Рассмотрим системы отсчета, связанные с телами, на которые действуют только силы тяготения. Такой системой является, например, корпус искусственного спутника. Вначале, однако, рассмотрим более простой пример. Представим себе, что трос, на котором висит кабина лифта, оборвался, и кабина начала падать с ускорением направленным вниз. Сила инерции, действующая на тело массы , находящееся в кабине, будет равна . Знак минус показывает, что сила направлена вверх, противоположно силе тяжести. Но сила тяжести, действующая на данное тело, равна и направлена вниз. Значит, вместе с силой инерции эти силы взаимно уравновесятся. Если тело висело на нити, то сила натяжения нити исчезнет; если пережечь нить, то тело останется на месте относительно кабины. Если сообщить незакрепленному телу некоторую скорость, то оно будет двигаться прямолинейно и равномерно, пока не ударится о стенку кабины. Отвес не будет иметь никакого определенного положения равновесия: если толкнуть грузик отвеса вбок, то, вместо того чтобы начать колебаться вблизи начального положения, он будет равномерно вращаться вокруг точки подвеса. Чтобы тело покоилось относительно падающего лифта, не нужно ни опоры, ни подвеса, а покоящиеся тела не будут деформированы. Вместе с этим исчезнет сила, с которой покоящееся тело, находящееся под действием силы тяготения, давит на подставку или растягивает подвес; словом, исчезнет вес. Поэтому условия, имеющие место в падающем лифте, называют состоянием невесомости.

Совершенно такая же картина невесомости будет наблюдаться и в искусственном спутнике, движущемся по орбите. Ведь движение спутника, как мы видели (§ 125), есть также свободное падение с ускорением, создаваемым силой тяжести; поэтому для любого тела в спутнике, с точки зрения находящегося в нем наблюдателя, сумма сил тяготения и сил инерции будет равна нулю. Внутри кабины нельзя определить, где «верх» и где «низ»; тела не падают на пол, а «плавают» в воздухе; для того чтобы удерживать в руке тело даже большой массы, не требуется никаких усилий, и т. д. С точки же зрения наблюдателя, находящегося в инерциальной системе отсчета, космонавт не обнаруживает ускорений тел, находящихся в кабине, в том числе и своего тела, относительно стенок кабины, потому, что как кабина, так и все тела в ней, и он сам в том числе, «падают», т. е. имеют одинаковое ускорение . Как видно из сказанного, состояние невесомости наступает не потому, что сила земного притяжения «перестает действовать», но именно потому, что она «делает свое дело» - сообщает всем телам одинаковое ускорение.

Если космонавт попытается массивному телу, которое «плавает» в воздухе, сообщить толчком большую скорость, то он убедится, что для этого нужно приложить вполне ощутимую силу. Эту силу можно вычислить по второму закону Ньютона как произведение массы тела на его ускорение относительно кабины. В состоянии невесомости массивное тело перестает давить на руку, которая удерживает его в определенном положении, но вовсе не перестает давить на руку, сообщающую ему ускорение. Если массивному телу сообщена значительная начальная скорость, то оно будет продолжать двигаться с той же скоростью прямолинейно, пока не наткнется на стенку кабины, и если стенка выдержит этот удар, то тело отразится от стенки и начнет двигаться в обратном направлении с той же скоростью. Словом, космонавт не обнаружит никаких отклонений от законов механики, но обнаружит отсутствие тех явлений, которые обусловлены действием сил земного тяготения. Поэтому в состоянии невесомости у космонавта отсутствуют привычные явления, вызываемые силой тяжести (например, постоянное напряжение некоторых мышц, деформации внутренних органов и т. п.), к которым организм приспособился в процессе эволюции.

Все сказанное о состоянии невесомости относится к тому случаю, когда на космический корабль действуют только силы тяготения. Если же на него действует еще и сила тяги реактивных двигателей, то состояние невесомости нарушается. Например, на «активном участке» траектории, когда двигатели работают, разгоняя ракету до требуемой скорости, поднимая ее вертикально вверх, сила инерции направлена вертикально вниз и для тела массы равна , где - ускорение ракеты. Таким образом, космонавт, рассматривающий движение окружающих его тел относительно стенок кабины, обнаружит, что, кроме силы тяжести , на тела действует еще в том же направлении сила инерции . Точнее говоря, так как он не сможет различить эти силы, он обнаружит, что на тело действует сила - результирующая силы тяготения и силы инерции. Картина будет такова, как если бы сила тяготения Земли увеличилась в раз. Ускорение при взлете ракеты может значительно превышать ускорение свободного падения, так что результирующие силы, действующие на покоящиеся тела в кабине, могут в несколько раз превышать силу тяжести для этих тел. Соответственно увеличатся и деформации, вызванные этой возросшей силой, и силы, с которыми действуют друг на друга деформированные тела и части деформированных тел. Это явление называют перегрузкой. Говорят о двукратной, трехкратной и т. д. перегрузке, когда результирующая сил тяжести и сил инерции превышает в два, три и т. д. раза силу тяжести, действующую на тело.

Состояние перегрузки действует на организм космонавта значительно сильнее, чем состояние невесомости, но при полетах в космосе оно длится гораздо меньшее время - время работы двигателей. Для того чтобы космонавт легче переносил перегрузки, принимают специальные меры: космонавт располагается лежа в специальном кресле так, чтобы его возросший вес распределялся по возможно большей площади и не изменял условий кровообращения.

Перегрузки легко объяснить и с точки зрения «инерциального наблюдателя». С этой точки зрения силы инерции отсутствуют, но, помимо сил тяготения, к космическому кораблю и к каждому из тел, в нем находящихся, приложены силы, действующие при непосредственном соприкосновении и сообщающие всем этим телам данное ускорение. Мы видели (§119), что в этом случае ускоряемые тела оказываются деформированными, и, значит, между их частями действуют силы упругости такие же, какие действовали бы между ними, если бы тела покоились, и на них действовала бы увеличенная сила тяготения.

Рассмотрим системы отсчета, связанные с телами, на которые действуют только силы тяготения. Такой системой является, например, корпус искусственного спутника. Вначале, однако, рассмотрим более простой пример. Представим себе, что трос, на котором висит кабина лифта, оборвался, и кабина начала падать с ускорением направленным вниз. Сила инерции, действующая на тело массы , находящееся в кабине, будет равна . Знак минус показывает, что сила направлена вверх, противоположно силе тяжести. Но сила тяжести, действующая на данное тело, равна и направлена вниз. Значит, вместе с силой инерции эти силы взаимно уравновесятся. Если тело висело на нити, то сила натяжения нити исчезнет; если пережечь нить, то тело останется на месте относительно кабины. Если сообщить незакрепленному телу некоторую скорость, то оно будет двигаться прямолинейно и равномерно, пока не ударится о стенку кабины. Отвес не будет иметь никакого определенного положения равновесия: если толкнуть грузик отвеса вбок, то, вместо того чтобы начать колебаться вблизи начального положения, он будет равномерно вращаться вокруг точки подвеса. Чтобы тело покоилось относительно падающего лифта, не нужно ни опоры, ни подвеса, а покоящиеся тела не будут деформированы. Вместе с этим исчезнет сила, с которой покоящееся тело, находящееся под действием силы тяготения, давит на подставку или растягивает подвес; словом, исчезнет вес. Поэтому условия, имеющие место в падающем лифте, называют состоянием невесомости.

Совершенно такая же картина невесомости будет наблюдаться и в искусственном спутнике, движущемся по орбите. Ведь движение спутника, как мы видели (§ 125), есть также свободное падение с ускорением, создаваемым силой тяжести; поэтому для любого тела в спутнике, с точки зрения находящегося в нем наблюдателя, сумма сил тяготения и сил инерции будет равна нулю. Внутри кабины нельзя определить, где «верх» и где «низ»; тела не падают на пол, а «плавают» в воздухе; для того чтобы удерживать в руке тело даже большой массы, не требуется никаких усилий, и т. д. С точки же зрения наблюдателя, находящегося в инерциальной системе отсчета, космонавт не обнаруживает ускорений тел, находящихся в кабине, в том числе и своего тела, относительно стенок кабины, потому, что как кабина, так и все тела в ней, и он сам в том числе, «падают», т. е. имеют одинаковое ускорение . Как видно из сказанного, состояние невесомости наступает не потому, что сила земного притяжения «перестает действовать», но именно потому, что она «делает свое дело» - сообщает всем телам одинаковое ускорение.

Если космонавт попытается массивному телу, которое «плавает» в воздухе, сообщить толчком большую скорость, то он убедится, что для этого нужно приложить вполне ощутимую силу. Эту силу можно вычислить по второму закону Ньютона как произведение массы тела на его ускорение относительно кабины. В состоянии невесомости массивное тело перестает давить на руку, которая удерживает его в определенном положении, но вовсе не перестает давить на руку, сообщающую ему ускорение. Если массивному телу сообщена значительная начальная скорость, то оно будет продолжать двигаться с той же скоростью прямолинейно, пока не наткнется на стенку кабины, и если стенка выдержит этот удар, то тело отразится от стенки и начнет двигаться в обратном направлении с той же скоростью. Словом, космонавт не обнаружит никаких отклонений от законов механики, но обнаружит отсутствие тех явлений, которые обусловлены действием сил земного тяготения. Поэтому в состоянии невесомости у космонавта отсутствуют привычные явления, вызываемые силой тяжести (например, постоянное напряжение некоторых мышц, деформации внутренних органов и т. п.), к которым организм приспособился в процессе эволюции.

Все сказанное о состоянии невесомости относится к тому случаю, когда на космический корабль действуют только силы тяготения. Если же на него действует еще и сила тяги реактивных двигателей, то состояние невесомости нарушается. Например, на «активном участке» траектории, когда двигатели работают, разгоняя ракету до требуемой скорости, поднимая ее вертикально вверх, сила инерции направлена вертикально вниз и для тела массы равна , где - ускорение ракеты. Таким образом, космонавт, рассматривающий движение окружающих его тел относительно стенок кабины, обнаружит, что, кроме силы тяжести , на тела действует еще в том же направлении сила инерции . Точнее говоря, так как он не сможет различить эти силы, он обнаружит, что на тело действует сила - результирующая силы тяготения и силы инерции. Картина будет такова, как если бы сила тяготения Земли увеличилась в раз. Ускорение при взлете ракеты может значительно превышать ускорение свободного падения, так что результирующие силы, действующие на покоящиеся тела в кабине, могут в несколько раз превышать силу тяжести для этих тел. Соответственно увеличатся и деформации, вызванные этой возросшей силой, и силы, с которыми действуют друг на друга деформированные тела и части деформированных тел. Это явление называют перегрузкой. Говорят о двукратной, трехкратной и т. д. перегрузке, когда результирующая сил тяжести и сил инерции превышает в два, три и т. д. раза силу тяжести, действующую на тело.

Состояние перегрузки действует на организм космонавта значительно сильнее, чем состояние невесомости, но при полетах в космосе оно длится гораздо меньшее время - время работы двигателей. Для того чтобы космонавт легче переносил перегрузки, принимают специальные меры: космонавт располагается лежа в специальном кресле так, чтобы его возросший вес распределялся по возможно большей площади и не изменял условий кровообращения.

Перегрузки легко объяснить и с точки зрения «инерциального наблюдателя». С этой точки зрения силы инерции отсутствуют, но, помимо сил тяготения, к космическому кораблю и к каждому из тел, в нем находящихся, приложены силы, действующие при непосредственном соприкосновении и сообщающие всем этим телам данное ускорение. Мы видели (§119), что в этом случае ускоряемые тела оказываются деформированными, и, значит, между их частями действуют силы упругости такие же, какие действовали бы между ними, если бы тела покоились, и на них действовала бы увеличенная сила тяготения.

Любое крупное достижение науки в конечном счете как-то изменяет жизнь каждого из нас. Так было с открытием электричества и электромагнитных волн, с изобретением летательных аппаратов тяжелее воздуха, с созданием полупроводников… Сейчас в жизнь человечества входят ракеты и космические корабли.

Можно не сомневаться, что пройдет еще несколько десятков лет и люди будут пользоваться для межконтинентальных сообщений ракетным транспортом с такими же спокойствием и невозмутимостью, с какими сейчас они поднимаются на борт пассажирского реактивного лайнера. Станут обыденными и космические сообщения между Землей и Луной. Люди будут жить и работать на космических станциях, появятся профессии космических сварщиков, монтажников и др.

Но, пожалуй, впервые, благодаря научно-техническим достижениям в освоении космоса, человек попадет в принципиально новые условия, где по-иному проявляются привычные физические закономерности. Что-либо подобное может произойти разве лишь при освоении морских глубин.

Разумеется, основные законы физики и, в частности, механики одинаковы и на Земле, и под водой, и в космосе. Но проявляются они по-разному в зависимости от условий. А условия эти на Земле и в космосе далеко не одинаковы. На нашей планете они характеризуются двумя главными обстоятельствами. Во-первых, отсутствуют заметные изменения скорости - ускорения в движении точек земной поверхности. А во-вторых, наша планета притягивает к себе все предметы и заставляет их оказывать давление на свои опоры.

Отсутствие ощутимых ускорений связано с особенностями движения Земли в мировом пространстве. Вместе с нашей планетой мы участвуем в двух основных ее движениях: суточном вращении вокруг собственной оси и годовом обращении вокруг Солнца. И хотя мы мчимся вместе с Землей вокруг Солнца со скоростью 30 км/с, а вместе с Солнечной системой вокруг центра Галактики с чудовищной скоростью около 230 км/с, мы этого не ощущаем, так как организм человека совершенно нечувствителен к скорости равномерного движения.

Впрочем, согласно одному из фундаментальных положений механики, вообще никакими внутренними физическими экспериментами и измерениями невозможно обнаружить равномерное и прямолинейное движение.

Ну, а если некоторая система, например, космическая ракета, будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды? При таком движении возникает перегрузка, т. е. увеличение давления на опору. Наоборот, если движение происходит с выключенными двигателями в пустоте, давление на опору исчезает, наступает состояние невесомости.

В условиях Земли давление на опору связано с действием силы тяготения. Но некоторые думают, что сила давления на опору - это и есть та сила, с которой тело притягивается Землей. Если бы дело обстояло так, то, например, в космическом корабле, движущемся к Луне, невесомости не было бы, так как в любой точке орбиты на корабль действовала бы сила земного притяжения. Да и вообще в космосе вряд ли возможно найти такое место, где равнодействующая сил тяготения была бы равна нулю.

Заметим, что давление на опору может быть вызвано не только действием силы тяготения, но и другими причинами, например, ускорением. Для неподвижного тела, покоящегося на земной поверхности, сила притяжения в самом деле совпадает с силой давления на опору. Но это только частный случай. На Земле человек с некоторой силой давит на ее поверхность. В свою очередь, согласно третьему закону механики, и поверхность Земли давит на человека снизу вверх с точно такой же силой. Эта сила «противодействия» называется реакцией опоры. Силы действия и противодействия всегда приложены к разным телам. В частности, в рассматриваемом случае сила давления на опору приложена к опоре, а реакция опоры к самому телу.


Рис. 17. Давление на опору и реакция опоры.

Между тем, сила притяжения приложена не к опоре, а к телу. Таким образом, сила давления на опору и сила притяжения - это совершенно разные силы.

Если космическая ракета движется с ускорением, давление опоры на тело возрастает во столько же раз, во сколько реактивное ускорение ракеты превосходит ускорение свободного падения, равное 9,81 м/с 2 . Другими словами, на ускоренном участке движения возрастает реакция опоры. Но при этом, в соответствии с третьим законом механики, во столько же раз увеличивается и давление на опору.

Отношение фактического давления на опору к его давлению на опору в условиях Земли получило название перегрузки. Для человека, находящегося на земной поверхности, перегрузка равна, таким образом, единице. К действию этой постоянной перегрузки человеческий организм приспособился, и мы ее просто не замечаем.

Физическая сущность явления перегрузки заключается в том, что не все точки тела получают ускорение одновременно. Действующая на тело сила, например, сила тяги ракетного двигателя, приложена в этом случае к сравнительно небольшой части его поверхности. Остальные же материальные точки тела получают ускорение с некоторым запозданием через деформацию. Другими словами, тело как бы сплющивается, прижимается к опоре.

Многочисленные экспериментальные исследования, которые были начаты еще К. Э. Циолковским, показали, что физиологическое воздействие перегрузки существенно зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Внутренние органы в результате увеличения своего веса также смещаются вниз, вызывая сильное натяжение связок.


Рис. 18. Физическая сущность перегрузки.

Чтобы избежать опасных для организма перегрузок на участках ускоренного движения, необходимо располагаться таким образом, чтобы действие перегрузки было направлено от спины к груди. Подобное положение позволяет переносить примерно втрое большие перегрузки.

Кстати сказать, именно по этой причине отдыхать лежа - лучше, чем стоя…

Если с действием перегрузки жителям Земли хотя и не часто, но все же приходится встречаться, то с невесомостью они практически не знакомы..

Это удивительное состояние наступает после выключения двигателей ракеты, когда и давление на опору и реакция опоры полностью исчезают. Исчезают и привычные для человека направления верха и низа, а незакрепленные предметы свободно плавают в воздухе.

Относительно невесомости существует целый ряд неправильных представлений. Некоторые думают, что это состояние возникает тогда, когда космический корабль оказывается в безвоздушном пространстве, «вне сферы земного притяжения». Другие полагают, что невесомость в спутнике Земли получается благодаря действию на него «центробежных сил».

Все это, однако, совершенно неверно.

При каких же условиях возникает невесомость и давление на опору обращается в нуль? Это явление связано с тем, что при свободном движении в космическом пространстве и сама ракета, и все находящиеся в ней предметы под действием сил тяготения движутся с одинаковым ускорением. Опора все время как бы уходит из-под тела, и тело не успевает давить на нее.


Рис. 19. Физическая сущность невесомости.

Однако и движение на активных участках под действием ракетного двигателя, и движение под действием сил тяготения являются движениями ускоренными. Оба они совершаются под действием сил. Почему же в одном случае возникает перегрузка, а в другом - невесомость?

Парадокс этот кажущийся. Выше уже отмечалось, что при возникновении перегрузок ускорения сообщаются различным точкам тела через деформацию. Другое дело, когда ракета движется в поле тяготения. В пределах размеров ракеты поле тяготения практически однородно, а это значит, что на все частицы ракеты одновременно действуют равные силы. Ведь силы тяготения принадлежат к числу так называемых массовых сил, т. е. сил, которые приложены одновременно ко всем точкам рассматриваемой системы.

Благодаря этому все точки ракеты одновременно получают одинаковые ускорения и всякое взаимодействие между ними исчезает. Исчезает реакция опоры, исчезает давление на опору. Наступает состояние полной невесомости.

Не совсем обычно должны протекать в условиях невесомости и некоторые физические процессы. Еще А. Эйнштейн задолго до космических полетов поставил любопытный вопрос: будет ли гореть свеча в кабине космического корабля?

Великий ученый ответил отрицательно - он считал, что из-за невесомости раскаленные газы не будут уходить из зоны пламени. Тем самым доступ кислорода к фитилю окажется прегражденным, и пламя погаснет.

Однако дотошные современные экспериментаторы решили все же проверить утверждение Эйнштейна на опыте. В одной из лабораторий был поставлен следующий довольно элементарный эксперимент. Горящую свечу, помещенную в закрытую стеклянную банку, сбрасывали с высоты около 70 м. Падающий предмет находился в состоянии невесомости (если не учитывать сопротивления воздуха). Однако свеча вовсе не гасла, лишь менялась форма языка пламени - он становился более шарообразным, а испускаемый им свет становился менее ярким.

Видимо, все дело в диффузии, благодаря которой кислород из окружающего пространства все же попадает в зону пламени. Ведь процесс диффузии не зависит от действия сил тяготения.

И все-таки условия горения в невесомости иные, чем на Земле. Это обстоятельство пришлось учитывать советским конструкторам, которые создавали уникальный сварочный аппарат для проведения сварки в условиях невесомости.

Как известно, этот аппарат был испытан в 1969 г. на советском космическом корабле «Союз-8» и работал успешно.

<<< Назад
Вперед >>>

Любое крупное достижение науки в конечном счете как-то изменяет жизнь каждого из нас. Так было с открытием электричества и электромагнитных волн, с изобретением летательных аппаратов тяжелее воздуха, с созданием полупроводников... Сейчас в жизнь человечества входят ракеты и космические корабли.

Можно не сомневаться, что пройдет еще несколько десятков лет и люди будут пользоваться для межконтинентальных сообщений ракетным транспортом с такими же спокойствием и невозмутимостью, с какими сейчас они поднимаются на борт пассажирского реактивного лайнера. Станут обыденными и космические сообщения между Землей и Луной. Люди будут жить и работать на космических станциях, появятся профессии космических сварщиков, монтажников и др.

Но, пожалуй, впервые, благодаря научно-техническим достижениям в освоении космоса, человек попадет в принципиально новые условия, где по-иному проявляются привычные физические закономерности. Что-либо подобное может произойти разве лишь при освоении морских глубин.

Разумеется, основные законы физики и, в частности, механики одинаковы и на Земле, и под водой, и в космосе. Но проявляются они по-разному в зависимости от условий. А условия эти на Земле и в космосе далеко не одинаковы. На нашей планете они характеризуются двумя главными обстоятельствами. Во-первых, отсутствуют заметные изменения скорости - ускорения в движении точек земной поверхности. А во-вторых, наша планета притягивает к себе все предметы и заставляет их оказывать давление на свои опоры.

Отсутствие ощутимых ускорений связано с особенностями движения Земли в мировом пространстве. Вместе с нашей планетой мы участвуем в двух основных ее движениях: суточном вращении вокруг собственной оси и годовом обращении вокруг Солнца. И хотя мы мчимся вместе с Землей вокруг Солнца со скоростью 30 км/с, а вместе с Солнечной системой вокруг центра Галактики с чудовищной скоростью около 230 км/с, мы этого не ощущаем, так как организм человека совершенно нечувствителен к скорости равномерного движения.

Впрочем, согласно одному из фундаментальных положений механики, вообще никакими внутренними физическими экспериментами и измерениями невозможно обнаружить равномерное и прямолинейное движение.

Ну, а если некоторая система, например, космическая ракета, будет двигаться с ускорением под действием двигателей или испытывая сопротивление среды? При таком движении возникает перегрузка, т. е. увеличение давления на опору. Наоборот, если движение происходит с выключенными двигателями в пустоте, давление на опору исчезает, наступает состояние невесомости.

В условиях Земли давление на опору связано с действием силы тяготения. Но некоторые думают, что сила давления на опору - это и есть та сила, с которой тел,р притягивается Землей. Если бы дело обстояло так, то, например, в космическом корабле, движущемся к Луне, невесомости не было бы, так как в любой точке орбиты на корабль действовала бы сила земного притяжения. Да и вообще в космосе вряд ли возможно найти такое место, где равнодействующая сил тяготения была бы равна нулю.

Заметим, что давление на опору может быть вызвано не только действием силы тяготения, но и другими причинами, например, ускорением. Для неподвижного тела, покоящегося на земной поверхности, сила притяжения в самом деле совпадает с силой давления на опору. Но это только частный случай. На Земле человек с некоторой силой давит на ее поверхность. В свою очередь, согласно третьему закону механики, и поверхность Земли давит на человека снизу вверх с точно такой же силой. Эта сила «противодействия» называется реакцией опоры. Силы действия и противодействия всегда приложены к разным телам. В частности, в рассматриваемом случае сила давления на опору приложена к опоре, а реакция опоры к самому телу.

Между тем, сила притяжения приложена не к опоре, а к телу. Таким образом, сила давления на опору и сила притяжения - это совершенно разные силы.

Если космическая ракета движется с ускорением, давление опоры на тело возрастает во столько же раз, во сколько реактивное ускорение ракеты превосходит ускорение свободного падения, равное 9,81 м/с 2 . Другими словами, на ускоренном участке движения возрастает реакция опоры. Но при этом, в соответствии с третьим законом механики, во столько же раз увеличивается и давление на опору.

Отношение фактического давления на опору к его давлению на опору в условиях Земли получило название перегрузки. Для человека, находящегося на земной поверхности, перегрузка равна, таким образом, единице. К действию этой постоянной перегрузки человеческий организм приспособился, и мы ее просто не замечаем.

Физическая сущность явления перегрузки заключается в том, что не все точки тела получают ускорение одновременно. Действующая на тело сила» например, сила тяги ракетного двигателя, приложена в этом случае к сравнительно небольшой части его поверхности. Остальные же материальные точки тела получают ускорение с некоторым запозданием через деформацию. Другими словами, тело как бы сплющивается, прижимается к опоре.

Многочисленные экспериментальные исследования, которые были начаты еще К. Э. Циолковским, показали, что физиологическое воздействие перегрузки существенно зависит не только от ее продолжительности, но и от положения тела. При вертикальном положении человека значительная часть крови смещается в нижнюю половину тела, что приводит к нарушению кровоснабжения головного мозга. Внутренние органы в результате увеличения своего веса также смещаются вниз, вызывая сильное натяжение связок.

Чтобы избежать опасных для организма перегрузок на участках ускоренного движения, необходимо располагаться таким образом, чтобы действие перегрузки было направлено от спины к груди. Подобное положение позволяет переносить примерно втрое большие перегрузки.

Кстати сказать, именно по этой причине отдыхать лежа - лучше, чем стоя...

Если с действием перегрузки жителям Земли хотя и не часто, но все же приходится встречаться, то с невесомостью они практически не знакомы.

Это удивительное состояние наступает после выключения двигателей ракеты, когда и давление на опору и реакция опоры полностью исчезают. Исчезают и привычные для человека направления верха и низа, а незакрепленные предметы свободно плавают в воздухе.

Относительно невесомости существует целый ряд неправильных представлений. Некоторые думают, что это состояние возникает тогда, когда космический корабль оказывается в безвоздушном пространстве, «вне сферы земного притяжения». Другие полагают, что невесомость в спутнике Земли получается благодаря действию на него «центробежных сил».

Все это, однако, совершенно неверно.

При каких же условиях возникает невесомость и давление на опору обращается в нуль? Это явление связано с тем, что при свободном движении в космическом пространстве и сама ракета, и все находящиеся в ней предметы под действием сил тяготения движутся с одинаковым ускорением. Опора все время как бы уходит из-под тела, и тело не успевает давить на нее.

Однако и движение на активных участках под действием ракетного двигателя, и движение под действием сил тяготения являются движениями ускоренными. Оба они совершаются под действием сил. Почему же в одном случае возникает перегрузка, а в другом - невесомость?

Парадокс этот кажущийся. Выше уже отмечалось, что при возникновении перегрузок ускорения сообщаются различным точкам тела через деформацию. Другое дело, когда ракета движется в поле тяготения. В пределах размеров ракеты поле тяготения практически однородно, а это значит, что на все частицы ракеты одновременно действуют равные силы. Ведь силы тяготения принадлежат к числу так называемых массовых сил, т. е. сил, которые приложены одновременно ко всем точкам рассматриваемой системы.

Благодаря этому все точки ракеты одновременно получают одинаковые ускорения и всякое взаимодействие между ними исчезает. Исчезает реакция опоры, исчезает давление на опору. Наступает состояние полной невесомости.

Не совсем обычно должны протекать в условиях невесомости и некоторые физические процессы. Еще А. Эйнштейн задолго до космических полетов поставил любопытный вопрос: будет ли гореть свеча в кабине космического корабля?

Великий ученый ответил отрицательно - он считал, что из-за невесомости раскаленные газы не будут уходить из зоны пламени. Тем самым доступ кислорода к фитилю окажется прегражденным, и пламя погаснет.

Однако дотошные современные экспериментаторы решили все же проверить утверждение Эйнштейна на опыте. В одной из лабораторий был поставлен следующий довольно элементарный эксперимент. Горящую свечу, помещенную в закрытую стеклянную банку, сбрасывали с высоты около 70 м. Падающий предмет находился в состоянии невесомости (если не учитывать сопротивления воздуха). Однако свеча вовсе не гасла, лишь менялась форма языка пламени - он становился более шарообразным, а испускаемый им свет становился менее ярким.

Видимо, все дело в диффузии, благодаря которой кислород из окружающего пространства все же попадает в зону пламени. Ведь процесс диффузии не зависит от действия сил тяготения.

И все-таки условия горения в невесомости иные, чем на Земле. Это обстоятельство пришлось учитывать советским конструкторам, которые создавали уникальный сварочный аппарат для проведения сварки в условиях невесомости.

Как известно, этот аппарат был испытан в 1969 г. на советском космическом корабле «Союз-8» и работал успешно.

В обычных условиях на животное действуют сила тяжести и сила реакции опоры. При отсутствии ускорения эти силы равны и противоположено направлены. Такое состояние естественно.

При ускоренном движении системы могут возникнуть особые состояния, называемые перегрузками и невесомостью.

Рисунок 1.

Рассмотрим некоторые примеры.

Пусть человек находится в кабине лифта (в ракете), который поднимается вверх с ускорением а (рисунок 1а). На человека действует сила тяжести mg и сила реакции опоры N. По второму закону Ньютона

или в скалярной форме с учетом направления сил

В этом случае сила реакции опоры больше силы тяжести, и возникают перегрузки . Перегрузка выражается отношением

Перегрузки могут оказывать существенное влияние на организм, так как в этих состояниях происходит отток крови, изменяется взаимное давление внутренних органов друг на друга, возникает их деформация и т.п. Поэтому животные способны выдерживать лишь ограниченные перегрузки.

Если лифт (или космический корабль) ускоренно движется вниз (рис.1б) или замедленно вверх, то

или
.

Как видно, сила реакции опоры меньше чем сила тяжести. Если а=g, то N=0 – состояние невесомости . Это такое состояние, при котором действующие на систему внешние силы не вызывают взаимных давлений частиц системы друг на друга.

Для биологических объектов невесомость – необычное состояние, хотя в обыденной жизни встречается кратковременные периоды частичной невесомости: прыжки, качели, начало движения вниз скоростного лифта и т.п.

Отсутствие действия опоры при невесомости приводит к общей детренированности организма и связанному с этим снижению работоспособности. При этом уменьшается мышечная масса, происходит деминерализация костной ткани, кров равномерно распределяется в организме, это означает, что верхняя часть тела переполнена кровью по сравнению с обычным состоянием, ощущается тяжесть в голове, появляется отечность лица.

1.4. Вестибулярный аппарат как инерциальная система ориентации

Удобным индикатором ускорения является устройство, изображенное на рисунке 2, - тело известной массы укреплено на шести пружинах. По деформации пружин можно определить значение и направление силы действующей на тело, а отсюда и ускорение системы, если учесть ускорение свободного падения. Такого рода индикаторы используются в инерциальной навигации, получившей развитие в связи с решением космических задач. Соответствующие устройства называются инерциальными системами ориентации .


Рисунок 2. Рисунок 3.

В человеческом организме имеется орган, который тоже, по существу, является инерциальной системой ориентации – это вестибулярный аппарат. Он расположен во внутреннем ухе и состоит из трех взаимно перпендикулярных полукружных каналов К и полости преддверия В (рис.3). На внутренней поверхности стенок преддверия и в части полукружных каналов находятся группы чувствительных нервных клеток, имеющих свободные окончания в форме волосков. Внутри преддверия и полукружных каналов ест студенистая масса (эндолимфа), содержащая мелкие кристаллы фосфорнокислого и углекислого кальция (отолиты). Ускоренное перемещение головы вызывает перемещение эндолимфы и отолитов, что воспринимается нервными клетками (через волоски). Вестибулярный аппарат, как и любая другая физическая система, не отличает гравитационное воздействие от воздействий, возникающих при ускоренном движении системы.