уравнение состояния

    термическое уравнение состояния выражает связь между давлением p, температурой Т и удельным объемом v (или плотностью?) гомогенного вещества в состоянии равновесия: f(p,T,v)=0.

    Калорическое уравнение состояния выражает зависимость какой-либо калорической величины (внутренней энергии, энтальпии, теплоемкости и т.п.) от р и Т или v и Т. Из уравнения состояния для различных агрегатных состояний наиболее обоснованы уравнения состояния для газов. Уравнение состояния моля идеального газа?=RT/v, где R - газовая постоянная (см. Клапейрона уравнение). Для реальных газов применяют вириальное уравнение состояния,где В2, В3... - 2-й, 3-й и т.д. вириальные коэффициенты, отражающие взаимодействие молекул и являющиеся функциями температуры (также Ван-дер-Ваальса уравнение).

Уравнение состояния

связывает давление р, объём V и температуру Т физически однородной системы в состоянии равновесия термодинамического: f (p, V, Т) = 0. Это уравнение называется термическим У. с., в отличие от калорического У. с., определяющего внутреннюю энергию системы U как функцию какого-либо двух из трёх параметров р, V, Т. Термическое У. с. позволяет выразить давление через объём и температуру р = p (V, Т) и определить элементарную работу dA = = pdV при бесконечно малом расширении системы dV. У. с. является необходимым дополнением к термодинамическим законам, которое делает возможным их применение к реальным веществам. Оно не может быть выведено с помощью одних только законов термодинамики, а определяется или рассчитывается теоретически на основе представлений о строении вещества методами статистической физики. Из первого начала термодинамики следует лишь существование калорического У. с., а из второго начала термодинамики √ связь между термическим и калорическим У. с. , откуда вытекает, что для идеального газа внутренняя энергия не зависит от объёма ═= 0. Термодинамика показывает, что для вычисления как термического, так и калорического У. с., достаточно знать любой из потенциалов термодинамических в виде функции своих параметров. Например, если известна Гельмгольцева энергия F как функция Т и V, то У. с. находят дифференцированием:

Примерами У. с. для газов может служить Клапейрона уравнение для идеального газа pu = RT, где R √ газовая постоянная , u √ объём 1 моля газа;

══ Ван-дер-Ваальса уравнение, где а и b √ постоянные, зависящие от природы газа и учитывающие влияние сил притяжения между молекулами и конечность из объёма, вириальное У. с. для неидеального pu / RT = 1 + B (T)/ u + С (Т)/ u2 +.., где В (Т), С (Т)... √ 2-й, 3-й и т.д. вириальные коэффициенты, зависящие от сил взаимодействия между молекулами (см. Газы). Это уравнение является наиболее надёжным и теоретически обоснованным У. с. для газов и позволяет объяснить многочисленные экспериментальные результаты на основании простых моделей межмолекулярного взаимодействия. Были предложены также различные эмпирические У. с., основанные на экспериментальных данных о теплоёмкости и сжимаемости. У. с. неидеальных газов указывает на существование критической точки (с параметрами pk, Vk, Tk), в которой газообразная и жидкая фазы становятся идентичными (см. Критическое состояние). Если У. с. представить в виде приведенного У. с., т. е. в безразмерных переменных p/pk, V/Vk, T/Tk, то при не слишком низких температурах это уравнение мало меняется для различных веществ (закон соответственных состояний).

Для равновесного излучения, или фотонного газа, У. с. определяется Планка законом излучения для средней плотности энергии.

Для жидкостей из-за сложности учёта всех особенностей взаимодействия молекул пока не удалось теоретически получить общее У. с. Уравнение Ван-дер-Ваальса хотя и применяют для качественной оценки поведения жидкостей, но оно по существу неприменимо ниже критической точки, когда возможно сосуществование жидкой и газообразной фаз. У. с., хорошо описывающее свойства ряда простых жидкостей, можно получить из приближённых теорий жидкого состояния типа теории свободного объёма или дырочной теории (см. Жидкость). Знание распределения вероятности взаимного расположения молекул (парной корреляционной функции) принципиально позволяет вычислить У. с. жидкости, но эта задача очень сложна и полностью ещё не решена даже с помощью вычислительных машин.

Для твёрдых тел термическое У. с. определяет зависимость модулей упругости от температуры и давления. Оно может быть получено на основании теории теплового движения в кристаллах, рассматривающей фононы и их взаимодействие, но пока общего У. с. для твёрдых тел не найдено.

Для магнитных сред элементарная работа при намагничивании равна dA = -НdМ, где М √ магнитный момент, Н √ напряжённость магнитного поля. Следовательно, зависимость М = М (Н, Т) представляет собой магнитное У. с.

Для электрически поляризуемых сред элементарная работа при поляризации равна dA = -ЕdР где Р - поляризация, Е - напряжённость электрического поля, следовательно, У. с. имеет вид Р = (Е, Т).

Лит.: Хилл Т., Статистическая механика, пер. с англ., М., 1960; Вукалович М. П., Новиков И. И., Уравнение состояния реальных газов, М. √ Л., 1948; Мейсон Э., Сперлинг Т., Вириальное уравнение состояния, пер. с англ., М., 1972; Лейбфрид Г., Людвиг В., Теория ангармонических эффектов в кристаллах, пер. с англ., М., 1963. См. также лит. при статьях Статистическая физика и Термодинамика.

Д. Н. Зубарев.

Википедия

Уравнение состояния

Уравне́ние состоя́ния - уравнение, связывающее между собой термодинамические параметры системы, такие, как температура , давление , объём , химический потенциал и др. Уравнение состояния можно написать всегда, когда можно применять термодинамическое описание явлений. При этом реальные уравнения состояний реальных веществ могут быть крайне сложными.

Уравнение состояния системы не содержится в постулатах термодинамики и не может быть выведено из неё. Оно должно быть взято со стороны (из опыта или из модели, созданной в рамках статистической физики). Термодинамика же не рассматривает вопросы внутреннего устройства вещества.

Заметим, что соотношения, задаваемые уравнением состояния, справедливы только для состояний термодинамического равновесия.

Уравнение состояния (космология)

Уравне́ние состоя́ния космологической модели - зависимость p (ɛ ) давления от массовой плотности энергии среды в данной модели.

Во фридмановской теории тяготение создаётся не только плотностью вещества, но и давлением среды: плотность эффективной гравитирующей энергии ɛ  = ɛ  + 3 ⋅ p ,  где p - давление среды, а ɛ - плотность энергии среды, ɛ  = c  ⋅ ρ ,  где ρ - массовая плотность энергии среды, c - скорость света.

Давление выражают через уравнение состояния p (ɛ ),  или используют безразмерный параметр - отношение давления к плотности энергии $w=\frac p \varepsilon ,$ тогда уравнение состояния:

p  = w  ⋅ ɛ .

Для разных сред w имеет разное значение. Ниже предполагаем, что плотность среды выше нуля. Возможны следующие 9 вариантов:

1. Фантомная энергия (см. фантомная космология ) - среда с отрицательной гравитацией большей (по модулю), чем у вакуума.

w  При таком уравнении состояния плотность среды со временем увеличивается, отрицательная гравитация возрастает и через конечное время станет бесконечной, и во Вселенной произойдёт Большой Разрыв. Ещё одна особенность такой среды заключается в том, что скорость звука в ней выше скорости света c .

2. Вакуум - среда с отрицательной гравитацией.

w  =  − 1.

Соответственно:

p  =  − ɛ . ɛ  =  − 2 ⋅ ɛ .

В уравнениях Эйнштейна энергия вакуума описывается космологической постоянной $\Lambda=\frac {8 \cdot \pi \cdot G} {c^4} \cdot \varepsilon_V.$

По последним данным плотность энергии вакуума во Вселенной составляет Ω = 0, 728 от критической плотности.

3. Квинтэссенция - среда с отрицательной гравитацией ниже, чем у вакуума.

$-1 Только при $wтёмной энергии - это либо вакуум, либо фантомная энергия, либо квинтэссенция.

4. Среда, в которой отсутствует и положительная и отрицательная гравитация.

$w=-\frac 1 3.$

5. Среда, в которой гравитация ниже, чем у пыли.

$-\frac 1 3 6. Пылевое облако, обычная барионная материя и холодная тёмная материя (давление среды отсутствует, p  = 0). w  = 0.

Соответственно:

p  = 0;  ɛ  = ɛ .

По последним данным плотность энергии обычной холодной барионной материи во Вселенной составляет Ω = 0, 0456 ± 0, 0016 от критической плотности, а плотность холодной тёмной материи составляет Ω = 0, 227 ± 0, 014 от критической плотности, что в сумме даёт Ω = 0, 272 от критической плотности.

7. Среда, в которой гравитация выше, чем у пыли, но ниже, чем у излучения.

$0 8. Ультрарелятивистская среда, в том числе реликтовое излучение ; также массивные частицы в ранней Вселенной, когда температура значительно превосходит массы частиц: $w=\frac 1 3.$

Поведение Вселенной определялось близким к этому уравнением состояния на временно́м интервале от планковской эпохи до эпохи рекомбинации.

Соответственно:

$p_R=\frac1 3\cdot \varepsilon_R;$ ɛ  = 2 ⋅ ɛ .

9. Среда, в которой гравитация выше, чем у излучения.

$\frac 1 3 Аналогично при w  > 1 скорость звука в такой среде выше скорости света c .

Параметры состояния .

1. - абсолютное давление

2. - удельный объём

3. Температура
4. Плотностью

F (р, v, T ) = 0.

процессом .

Равновесный процесс

Обратимый процесс -

Термодинамическим процессом

p-v, р-Т кривой процесса
– уравнение вида .



Уравнение состояния для простого тела - .
Идеальный газ
PV=nRT
Реальный газ

Вопрос 3. Термодинамическая работа, координаты P-V.

Термодинамическая работа : , где - обобщённая сила, - координата.
Удельная работа : , , где - масса.

Если и , то идёт процесс расширения работа положительная.
- Если и , то идёт процесс сжатия работа отрицательная.
- При малом изменении объёма давление практически не изменяется.

Полная термодинамическая работа: .

1. В случае если , то .

2. В случае если дано уравнение процесса - , то работа распределяется на две части: , где - эффективная работа, - необратимые потери, при этом - теплота внутреннего теплообмена, то есть необратимые потери превращаются в теплоту.

________________________________________________________________

Вопрос 4. Потенциальная работа, координаты P-V, распределение работы.

Потенциальная работа – работа, вызываемая изменением дав­ления.

- Если и , то идёт процесс расширения.
- Если и , то идёт процесс сжатия.
- При малом изменении давления объём почти не меняется.

Полную потенциальную работу можно найти по формуле: .

1. В случае если , то .

2. В случае если дано уравнение процесса - , то .

Где - ра­бота,
переданная внешним системам.

С E -скорость движения тела, dz-изменение высоты центра тяжести тела в поле тяготения.
________________________________________________________

Вопрос 16. Изобарный процесс изменения состояния простого тела. Уравнение процесса, изображение в координатах P-V, связь между параметрами, работа и теплообмен, изменение функций состояния.

Если , то идёт процесс расширения.

Изобарный процесс.

Так как , то .

Для идеального газа:

Первое начало термодинамики: .

Для идеального газа: и

Вопрос 63. Дросселирование. Эффект Джоуля-Томсона. Основные понятия

Дросселирование – процесс движения вещества через внезапное сужение. Причинами возникновения местных сопротивлений при движении потока рабочего тела по каналам могут быть запорные, регулирующие и измерительные устройства; повороты, сужение, загрязнение каналов и т.д.
Эффект Джоуля-Томсона - изменение температуры вещества при адиабатном дросселировании.

Рис. 1.7. Процесс дросселирования в h-s диаграмме

Различают дифференциальный и интегральный дроссель – эффекты . Величина дифференциального дроссель эффекта определяется из соотношения

Где коэффициент Джоуля – Томсона, [К/Па].

Интегральный дроссель-эффект : .
Коэффициент Джоуля – Томсона выводится из математических выражений первого начала термодинамики и второго начала термостатики

1. Если дроссель–эффект положительный (D h > 0 ), то снижается температура рабочего тела (dT<0 );

2. Если дроссель–эффект отрицательный (D h < 0 ), то повышается температура рабочего тела (dT>0 );

3. Если дроссель–эффект равен нулю (D h = 0 ), то температура рабочего тела не изменяется. Состояние газа или жидкости, которому соответствует условие D h = 0 , называется точкой инверсий .
___________________________________________________________________

Двухтактный дизель

Рабочий процесс в двухтактном дизеле в основном протекает так же как и в двухтактном карбюраторном двигателе, и отличается только тем что продувка цилиндра производится чистым воздухом. По окончании ее оставшийся в цилиндре воздух сжимается. В конце сжатия через форсунку впрыскивается топливо в камеру сгорания и воспламеняется.Схема двухтактного дизеля с кривошипно-камерной продувкой показана на рисунке 14, а, а индикаторная диаграмма - на рисунке 14, 6.
Рабочий процесс в двухтактном дизеле протекает следующим образом.
Первый такт. При движении поршня вверх от н. м. т. к в. м. т. вначале происходит окончание продувки, а затем окончание выпуска. На индикаторной диаграмме продувка изображена линией b"- a" а выпуск - а" - а.
После закрытия выпускного окна поршнем в цилиндре происходит сжатие воздуха. Линия сжатия на индикаторной диаграмме изображена кривой а-с. В это время под поршнем в кривошипной камере создается разрежение, под действием которого автоматический клапан открывается, и в кривошипную камеру засасывается чистый воздух. В начале движения поршня вниз, вследствие уменьшения объема под поршнем, давление воздуха в кривошипной камере повышается, и клапан закрывается.
Второй такт. Поршень движется от в. м. т. к н. м. т. Впрыск и горение топлива начинаются перед концом сжатия и заканчиваются после того, как поршень пройдет в. м. т. По окончании горения происходит расширение. Протекание процесса расширения на индикаторной диаграмме изображено кривой r-b.
Остальные процессы, выпуск и продувка протекают так же, как и в карбюраторном двухтактном двигателе.

Вопрос 2. Параметры состояния и уравнения состояния.

Параметры состояния - физические величины, характеризующие внутреннее состояние термодинамической системы. Параметры состояния термодинамической системы подразделяются на два класса: интенсивные (не зависят от массы системы) и экстенсивные (пропорциональны массе) .

Термодинамическими параметрами состояния называются интенсивные параметры, характеризующие состояние системы. Простейшие параметры:

1. - абсолютное давление - численно равно силе F, действующей на единицу площади f поверхности тела ┴ к последней, [Па=Н/м 2 ]

2. - удельный объём -это объем единицы массы вещества.

3. Температура есть единственная функция состояния термодинамической системы, определяющая направление самопроизвольного теплообмена между телами.
4. Плотностью вещества принято называть отношение массы тела к его объему

Связь между параметрами, характеризующими состояние простого тела, называется уравнением состояния F (р, v, T ) = 0.

Изменение состояния системы называется процессом .

Равновесный процесс - это непрерывная последовательность равновесных состояний системы.

Обратимый процесс - равновесный процесс, который допускает возможность возврата этой системы из конечного состояния в исходное путем обратного процесса.

Термодинамическим процессом принято считать обратимый равновесный процесс.

Равновесные процессы могутбыть изображены графически на диаграммах состояния p-v, р-Т и т. д. Линия, изображающая изменение параметров в процессе, называется кривой процесса . Каждая точка кривой процесса характеризует равновесное состояние системы.
Уравнение термодинамического процесса – уравнение вида .

Уравнение состояния для простого тела - .
Идеальный газ – совокупность материальных точек (молекул или атомов), находящихся в хаотическом движении. Эти точки рассматриваются как абсолютно упругие тела, не имеющие объёма и не взаимодействующие друг с другом. Уравнением состояния идеального газа является уравнение Менделеева-Клапейрона:
PV=nRT , где P – давление, [Па]; V – объём системы [м 3 ]; n – количество вещества, [моль]; T – термодинамическая температура, [К]; R – универсальная газовая постоянная.
Реальный газ – газ, молекулы которого взаимодействуют друг с другом и занимают определённый объём. Уравнением состояния реального газа является обобщённое уравнение Менделеева-Клапейрона:
, где Z r = Z r (p,T) – коэффициент сжимаемости газа; m – масса; M – молярная масса.
_____________________________________________________________

Параметры, совокупностью которых определяется состояние системы, связаны друг с другом. При изменении одного из них изменяется по крайней мере хотя бы еще один. Эта взаимосвязь параметров находит выражение в функциональной зависимости термодинамических параметров .

Уравнение, связывающее термодинамические параметры системы в равновесном состоянии (например, для однородного тела – давление, объем, температура) называется уравнением состояния . Общее число уравнений состояния системы равно числу ее степеней свободы (вариантности равновесной системы), т.е. числу независимых параметров, характеризующих состояние системы .

При изучении свойств равновесных систем термодинамика прежде всего рассматривает свойства простых систем. Простой системой называют систему с постоянным числом частиц, состояние которой определяется только одним внешним параметром «а» и температурой, т.е. простая система-это однофазная система, определяемая двумя параметрами.

Так, уравнение

является уравнением состояния чистого вещества при отсутствии внешних электрических, магнитных, гравитационных полей. Графически уравнение состояния выразится поверхностью в координатах P -V -T , которую называют термодинамической поверхностью . Каждое состояние системы на такой поверхности изобразится точкой, которую называют фигуративной точкой . При изменении состояния системы фигуративная точка перемещается по термодинамической поверхности, описывая некоторую кривую . Термодинамическая поверхность представляет геометрическое место точек, изображающих равновесное состояние системы в функциях от термодинамических параметров .

Вывести уравнение состояния на основе законов термодинамики нельзя; они или устанавливаются из опыта, или находятся методами статистической физики.

Уравнения состояния связывают температуру Т , внешний параметр а i (например, объем) и какой-либо равновесный внутренний параметр b k (например, давление).

Если внутренним параметром b k является внутренняя энергия U , то уравнение

называется уравнением энергии или калорическим уравнением состояния .

Если внутренним параметром b k является сопряженная внешнему параметру а i сила А i (например, давление Р является силой объема V ), то уравнение

называется термическим уравнением состояния.

Термические и калорические уравнения состояния простой системы имеют вид:

Если А = Р (давление) и, следовательно, а = V (объем системы), то уравнения состояния системы запишутся соответственно:

Например, при изучении газообразного состояния используют понятие идеального газа. Идеальный газ представляет собой совокупность материальных точек (молекул или атомов), находящихся в хаотическом движении. Эти точки рассматриваются как абсолютно упругие тела, обладающие нулевым объемом и не взаимодействующие между собой.



Для такой простой системы как идеальный газ термическим уравнением состояния является уравнение Клапейрона-Менделеева

где Р – давление, Па; V – объем системы, м 3 ; n – количество вещества, моль; Т – термодинамическая температура, К; R – универсальная газовая постоянная:

Калорическим уравнением состояния идеального газа является закон Джоуля о независимости внутренней энергии идеального газа от объема при постоянной температуре:

где С V – теплоемкость при постоянном объеме. Для одноатомного идеального газа С V не зависит от температуры, поэтому

или, если Т 1 = 0 К, то .

Для реальных газов эмпирически установлено более 150 термических уравнений состояния. Наиболее простым из них и качественно правильно передающим поведение реальных газов даже при переходе их в жидкость является уравнение Ван-дер-Ваальса :

или для n молей газа:

Это уравнение отличается от уравнения Клапейрона-Менделеева двумя поправками: на собственный объем молекул b и на внутреннее давление а /V 2 , определяемое взаимным притяжением молекул газа (а и b – константы, не зависящие от Т и Р , но разные для различных газов; в газах с бóльшим а при постоянных Т и V давление меньше, а с бóльшим b – больше).

Более точными двухпараметрическими термическими уравнениями состояния являются:

первое и второе уравнения Дитеричи :

уравнение Бертло :

уравнение Редлиха-Квонга :

Приведенные уравнения Бертло, Дитеричи и особенно Редлиха-Квонга имеют более широкую область применимости, чем уравнение Ван-дер-Ваальса. Следует отметить, однако, что постоянные а и b для данного вещества не зависят от температуры и давления только в небольших интервалах этих параметров. Двухпараметрические уравнения типа Ван-дер-Ваальса описывают и газообразную, и жидкую фазы, и отражают фазовый переход жидкость-пар, а также наличие критической точки этого перехода , хотя точных количественных результатов для широкой области газообразного и жидкого состояний с помощью этих уравнений при постоянных параметрах а и b получить не удается.

Изотермы идеального и реального газов, а также газа Ван-дер-Ваальса представлены на рис. 1.1.


Рис. 1. Изотермы различных газов.

Точное описание поведения реального газа можно получить с помощью уравнения, предложенного в 1901 году Каммерлинг-Оннесом и Кизомом и получившего название уравнения состояния с вириальными коэффициентами или вириального уравнения состояния :

которое записывается как разложение фактора сжимаемости

по степеням обратного объема . Коэффициенты В 2 (Т ), В 3 (Т ) и т.д. зависят только от температуры , называются вторым, третьим и т.д. вириальным коэффициентом и описывают отклонения свойств реального газа от идеального при заданной температуре . Вириальные коэффициенты В i (Т ) вычисляются из опытных данных по зависимости PV для заданной температуры.

Поскольку уравнение состояния pV = nRT имеет простой вид и отражает с разумной точностью поведение многих газов в широком диапазоне внешних условий, оно очень полезно. Но, конечно, оно не является универсальным. Очевидно, что этому уравнению не подчиняется ни одно вещество в жидком и твердом состоянии. Не существует таких конденсированных веществ, объем которых уменьшался бы вдвое при увеличении давления в два раза. Даже газы при сильном сжатии или вблизи точки конденсации проявляют заметные отклонения от указанного поведения. Было предложено много других более сложных уравнений состояния. Некоторые из них отличаются высокой точностью в ограниченной области изменения внешних условий. Некоторые применимы к специальным классам веществ. Имеются уравнения, которые применимы к более широкому классу веществ при более сильно различающихся внешних условиях, но они не очень точны. Здесь мы не будем тратить время на подробное рассмотрение таких уравнений состояния, но все же дадим некоторое представление о них.

Предположим, что молекулы газа являются абсолютно упругими твердыми шариками, столь малыми, что их общим объемом можно пренебречь по сравнению с объемом, занимаемым газом. Предположим также, что между молекулами не существует никаких притягивающих или отталкивающих сил и что они движутся совершенно хаотически, сталкиваясь случайно друг с другом и со стенками сосуда. Если применить к этой модели газа элементарную классическую механику, то мы получим соотношение pV = RT, не прибегая к каким-либо обобщениям опытных данных типа законов Бойля - Мариотта и Шарля - Гей-Люсса-ка. Иначе говоря, газ, который мы назвали «идеальным», ведет себя так, как должен был бы вести себя газ, состоящий из очень маленьких твердых шариков, взаимодействующих друг с другом только в момент столкновений. Давление, оказываемое таким газом на любую поверхность, равно просто средней величине импульса, передаваемой за единицу времени молекулами единице поверхности при столкновении с ней. Когда молекула массой m налетает на поверхность, имея перпендикулярную поверхности компоненту скорости , и отражается с компонентой скорости , то результирующий импульс, переданный поверхности, согласно законам механики, равен Эти скорости довольно высоки (несколько сотен метров в секунду для воздуха при нормальных условиях), поэтому время столкновения очень мало и передача импульса происходит почти мгновенно. Но столкновения столь многочисленны (порядка 1023 на 1 см2 в 1 с в воздухе при атмосферном давлении), что при измерении любым прибором давление оказывается абсолютно постоянным во времени и непрерывным.

Действительно, большинство прямых измерений и наблюдений показывает, что газы являются непрерывной средой. Вывод о том, что они должны состоять из большого числа отдельных молекул, является чисто умозрительным.

Мы знаем из опыта, что реальные газы не подчиняются правилам поведения, предсказываемым только что описанной идеальной моделью. При достаточно низких температурах и достаточно высоких давлениях любой газ конденсируется в жидкое или твердое состояния, которые по сравнению с газом можно считать несжимаемыми. Таким образом, общим объемом молекул не всегда можно пренебречь по сравнению с объемом сосуда. Ясно также, что между молекулами существуют силы притяжения, которые при достаточно низких температурах могут связывать молекулы, приводя к образованию конденсированной формы вещества. Эти соображения наводят на мысль, что один из способов получения уравнения состояния, более общего, чем уравнение состояния идеального газа, заключается в учете конечного объема реальных молекул и сил притяжения между ними.

Учет молекулярного объема не представляет сложности, по крайней мере на качественном уровне. Примем просто, что свободный объем, доступный для движения молекул, меньше полного объема газа V на величину 6, которая связана с размером молекул и иногда называется связанным объемом. Таким образом, мы должны заменить V в уравнении состояния идеального газа на (V - b); тогда получаем

Это соотношение иногда называют уравнением состояния Клаузиуса в честь немецкого физика Рудольфа Клаузиуса, который сыграл большую роль в развитии термодинамики. Мы узнаем больше о его работах в следующей главе. Заметим, что уравнение (5) написано для 1 моль газа. Для n моль нужно записать p(V-nb) = nRT.

Учесть силы притяжения между молекулами несколько труднее. Молекула, находящаяся в центре объема газа, т. е. далеко от стенок сосуда, будет «видеть» одинаковое число молекул во всех направлениях. Следовательно, силы притяжения одинаковы во всех направлениях и уравновешивают друг друга, так что никакой результирующей силы не возникает. Когда молекула приближается к стенке сосуда, то она «видит» больше молекул позади себя, чем перед собой. В результате возникает сила притяжения, направленная к центру сосуда. Движение молекулы несколько сдерживается, и она ударяется о стенку сосуда менее сильно, чем в случае отсутствия сил притяжения.

Поскольку давление газа обусловлено передачей импульса молекулами, сталкивающимися со стенками сосуда (или с любой другой поверхностью, расположенной внутри газа), давление, создаваемое притягивающимися молекулами, оказывается несколько меньше, чем давление, создаваемое теми же молекулами в отсутствие притяжения. Оказывается, что уменьшение давления пропорционально квадрату плотности газа. Поэтому мы можем написать

где p - плотность в молях на единицу объема, - давление, создаваемое идеальным газом непритягивающихся молекул, и а - коэффициент пропорциональности, характеризующий величину сил притяжения между молекулами данного сорта. Вспомним, что , где n - число молей. Тогда соотношение (б) можно переписать для 1 моль газа в несколько ином виде:

где а имеет характерное значение для данного вида газа. Правая часть уравнения (7) представляет собой «исправленное» давление идеального газа, которым нужно заменить p в уравнении Если мы учтем обе поправки, одну за счет объема в соответствии с (б) и другую за счет сил притяжения согласно (7), то получим для 1 моль газа

Это уравнение впервые было предложено голландским физиком Д. Ван-дер-Ваальсом в 1873 г. Для n моль оно принимает вид

Уравнение Ван-дер-Ваальса учитывает в простой и наглядной форме два эффекта, которые обусловливают отклонения поведения реальных газов от идеального. Очевидно, что поверхность, представляющая уравнение состояния Ван-дер-Ваальса в пространстве p, V, Ту не может быть такой простой, как поверхность, соответствующая идеальному газу. Часть такой поверхности для конкретных значений а и b показана на рис. 3.7. Изотермы изображены сплошными линиями. Изотермы, отвечающие температурам выше температуры которой соответствует так называемая критическая изотерма, не имеют минимумов и перегибов и выглядят подобно изотермам идеального газа, показанным на рис. 3.6. При температурах ниже изотермы имеют максимумы и минимумы. При достаточно низких температурах существует область, в которой давление становится отрицательным, как показывают участки изотерм, изображенные штриховыми линиями. Эти горбы и провалы, а также область отрицательных давлений не соответствуют физическим эффектам, а просто отражают недостатки уравнения Ван-дер-Ваальса, его неспособность описать истинное равновесное поведение реальных веществ.

Рис. 3.7. Поверхность p - V - Т для газа, подчиняющегося уравнению Ван-дер-Ваальса .

На самом деле в реальных газах при температурах ниже и достаточно высоком давлении силы притяжения между молекулами приводят к конденсации газа в жидкое или твердое состояние. Таким образом, аномальной области пиков и провалов на изотермах в области отрицательного давления, которую предсказывает уравнение Ван-дер-Ваальса, в реальных веществах соответствует область смешанной фазы, в которой сосуществуют пар и жидкое или твердое состояние. Рис. 3.8 иллюстрирует эту ситуацию. Такое «разрывное» поведение вообще не может быть описано никаким сравнительно простым и «непрерывным» уравнением.

Несмотря на свои недостатки, уравнение Ван-дер-Ваальса полезно для описания поправок к уравнению идеального газа. Значения а и b для различных газов определены из экспериментальных данных, некоторые типичные примеры приведены в табл. 3.2. К сожалению, для любого конкретного газа не существует единственных значений а и b, которые обеспечили бы точное описание зависимости между p, V и Т в широком диапазоне с помощью уравнения Ван-дер-Ваальса.

Таблица 3.2. Характерные значения постоянных Ван-дер-Ваальса

Тем не менее значения, указанные в таблице, дают нам некоторую качественную информацию об ожидаемой величине отклонения от поведения идеального газа.

Поучительно рассмотреть конкретный пример и сравнить результаты, полученные с помощью уравнения идеального газа, уравнения Клаузиуса и уравнения Ван-дер-Ваальса с данными измерений. Рассмотрим 1 моль водяного пара в объеме 1384 см3 при температуре 500 К. Вспоминая, что (моль К), и используя значения из табл. 3.2, получаем

а) из уравнения состояния идеального газа:

б) из уравнения состояния Клаузиуса: атм;

в) из уравнения состояния Ван-дер-Ваальса:

г) из экспериментальных данных:

Для этих конкретных условий закон идеального газа дает завышенное примерно на 14% значение давления, уравнение

Рис. 3.8. Поверхность для вещества, которое сжимается при охлаждении. Поверхность, подобная этой, не может быть описана одним уравнением состояния и должна строиться на основании экспериментальных данных.

Клаузиуса дает еще большую ошибку - около 16%, а уравнение Ван-дер-Ваальса завышает давление примерно на 5%. Интересно, что уравнение Клаузиуса дает большую ошибку, чем уравнение идеального газа. Причина заключается в том, что поправка на конечный объем молекул увеличивает давление, а член, учитывающий притяжение, уменьшает его. Таким образом, эти поправки частично компенсируют друг друга. Закон идеального газа, в котором не учитывается ни та, ни другая поправка, дает более близкое к действительному значение давления, чем уравнение Клаузиуса, в котором учитывается только увеличение его за счет уменьшения свободного объема. При очень больших плотностях поправка, учитывающая объем молекул, становится намного более существенной и уравнение Клаузиуса оказывается более точным, чем уравнение идеального газа.

Вообще говоря, для реальных веществ мы не знаем явного соотношения между р, V, Т и п. Для большинства твердых тел и жидкостей нет даже грубых приближений. Тем не менее мы твердо уверены, что такое соотношение существует для каждого вещества и что вещество подчиняется ему.

Кусок алюминия будет занимать определенный объем, всегда в точности одинаковый, если температура и давление имеют заданные значения. Мы записываем это общее утверждение в математической форме:

Эта запись утверждает существование некоторого функционального соотношения между р, V, Т и n, которое может быть выражено уравнением. (Если все члены такого уравнения перенести налево, правая часть, очевидно, будет равна нулю.) Такое выражение называется неявным уравнением состояния. Оно означает существование некоторого соотношения между переменными. Оно говорит также, что мы не знаем, каково это соотношение, но вещество его «знает»! Рис. 3.8 позволяет нам представить себе, насколько сложным должно быть уравнение, которое описывало бы реальное вещество в широком диапазоне переменных. На этом рисунке изображена поверхность для реального вещества, которое сжимается при замерзании (так ведут себя почти все вещества, кроме воды). Мы недостаточно искусны, чтобы предсказать путем вычисления, какой объем займет вещество при произвольно заданных значениях р, T и n, но мы абсолютно уверены, что вещество «знает», какой объем ему занять. Эта уверенность всегда подтверждается экспериментальной проверкой. Вещество всегда ведет себя однозначным образом.