, благодаря которому медленно расщепляются целые клетки, их некоторые составляющие и их подтипы. Сюда относятся: поджелудочная железа, особенно на момент подросткового возраста, лизис печенки в период отравления .
  2. Выделительная система. Лизосомы отвечают за удаление непереваренной пищи из клетки.
  3. Со стороны желудочно-кишечного тракта. Лизосомы и эндосомы сочетаются с пузырями фагоцитарного типа и благодаря этому формируют пищеварительную вакуоль, вследствие чего происходит внутриклеточное пищеварение.
  4. Нельзя не упомянуть о гетерофазии. Она отвечает за , вирусов и других органических веществ, которые самостоятельно попадают различными способами внутрь клетки.

Структуру, известную теперь как аппарат Гольджи, впервые обнаружил в клетках в 1898 г. Камилло Гольджи, применивший в своих наблюдениях особую методику окрашивания. Однако подробно исследовать ее удалось только с помощью электронного микроскопа. Аппарат Гольджи содержится почти во всех эукариотических клетках и представляет собой стопку уплощенных мембранных мешочков, так называемых цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи. В растительных клетках обнаруживается ряд отдельных стопок, называемых диктиосомами (рис. 7.6). В животных клетках чаще можно встретить одну большую стопку. Трехмерную структуру аппарата Гольджи трудно выявить при изучении ультратонких срезов, однако наблюдения с применением негативного окрашивания позволяют предположить, что вокруг центральной стопки формируется сложная система взаимосвязанных трубочек (рис. 7.19).

Рис. 7.19. А. Трехмерная структура аппарата Гольджи. Б. Микрофотография, полученная с помощью трансмиссионного электронного микроскопа, на которой видны два аппарата Гольджи: слева - диктиосома в вертикальном разрезе, справа - самая верхняя цистерна, какой она видна сверху, × 50000

На одном конце стопки постоянно образуются новые цистерны путем слияния пузырьков, отпочковывающихся, вероятно, от гладкого ЭР. Эта "наружная", или формирующая, сторона стопки выпуклая, тогда как другая, "внутренняя", где завершается созревание и где цистерны вновь распадаются на пузырьки, имеет вогнутую форму. Стопка состоит из многих цистерн, которые, как полагают, постепенно перемещаются от наружной стороны к внутренней.

Функцию аппарата Гольджи составляют транспорт веществ и химическая модификация поступающих в него клеточных продуктов. Функция эта особенно важна и заметна в секреторных клетках, хорошим примером которых могут служить ацинарные клетки поджелудочной железы. Эти клетки секретируют пищеварительные ферменты панкреатического сока в выводной проток железы, через который они поступают в двенадцатиперстную кишку. На рис. 7.20, А представлена электронная микрофотография такой клетки, а на рис. 120, Б - схема данного секреторного пути.


Рис. 7.20. А Электронная микрофотография ацинуса - группы ацинарных клеток поджелудочной железы, × 10400. 1 - ядро; 2 - митохондрия; 3 - аппарат Гольджи; 4 - секреторные гранулы; 5 - шероховатый эндоплазматический ретикулум

Отдельные этапы этого пути выявляют при помощи радиоактивно меченных аминокислот, прослеживая их включение в белки, а затем передвижение по различным клеточным органеллам. Для этого образцы ткани гомогенизируют через разные промежутки времени после введения аминокислот, разделяют клеточные органеллы центрифугированием и выясняют, в каких органеллах доля этих аминокислот всего выше. После концентрирования в аппарате Гольджи белок в пузырьках Гольджи переносится к плазматической мембране. Конечным этапом является секреция неактивного фермента посредством процесса, обратного пиноцитозу. Пищеварительные ферменты, выделяемые поджелудочной железой, синтезируются в неактивной форме, чтобы они не могли разрушать клетки, в которых они образуются. Фермент в неактивной форме называется проферментом или зимогеном . Примером может служить трипсиноген, превращающийся в активный трипсин в двенадцатиперстной кишке.

Обычно у белков, поступающих в аппарат Гольджи из ЭР, имеются короткие олигосахаридные цепи, т. е. они представляют собой гликопротеины (подобно мембранным белкам, изображенным на рис. 7.11). Такие углеводные "антенны" в аппарате Гольджи могут претерпевать модификацию, превращающую их в маркеры, с помощью которых белок направляется строго по своему назначению. Однако, каким образом аппарат Гольджи сортирует и распределяет молекулы, в точности не известно. Присоединение гликозильных групп к белкам, в результате чего возникают гликопротеины, носит название гликозилирование ; гликозилированием сопровождается образование многих белков.

Аппарат Гольджи участвует иногда и в секреции углеводов, например при синтезе материала клеточных стенок у растений. Рис. 7.21 свидетельствует об усиленной его активности в области "клеточной пластинки", т. е. в той области, где после деления ядра (митоза или мейоза) между двумя только что образовавшимися дочерними ядрами закладывается новая клеточная стенка.


Рис. 7.21. Электронная микрофотография, на которой видна клеточная пластинка, образующаяся в растительной клетке во время телофазы митоза, × 15000

Пузырьки Гольджи направляются к нужному месту на клеточной пластинке при помощи микротрубочек (их мы опишем позднее) и здесь сливаются. Их мембраны становятся частью новых плазматических мембран дочерних клеток, а их содержимое используется для построения срединной пластинки и новых клеточных стенок. Методом радиоавтографии было показано, что радиоактивно меченная глюкоза, поглощенная делящимися растительными клетками, сначала появляется в аппарате Гольджи, а позднее (в пузырьках Гольджи) включается в полисахариды, предназначенные для построения клеточных стенок. По-видимому, это полисахариды матрикса клеточных стенок, а не целлюлоза, которая в пузырьках Гольджи не синтезируется.

Два рассмотренных нами примера - секреторная активность ацинарных клеток поджелудочной железы и образование новых клеточных стенок в делящихся растительных клетках - показывают, каким образом многие клеточные органеллы могут объединяться для выполнения какой-нибудь одной функции.

Аппаратом Гольджи секретируется важный гликопротеин муцин , в растворе образующий слизь. Он выделяется бокаловидными клетками, находящимися в толще эпителия слизистой оболочки кишечника и дыхательных путей. В клетках кончика корня имеется аппарат Гольджи, секретирующий богатую мукополисахаридами слизь, которая смачивает кончик корня и облегчает его проникновение в почву. В железах листьев насекомоядных растений - росянки (Drosera) и жирянки (Pinguiculd) - аппарат Гольджи секретирует клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу. Во многих клетках аппарат Гольджи участвует в секреции слизи, воска, камеди и растительного клея.

Иногда аппарат Гольджи принимает участие и в транспорте липидов. При переваривании липиды расщепляются и всасываются в тонком кишечнике в виде жирных кислот и глицерола. Затем в гладком ЭР липиды ресинтезируются. Они покрываются белковой оболочкой и через аппарат Гольджи транспортируются к плазматической мембране, где им предстоит покинуть клетку. Пройдя через плазматическую мембрану, они поступают преимущественно в лимфатическую систему.

Помимо перечисленных выше функций, связанных с секрецией белков, гликопротеинов, углеводов и липидов, аппарат Гольджи выполняет еще одну функцию - в нем формируются лизосомы, к описанию которых мы теперь перейдем.

Комплекс Гольджи представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям, и связанную с ними систему пузырьков Гольджи. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько, соединённых трубками, стопок.

1. Накапливает и выводит органические вещества, синтезируемые в эндоплазматической сети

2. Образует лизосомы

3. Формирование углеводных компонентов гликокаликса - в основном, гликолипидов.

Лизосомы представляют собой неотъемлемую часть состава клетки. Они являются разновидностью везикул. Эти клеточные помощники, являясь частью вакуома, покрыты оболочкой из мембраны и наполнены гидролитическими ферментами. Важность существования лизосом внутри клетки обеспечена секреторной функцией, которая необходима в процессе фагоцитоза и аутофагоцитоза.

Выполняют пищеварительную функцию - переваривают пищевые частицы и удаляют отмершие органоиды.

Первичные лизосомы - это мелкие мембранные пузырьки, которые имеют деаметр около ста нм, заполненные гомогенным мелкодисперсным содержимым, являющим собой набор гидролитических ферментов. В лизосомах есть около сорока ферментов.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Если сказать иначе, то вторичные лизосомы - это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания - эндоцитозной (пиноцитозной) вакуолью.

19. Эпс, ее разновидности, роль в процессах синтеза веществ.

Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.

Различают две разновидности эндоплазматической сети:

    зернистая (гранулярная или шероховатая);

    незернистая или гладкая.

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.

Функции зернистой эндоплазматической сети:

    синтез белков, предназначенных для выведения из клетки ("на экспорт");

    отделение (сегрегация) синтезированного продукта от гиалоплазмы;

    конденсация и модификация синтезированного белка;

    транспорт синтезированных продуктов в цистерны пластинчатого комплекса или непосредственно из клетки;

    синтез билипидных мембран.

Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

    участие в синтезе гликогена;

    синтез липидов;

    дезинтоксикационная функция - нейтрализация токсических веществ, посредством соединения их с другими веществами.

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы - диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.

Аппарат Гольджи

Эндоплазматический ретикулум, плазматическая мембрана и аппарат Гольджи составляют единую мембранную систему клетки, в пределах которой происходят процессы обмена белками и липидами с помощью направленного и регулируемого внутриклеточного мембранного транспорта.
Каждая из мембранных органелл характеризуется уникальным составом белков и липидов.

Строение АГ

АГ состоит из группы плоских мембранный мешков - цистерны , собранные в стопки - диктиосомы (~5-10 цистерн, у низших эукариот >30). Число диктиосом в разных клетках от 1 до ~500.
Отдельные цистерны диктиосомы переменной толщины - в центре ее мембраны сближены - просвет 25 нм, на переферии образуются расширения - ампулы ширина которых не постоянна. От ампул отшнуровываются ~50нм-1мкм пузырьки связанные с цистернами сетью трубочек.

У многоклеточных организмов АГ состоит из стопок цистерн связанных между собой в единую мембранную систему. АГ представляет собой полусферу, основание которой обращено к ядру. АГ дрожжей представлен изолированными единичными цистернами, окруженными мелкими пузырьками, тубулярной сетью, секреторными везикулами и гранулами. У мутантов дрожжей Sec7 и Sec14 наблюдается структура, напоминающая стопку цистерн клеток млекопитающих.
Для АГ характерна полярность его структур. Каждая стопка имеет два полюса: проксимальный полюс (формирующийся, цис-поверхность) и дистальный (зрелый,
транс-поверхность). Цис-полюс – сторона мембраны с которой сливаются пузырьки. Транс-полюс – сторона мембраны от которой пузырьки отпочковываются.

Пять функциональных компартментов АГ :
1. Промежуточные везикуло-тубулярные структуры (VTC или ERGIC - ER-Golgi intermediate compartment)
2. Цис-цистерна (cis) - цистерны расп ближе к ЭР:
3. Срединные (medial) цистерны – центральные цистерны
4. Транс-цистерна (trans) - наиболее удаленные от ЭР цистерны.
5. Тубулярная сеть, примыкающая к трансцистерне - транссеть Гольджи (TGN)
Стопки цистерн изогнуты, так что вогнутая трансповерхность обращена к ядру.
В среднем в АГ 3-8 цистерн, в активно секретирующих клеток может быть больше (в экзокринных клетках поджелудочной железы до 13).
Каждая цистерна имеет цис и транс поверхности. Синтезированные белки, мембранные липиды, гликозилированные в ЭР, попадают в АГ через цис-полюс. Вещества через стопки передаются транспортными
пузырьками отделяющиеся от ампул. При прохождении белков или липидов через стопки Гольджи, они претерпевают серию посттрансляционных модификаций, включающих изменение N-связанных олигосахаридов:
цис : маннозидазаI подравнивает длинные маннозные цепи до М-5
промежуточный : N-ацетилглюкоэаминтрансферазаI переносит N-ацетилглюкозамин
транс : добавляются концевые сахара –остатки галактозы и сиаловая к-та.

Строение Аппарата Гольджи и схема транспорта.

Пять компанентов АГ и схема транспорта: промежуточный (ERGIC), цис, промежуточный, транс и транссеть Гольджи (TGN). 1. Вход синтезированных белков, мембранных гликопротеинов и лизосомных ферментов в цистерну переходного ЭР, прилегающую к АГ и 2 - их выход из ЭР в пузырьках окаймленных COPI (антероградный транспорт). 3 - возможный транспорт карго от тубуло-везикулярных
кластеров к цис-цистерне АГ в пузырьках COPI; 3* - транспорт карго от более ранних к более поздним цистернам; 4 - возможный ретроградный везикулярный транспорт карго между цистернами АГ; 5 - возврат резидентных протеинов из АГ в tER с помощью пузырьков, окаймленных COPI (ретроградный транспорт); 6 и 6* - перенос лизосомных ферментов с помощью окаймленных клатрином пузырьков соответственно в ранние EE и поздние LE эндосомы; 7 - регулируемая секреция секреторных гранул; 8 - конститутивное встраивание мембранных белков в апикальную плазматическую мембрану ПМ; 9 - опосредованный рецептором эндоцитоз с помощью окаймленных клатрином пузырьков; 10 возвращение ряда рецепторов из ранних эндосом в плазматическую мембрану; 11 - транспорт лигандов из EE в LE и и лизосомы Ly; 12 - транспорт лигандов в неклатриновых пузырьках.

Функции АГ

1. Транспорт - через АГ проходят три группы белков: белки периплазматической мембраны, белки, предназначенные
на экспорт из клетки, и лизосомные ферменты.
2. Cортировка для транспорта: сортировка для дольнейшего транспорта к органеллам, ПМ, эндосомам, секреторным пузырькам происходит в транс-комплексе Гольджи.
3. Секреция - секреция продуктов, синтезируемых в клетке.
3. Гликозилирование белков и липидов: гликозидазы удаляют остатки сахаров - дегликозилирование, гликозилтрансферазы прикрепляют сахара обратно на главную углеводную цепь - гликозилирование.В нем происходят гликозилирование олигосахаридных цепей белков и липидов, сульфатирование ряда ахаров и тирозиновых остатков белков, а также активация предшественников полипептидных гормонов и нейропептидов.
4. Синтез полисахаридов - многие полисахариды образуются в АГ в том числе пектин и гемицеллюлоза, образующие клеточные стенки растений и большинство гликозаминогликанов образующих межклеточный матрикс у животных

5. Сульфатирование - большинство сахаров, добавляемых к белковай сердцевине протеогликана, сульфатируются
6. Добавление маннозо-6-фосфата : М-6-P добавляется как направляюций сигнал к ферментам, предназначенным для лизосом.

ГЛИКОЗИЛИРОВАНИЕ
Большинство белков начинает гликозилироваться в шероховатом ЭР посредством добавления к растущей полипептидной цепи N-связанных олигосахаридов. Если гликопротеин свернут в нужной конформации, он выходит из ЭР и направляется в АГ, где происходит его посттрансляционная модификация.
В гликозилировании секретируемых продуктов принимают участие ферменты - гликозилтрансферазы. Они участвуют в ремоделированиии Т-связанных боковых олигосахаридных цепей и добвлении О-связанных гликанов и олигосахаридных частей протеогликанов гликолипидов.В модификации олигосахаридов участвуют фрменты а-маннозидаза I и II, которые также являются резидентными белками АГ.

Кроме того в АГ происходит гликозилирование липидно-протеиновых мембранных доменнов, называемых рафтами.
Долихолфосфат
добавляет углеводный комплекс – 2GlcNAc-9-манноз-3-глюкозы к аспарагину растущего полипептида. Терминальная глюкоза отщепляется в два этапа: глюкозидаза I отщепляет терминальный остаток глюкозы, глюкозидаза II удаляет еще два остатка глюкозы. Затем отщепляется манноза. На этом начальный этап процессинга углеводов в ЭР завершается и белки несущие олигосахаридный комплекс, поступают в АГ
В первых цистернах АГ удаляются еще три остатка маннозы. На этой стадии стержневой комплекс имеет еще 5 маннозных остатков. N-ацетилглюкозаминтрансфераза I добавляет один остаток N-ацетилглюкозамина GlcNAc. От образовавшегося комплекса отщепляется еще 3 остатка маннозы. Состоит теперь из двух молоекул GlcNAc-3-маннозо-1-GlcNAc является стержневой структурой, к которой гликозилтрансферезы добавляют другие
углеводы. Каждая гликозилтрансфераза распознает развивающуюся углеводную структуру и добавляет к цепи свой собственный сахарид.

СЕКРЕЦИЯ
Схема секреции
:
Синтезированные в ЭР белки концентрируются в сайтах выхода переходного ЭР благодаря активности коатомерного комплекса COPII и сопутствующих компонентов и транспортируются в промежуточный между ЭР и АГ компартмент ERGIC, из которого они переходят в АГ в отпочковывающихся пузырьках, или по тубулярным структурам. Белки ковалентно модифицируются, проходя через цистерны АГ, на транс-поверхности АГ сортируются и отправляются к местам своего назначения. Секреция белков требует пассивного встраивания новых мембранных компонентов в плазматическую мембрану. Для восстановления баланса мембран служит контитутивный рецепторопосредованный эндоцитоз.
Эндо и экзоцитозный пути переноса мембран имеют общие закономерности в направленности движения мембранных переносчиков к сооответствующей
мишени и в специфичности слияния и почкования. Основным местом встречи этих путей является АГ.