Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

В котором он находился в первоначальный момент, выбранный произвольно).

В принципе совпадает с математическим понятием периода функции , но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T (хотя могут применяться и другие, наиболее часто это \tau, иногда \Theta и т. д.).

T = \frac{1}{\nu},\ \ \ \nu = \frac{1}{T}.

Для волновых процессов период связан кроме того очевидным образом с длиной волны \lambda

v = \lambda \nu, \ \ \ T = \frac{\lambda}{v},

где v - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры , осциллографы . Также применяются биения , метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Периоды колебаний в природе

Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

Периоды колебаний слышимого человеком звука находятся в диапазоне

От 5·10 −5 до 0,2

(четкие границы его несколько условны).

Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

От 1,1·10 −15 до 2,3·10 −15 .

Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

Периоды колебаний простейших физических систем

Пружинный маятник

Математический маятник

T=2\pi \sqrt{\frac{l}{g}}

где l - длина подвеса (к примеру, нити), g - ускорение свободного падения .

Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

Физический маятник

T=2\pi \sqrt{\frac{J}{mgl}}

Крутильный маятник

T = 2 \pi \sqrt{\frac{I}{K}}

Эту формулу вывел в 1853 году английский физик У. Томсон .

Напишите отзыв о статье "Период колебаний"

Примечания

Ссылки

  • - статья из Большой советской энциклопедии

Отрывок, характеризующий Период колебаний

Ростов молчал.
– А вы что ж? тоже позавтракать? Порядочно кормят, – продолжал Телянин. – Давайте же.
Он протянул руку и взялся за кошелек. Ростов выпустил его. Телянин взял кошелек и стал опускать его в карман рейтуз, и брови его небрежно поднялись, а рот слегка раскрылся, как будто он говорил: «да, да, кладу в карман свой кошелек, и это очень просто, и никому до этого дела нет».
– Ну, что, юноша? – сказал он, вздохнув и из под приподнятых бровей взглянув в глаза Ростова. Какой то свет глаз с быстротою электрической искры перебежал из глаз Телянина в глаза Ростова и обратно, обратно и обратно, всё в одно мгновение.
– Подите сюда, – проговорил Ростов, хватая Телянина за руку. Он почти притащил его к окну. – Это деньги Денисова, вы их взяли… – прошептал он ему над ухом.
– Что?… Что?… Как вы смеете? Что?… – проговорил Телянин.
Но эти слова звучали жалобным, отчаянным криком и мольбой о прощении. Как только Ростов услыхал этот звук голоса, с души его свалился огромный камень сомнения. Он почувствовал радость и в то же мгновение ему стало жалко несчастного, стоявшего перед ним человека; но надо было до конца довести начатое дело.
– Здесь люди Бог знает что могут подумать, – бормотал Телянин, схватывая фуражку и направляясь в небольшую пустую комнату, – надо объясниться…
– Я это знаю, и я это докажу, – сказал Ростов.
– Я…
Испуганное, бледное лицо Телянина начало дрожать всеми мускулами; глаза всё так же бегали, но где то внизу, не поднимаясь до лица Ростова, и послышались всхлипыванья.
– Граф!… не губите молодого человека… вот эти несчастные деньги, возьмите их… – Он бросил их на стол. – У меня отец старик, мать!…
Ростов взял деньги, избегая взгляда Телянина, и, не говоря ни слова, пошел из комнаты. Но у двери он остановился и вернулся назад. – Боже мой, – сказал он со слезами на глазах, – как вы могли это сделать?
– Граф, – сказал Телянин, приближаясь к юнкеру.
– Не трогайте меня, – проговорил Ростов, отстраняясь. – Ежели вам нужда, возьмите эти деньги. – Он швырнул ему кошелек и выбежал из трактира.

Вечером того же дня на квартире Денисова шел оживленный разговор офицеров эскадрона.
– А я говорю вам, Ростов, что вам надо извиниться перед полковым командиром, – говорил, обращаясь к пунцово красному, взволнованному Ростову, высокий штаб ротмистр, с седеющими волосами, огромными усами и крупными чертами морщинистого лица.
Штаб ротмистр Кирстен был два раза разжалован в солдаты зa дела чести и два раза выслуживался.
– Я никому не позволю себе говорить, что я лгу! – вскрикнул Ростов. – Он сказал мне, что я лгу, а я сказал ему, что он лжет. Так с тем и останется. На дежурство может меня назначать хоть каждый день и под арест сажать, а извиняться меня никто не заставит, потому что ежели он, как полковой командир, считает недостойным себя дать мне удовлетворение, так…
– Да вы постойте, батюшка; вы послушайте меня, – перебил штаб ротмистр своим басистым голосом, спокойно разглаживая свои длинные усы. – Вы при других офицерах говорите полковому командиру, что офицер украл…
– Я не виноват, что разговор зашел при других офицерах. Может быть, не надо было говорить при них, да я не дипломат. Я затем в гусары и пошел, думал, что здесь не нужно тонкостей, а он мне говорит, что я лгу… так пусть даст мне удовлетворение…
– Это всё хорошо, никто не думает, что вы трус, да не в том дело. Спросите у Денисова, похоже это на что нибудь, чтобы юнкер требовал удовлетворения у полкового командира?
Денисов, закусив ус, с мрачным видом слушал разговор, видимо не желая вступаться в него. На вопрос штаб ротмистра он отрицательно покачал головой.
– Вы при офицерах говорите полковому командиру про эту пакость, – продолжал штаб ротмистр. – Богданыч (Богданычем называли полкового командира) вас осадил.
– Не осадил, а сказал, что я неправду говорю.
– Ну да, и вы наговорили ему глупостей, и надо извиниться.
– Ни за что! – крикнул Ростов.
– Не думал я этого от вас, – серьезно и строго сказал штаб ротмистр. – Вы не хотите извиниться, а вы, батюшка, не только перед ним, а перед всем полком, перед всеми нами, вы кругом виноваты. А вот как: кабы вы подумали да посоветовались, как обойтись с этим делом, а то вы прямо, да при офицерах, и бухнули. Что теперь делать полковому командиру? Надо отдать под суд офицера и замарать весь полк? Из за одного негодяя весь полк осрамить? Так, что ли, по вашему? А по нашему, не так. И Богданыч молодец, он вам сказал, что вы неправду говорите. Неприятно, да что делать, батюшка, сами наскочили. А теперь, как дело хотят замять, так вы из за фанаберии какой то не хотите извиниться, а хотите всё рассказать. Вам обидно, что вы подежурите, да что вам извиниться перед старым и честным офицером! Какой бы там ни был Богданыч, а всё честный и храбрый, старый полковник, так вам обидно; а замарать полк вам ничего? – Голос штаб ротмистра начинал дрожать. – Вы, батюшка, в полку без году неделя; нынче здесь, завтра перешли куда в адъютантики; вам наплевать, что говорить будут: «между павлоградскими офицерами воры!» А нам не всё равно. Так, что ли, Денисов? Не всё равно?
Денисов всё молчал и не шевелился, изредка взглядывая своими блестящими, черными глазами на Ростова.
– Вам своя фанаберия дорога, извиниться не хочется, – продолжал штаб ротмистр, – а нам, старикам, как мы выросли, да и умереть, Бог даст, приведется в полку, так нам честь полка дорога, и Богданыч это знает. Ох, как дорога, батюшка! А это нехорошо, нехорошо! Там обижайтесь или нет, а я всегда правду матку скажу. Нехорошо!
И штаб ротмистр встал и отвернулся от Ростова.
– Пг"авда, чог"т возьми! – закричал, вскакивая, Денисов. – Ну, Г"остов! Ну!
Ростов, краснея и бледнея, смотрел то на одного, то на другого офицера.
– Нет, господа, нет… вы не думайте… я очень понимаю, вы напрасно обо мне думаете так… я… для меня… я за честь полка.да что? это на деле я покажу, и для меня честь знамени…ну, всё равно, правда, я виноват!.. – Слезы стояли у него в глазах. – Я виноват, кругом виноват!… Ну, что вам еще?…
– Вот это так, граф, – поворачиваясь, крикнул штаб ротмистр, ударяя его большою рукою по плечу.
– Я тебе говог"ю, – закричал Денисов, – он малый славный.
– Так то лучше, граф, – повторил штаб ротмистр, как будто за его признание начиная величать его титулом. – Подите и извинитесь, ваше сиятельство, да с.
– Господа, всё сделаю, никто от меня слова не услышит, – умоляющим голосом проговорил Ростов, – но извиняться не могу, ей Богу, не могу, как хотите! Как я буду извиняться, точно маленький, прощенья просить?
Денисов засмеялся.
– Вам же хуже. Богданыч злопамятен, поплатитесь за упрямство, – сказал Кирстен.
– Ей Богу, не упрямство! Я не могу вам описать, какое чувство, не могу…
– Ну, ваша воля, – сказал штаб ротмистр. – Что ж, мерзавец то этот куда делся? – спросил он у Денисова.
– Сказался больным, завтг"а велено пг"иказом исключить, – проговорил Денисов.
– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.

Важнейшим параметром, характеризующим механические, звуковые, электрические, электромагнитные и все другие виды колебаний, является период - время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5с. Период колебаний больших качелей около 2 с, а период колебаний струны может составлять от десятых до десятитысячных долей секунды.

Рисунок 2.4 - Колебание

где: φ – фаза колебания, I – сила тока, Ia – амплитудное значение силы тока (амплитуда)

Т – период колебания силы тока (период)

Другим параметром, характеризующим колебания, является частота (от слова «часто») - число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащее тело, ток в проводнике и т.п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут Гц): 1 Гц-это одно колебание в секунду. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» третьей октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При этом токе электроны в проводах сети в течение секунды текут попеременно 50 раз в одном направлении и столько же раз в обратном, т.е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты - килогерц (пишут кГц), равный 1000 Гц и мегагерц (пишут МГц), равный 1000 кГц или 1 000 000 Гц.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении. Неотрицательная скалярная величина, измеряется в единицах, зависящих от типа волны или колебания.

Рисунок 2.5 - Синусоидальное колебание.

где, y - амплитуда волны, λ - длина волны.

Например:

    амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины;

    амплитуда звуковых волн и аудио-сигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего). Её логарифм обычно измеряется в децибелах (дБ);

    для электромагнитного излучения амплитуда соответствует величине электрического и магнитного поля.

Форма изменения амплитуды называется огибающей волной .

Звуковые колебания

Как возникают звуковые волны в воздухе? Воздух состоит из невидимых глазам частиц. При ветре они могут переноситься на большие расстояния. Но они, кроме того, могут и колебаться. Например, если в воздухе сделать резкое движение палкой, то мы почувствуем легкий порыв ветра и одновременно услышим слабый звук. Звук это - результат колебаний частиц воздуха, возбужденных колебаниями палки.

Проведем такой опыт. Оттянем струну, например, гитары, а потом отпустим ее. Струна начнет дрожать - колебаться около своего первоначального положения покоя. Достаточно сильные колебания струны заметны на глаз. Слабые колебания струны можно только почувствовать как легкое щекотание, если прикоснуться к ней пальцем. Пока струна колеблется, мы слышим звук. Как только струна успокоится, звук затихнет. Рождение звука здесь - результат сгущения и разрежения частиц воздуха. Колеблясь из стороны в сторону, струна теснит, как бы прессует перед собой частицы воздуха, образуя в некотором его объеме области повышенного давления, а сзади, наоборот, области пониженного давления. Это и есть звуковые волны . Распространяясь в воздухе со скоростью около 340 м/с , они несут в себе некоторый запас энергии. В тот момент, когда до уха доходит область повышенного давления звуковой волны, она надавливает на барабанную перепонку, несколько прогибая ее внутрь. Когда же до уха доходит разреженная область звуковой волны, барабанная перепонка выгибается несколько наружу. Барабанная перепонка все время колеблется в такт с чередующимися областями повышенного и пониженного давления воздуха. Эти колебания передаются по слуховому нерву в мозг, и мы воспринимаем их как звук. Чем больше амплитуды звуковых волн, тем больше энергии несут они в себе, тем громче воспринимаемый нами звук.

Звуковые волны, как и водяные или электрические колебания, изображают волнистой линией - синусоидой. Ее горбы соответствуют областям повышенного давления, а впадины-областям пониженного давления воздуха. Область повышенного давления и следующая за нею область пониженного давления образуют звуковую волну.

По частоте колебаний звучащего тела можно судить о тоне или высоте звука. Чем больше частота, тем выше тон звука, и наоборот, чем меньше частота, тем ниже тон звука. Наше ухо способно реагировать на сравнительно небольшую полосу (участок) частот звуковых колебаний - примерно от 20 Гц до 20 кГц . Тем не менее эта полоса частот вмещает всю обширнейшую гамму звуков, создаваемых голосом человека, симфоническим оркестром: от очень низких тонов, похожих на звук жужжания жука, до еле уловимого высокого писка комара. Колебания частотой до 20 Гц, называемые инфразвуковыми , и свыше 20 кГц, называемые ультразвуковыми , мы не слышим. А если бы барабанная перепонка нашего уха оказалась способной реагировать и на ультразвуковые колебания, мы могли бы тогда услышать писк летучих мышей, голос дельфина. Дельфины издают и слышат ультразвуковые колебания с частотами до 180 кГц.

Но нельзя путать высоту, т.е. тон звука с его силой. Высота звука зависит не от амплитуды, а от частоты колебаний. Толстая и длинная струна музыкального инструмента, например, создает низкий тон звука, т.е. колеблется медленнее, чем тонкая и короткая струна, создающая высокий тон звука (рис. 1).

Рисунок 2.6 - Звуковые волны

Чем больше частота колебаний струны, тем короче звуковые волны и выше тон звука.

В электро - и радиотехнике используют переменные токи частотой от нескольких герц до тысяч гигагерц. Антенны широковещательных радиостанций, например, питаются токами частотой примерно от 150 кГц до 100 МГц.

Эти быстропеременные колебания, называемые колебаниями радиочастоты, и являются тем средством, с помощью которого осуществляется передача звуков на большие расстояния без проводов.

Весь огромный диапазон переменных токов принято подразделять на несколько участков - поддиапазонов.

Токи частотой от 20 Гц до 20 кГц, соответствующие колебаниям, воспринимаемым нами как звуки разной тональности, называют токами (или колебаниями) звуковой частоты , а токи частотой выше 20 кГц - токами ультразвуковой частоты .

Токи частотой от 100 кГц до 30 МГц называют токами высокой частоты ,

Токи частотой выше 30 МГц - токами ультравысокой и сверхвысокой частоты.

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T {\displaystyle T} (хотя могут применяться и другие, наиболее часто это τ {\displaystyle \tau } , иногда Θ {\displaystyle \Theta } и т. д.).

T = 1 ν , ν = 1 T . {\displaystyle T={\frac {1}{\nu }},\ \ \ \nu ={\frac {1}{T}}.}

Для волновых процессов период связан кроме того очевидным образом с длиной волны λ {\displaystyle \lambda }

v = λ ν , T = λ v , {\displaystyle v=\lambda \nu ,\ \ \ T={\frac {\lambda }{v}},}

где v {\displaystyle v} - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры, осциллографы . Также применяются биения, метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Энциклопедичный YouTube

  • 1 / 5

    Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

    Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

    Периоды колебаний слышимого человеком звука находятся в диапазоне

    От 5·10 −5 до 0,2

    (четкие границы его несколько условны).

    Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

    От 1,1·10 −15 до 2,3·10 −15 .

    Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

    В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

    Периоды колебаний простейших физических систем

    Пружинный маятник

    Математический маятник

    T = 2 π l g {\displaystyle T=2\pi {\sqrt {\frac {l}{g}}}}

    где l {\displaystyle l} - длина подвеса (к примеру, нити), g {\displaystyle g} - ускорение свободного падения .

    Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

    Физический маятник

    T = 2 π J m g l {\displaystyle T=2\pi {\sqrt {\frac {J}{mgl}}}}

    где J {\displaystyle J} - момент инерции маятника относительно оси вращения, m {\displaystyle m} -