Генетика - это наука о наследственности и изменчивости организмов.

В эпоху научно-технической революции генетика является одним из наиболее актуальных, бурно развивающихся разделов биологии, всегда тесно связанным с практикой.

На основе современной генетики развивается микробиологическая промышленность, в животноводстве на генетической основе строится селекция и племенное дело, формируется генетика человека, развиваются генетические основы сохранения целостности биосферы земли и околоземного пространства.

Наследственность - присущее всем организмам свойство передавать потомству характерные черты строения, индивидуального развития, обмена веществ, а следовательно, состояния здоровья и предрасположенности ко многим заболеваниям.

Передача потомству признаков предыдущих поколений называется наследованием. Механизмом этой передачи служит процесс размножения, как при простом делении клеток простейших организмов и клеток тканей, так и при половом размножении, когда объединение мужских и женских половых клеток (гамет) приводит к созданию нового организма, имеющего сходство с родителями и предками,

Изменчивость - свойство организмов, противоположное наследственности, проявляющееся в несходстве потомков с родственными поколениями. Она обусловлена с одной стороны, изменениями в наследственности родительских особей, а с другой - ответом каждого организма на воздействия различных факторов среды (климата, кормления, дрессировки и т.п.). Некоторые факторы среды, такие как облучение, химические вещества, вирусы, могут существенно изменять наследственное вещество не только соматических (от греч. сома - тело) клеток, но, что важнее, влиять на наследственность половых клеток, как родительского поколения, так и потомков. Возникает цепь наследственных изменений организма, называющихся мутациями. Мутационные изменения могут наследоваться и передаваться по поколениям это так называемая наследственная изменчивость, которая является главным фактором в появлении наследственно обусловленных новых свойств и признаков.

Другие факторы внешней среды (кормление, климатические элементы и т.п.) вызывают изменения у организмов, которые не передаются потомству, т.е. не наследуются, и называются модификационной изменчивостью. Под влиянием наследственной и ненаследственной изменчивости у организмов формируется комплекс свойств, называемых фенотипической изменчивостью.

Для проведения правильного подбора родительских пар важно знать и уметь определять и выделять из фенотипической изменчивости долю влияния наследственной и ненаследственной изменчивости. Чем больше дол участия наследственности в формировании свойств и признаков организма, тем эффективнее селекционная работа.

Современное представление о механизме наследственности основывается на особенностях двух типов молекул нуклеиновых кислот: ДНК и РНК, входящих в состав клеток. Нуклеиновые кислоты имеют нитевидную структуру молекулы и входят в состав хромосом - главных Структур ядра клетки, а некоторые РНК находятся и в цитоплазме. Отдельные участки нитей нуклеиновой кислоты (ДНК) образуют гены, которые являются единицей наследственности и контролируют возможность образования определенного признака или свойства. Факторы среды или способствуют, или тормозят реализацию действия гена и тем самым влияют на формирование фенотипа организма.

Основным аппаратом наследственности является число и форма хромосом, характерных для каждого вида В половой клетке их в два раза меньше (гаплоидное число, символ - п), чем в любой соматической клетке, где они составляют двойной (т. е. диплоидный символ 2 п) набор хромосом в виде пар. В каждую пару входят одинаковые по величине и форме хромосомы. Набор парных хромосом в клетке называется кариотипом. Число пар хромосом в кариотипах колеблется у разных видов от 2 до 100. У собак кариотип телесных клеток содержит 78 хромосом, т.е. 39 пар, а в каждой половой клетке только одинарный набор, состоящий из 39 хромосом.

Кариотип клетки животного состоит из нескольких пар так называемых аутосомных хромосом и одной пары половых хромосом, обозначаемых буквами Х и У. У многих животных характерно наличие кроме аутосом 2 половых хромосомы: для женских особей - ХХ, а для мужских - ХУ. Следовательно, у собак кариотип суки составляет 38 пар аутосом и пару ХХ хромосом, а у кобеля - 38 пар аутосом и пару половых хромосом ХУ. Передача наследственных признаков происходит как через аутосомы, так и через половые хромосомы. Последние обусловливают наследование, связанное с половой принадлежностью животного.

При оплодотворении в потомстве в массе будет рождаться 50 процентов сучек и 50 процентов кобельков от сочетания ХУ хромосом сперматозоидов отца с Х - хромосомами гамет - самки.

Таким образом, механизм наследования, т.е. передачи различных признаков и свойств, действует в зависимости от молекулярного строения нуклеиновых кислот (ДНК, РНК), их генного состава. Процесс передачи этих наследственных элементов происходит размножением при делении соматических клеток и оплодотворением, при котором слияние мужских и женских гамет половых клеток приводит к образованию нового организма с удвоенным набором хромосомного аппарата. Единицей наследственности служит участок ДНК, называемый геном. Ген отца и ген матери называют аллелями гена, обусловливающими конкретный признак, а участок ДНК, в котором расположен ген данного признака.

Кроме наследования в виде доминантности и рецессивности генов, может иметь место совместное воздействие разных аллелей данного локуса: кодоминантное действие генов. Например, синтез белка гемоглобина обусловлен генами А и В, которые дают гемоглобин трех типов АА, ВВ и АВ, и каждый из генотипов обеспечивает синтез нормальных гемоглобинов. Проявляются различия совместного действия А и В только в биохимической структуре молекулы соответствующими методами путем электрофореза образцов крови.

Кроме отмеченных закономерностей в наследовании признаков потомства, обусловленных взаимодействием аллелей одного локуса, наблюдается такая особенность, как появление нового состояния признака у потомство", которое отсутствовало у его родителей. Этот тип наследования называется "новообразованием при скрещивании". Примером такого наследования служит скрещивание кофейного (коричневого) добермана с голубым доберманом. В результате их скрещивания получаются доберманы черного цвета, так как у исходных типов доберманов различны аллели генотипа локуса. Генотип кофейного добермана включает ген D, определяющий интенсивность окраски и ген b, как рецессивный аллель гена черного цвета. Поэтому кофейный доберман имеет генотип bbDD. Генотип голубого добермана включает доминантный ген черной окраски B, но эта черная окраска не может полностью проявиться из-за отсутствия гена D (усилителя). В результате получается голубой доберман с генотипом BBdd. При скрещивании доберманов обоих типов bbDD x BBdd их потомство будет иметь гетерозиготный генотип BbDd, а по окраске все потомство будет черного цвета. От скрещивания таких гетерозиготных особей будет происходить расщепление по фенотипам в соотношении: черные 9BD+голубые 3Bd и кофейные разных оттенков 3bD+lbd, т. е. соотношение, как при обычном дигибридном скрещивании 9: 3: 3: 1.

Взаимодействие неаллельных генов (находящихся в разных участках хромосом) также приводит к новообразованию: комплементарному взаимодействию генов. При таком типе наследования расщепление по фенотипам во втором поколении будет отмечаться по их соотношению от вышеописанных. Например, в F2 может быть соотношение 9: 7 или 9: 3: 4, 12: 3: 1 при наличии разных аллелей в локусе A и локусе E. У собак соотношение 9: 7 прослежено при скрещивании гетерозиготных черных собак (генотип AsAYEe) между собой. Фенотипы их потомства были следующие: 9 черных и 7 желтых. Скрещивание черных гетерозиготных собак с генотипом As"a"Ee дает расщепление в потомстве следующего типа: 9 черных, 3 желтых, 4 рыжевато-коричневых. А при наличии других аллелей у черных гетерозиготных собак с генотипом AsAYEbrE соотношение фенотипов с новообразованием будет еще более отличающимся, а именно: 12 черных, 3 полосато-тигровых (DYDYEbrE) и 1 желтая (DYDYEE).

В наследовании, некоторых признаков проявляется действие особых генов: генов-модификаторов, влияющих на степень проявления признака. Например, они могут существенно повлиять на окрас: от сплошной окраски через серию пятнистости почти до полностью белой окраски.

Количественные признаки обусловлены влиянием многих генов. Это так называемый полигенный тип наследования, при котором действие генов приводит к тому, что количественный признак может принимать разную величину, т.е. наблюдается его варьирование от минимального до максимального значения. На фенотипическую изменчивость таких признаков оказывают существенное влияние факторы внешней среды, особенно кормление и условия содержания, но при этом сохраняется наследственная обусловленность признака. Например, высота в холке у такс варьирует у особей в пределах породы, но типичная низкорослость обусловлена наследственностью и действием многих генов.

Существенное значение в наследственности имеет плейотропное (множественное) действие гена, заключающееся в том, что один и тот же ген может влиять на разные признаки. У собак действие этого гена вызывает бесшерстность, дефекты и недоразвитие зубной системы, у борзых, например, белую окраску шерсти, глухоту. У собак породы дункер описан полулетальный * ген "крапчатости" с плейотропным действием. Он вызывает специфическую окраску шерсти в виде крапчатости, уменьшение размера глазного яблока, дефект радужной оболочки (коломбо), глаукому (повышенное глазное давление с выпячиванием глазного яблока и далее слепоту), голубую окраску радужной оболочки, глухоту, общую слабость, пониженную функцию размножения. Плейотропное действие может вызвать и развитие ценных признаков у собаки.

Кроме того, при независимом совместном наследовании генов, имеет место "сцепленное" наследование разных признаков, при котором гены "сцепленных" признаков находятся в одной и той же хромосоме и передаются через нее совместно.

На основе этого явления для некоторых видов состав лены карты хромосом, которые указывают на место рас У собак сцепленное наследование связано с присутствием некоторых генов в половой Х-хромосоме: (гены крипторхизма (ген c), гемофилии (ген h).

Под влиянием ряда внешних факторов (рентгеновские лучи, химические вещества), а также в результате изменения обменных процессов при старении организма, в хромосомном наборе гамет и соматических клеток могут происходить перестройки хромосом, вызывающие наследственные мутационные изменения. Мутационные изменения подчас затрагивают и перестраивают химическую структуру в молекуле ДНК (генные мутации), что в свою очередь приводит к появлению нового состояния гена, т. е. его новой аллельной форме. Чаще всего исходный доминантный ген превращается в мутантный аллель.

Как правило, он бывает рецессивным, и его присутствие выявляется только в последующих поколениях. Реже происходят мутации рецессивного гена в доминантный. Подавление мутантного гена у родителя обнаружится лишь в последующих поколениях, если рецессивный мутантный аллель, например а, будет получен от обоих родителей, несущих в гаметах рецессивный аллель а, что приведет к формированию у потомков гомозиготного рецессивного состояния генотипа aa, и рецессивный ген обоих аллелей вызовет формирование нового признака (свойства), что проявится в фенотипе такого потомка.

Мутации могут происходить в виде поломок и перестроек самих хромосом, путем обмена участками между хромосомами-аналогами. В процессе мутагенеза возможно даже изменение числа хромосом в кариотипе в виде утраты или добавки отдельных хромосом или путем увеличения числа пар хромосом (полиплодия).

Мутационные процессы в кариотипе сопровождаются изменением свойств соматических клеток или гамет, в результате чего изменяется их наследственность, что сопровождается появлением новых особенностей в клетке или организме. Так, если мутация происходит в соматических клетках, это может вызвать опухоли в данной ткани. Мутации, происходящие в половых клетках родителей, приводят к изменению и появлению новых свойств у их потомства.

Мутационные изменения в большинстве случаев вызывают аномалии, уродства, болезни и гибель потомства как на первых этапах развития зародыша, так и в более поздние периоды. Если в приплоде некоторых самцов или самок регистрируются аномалии или наследственные болезни, то таких собак нельзя использовать в племенной работе. Но следует иметь в виду, что некоторые мутации можно использовать для создания новых пород.

Если у потомства нарушается нормальное число половых хромосом и в кариотипе вместо нормы XX () и XY () образуются наборы типа XXY, XXXY, YYX и др., это приведет к нарушению половой функции, полной половой стерильности.

Мутирование исходного доминантного аллеля может происходить многократно, в результате чего образуется серия рецессивных аллелей. Между аллельными генами формируется определенная последовательность в степени проявления признака.

Значение слова НАСЛЕДСТВЕННОСТЬ в Энциклопедии Биология

НАСЛЕДСТВЕННОСТЬ

Свойство (способность) живых организмов повторять в ряду поколений внешний облик, тип обмена веществ, особенности развития и другие признаки, характерные для каждого биологического вида. Наследственность осуществляется благодаря процессу наследования - повторяющегося в поколениях определённого способа передачи «вещества наследственности», или генетического материала. Начиная с Гиппократа, Аристотеля и других учёных античности, развитие биологии в значительной мере было связано с попытками найти ответы на вопросы о материальном носителе наследственных задатков, о механизмах их образования и передачи и, главное, о способах раскрытия, реализации наследственных задатков в те или иные признаки и свойства организма. Несмотря на издревле существовавший интерес к проблеме сходства и отличий между «родителями» и «детьми» у всех живых существ, наука о наследственности и изменчивости - генетика - сравнительно молода. Она родилась в нач. 20 в., когда были переоткрыты и стали широко известными сформулированные Г. Менделем закономерности наследования (см. Менделя законы). К этому времени уже были в главных чертах выяснены цитологические, или клеточные, основы наследственности: установлены механизмы митоза, мейоза и оплодотворения, изучено поведение хромосом в этих процессах, выдвинута и затем подтверждена ядерная гипотеза наследственности, связавшая наследование признаков с клеточным ядром. Сразу после переоткрытия законов Менделя был сделан следующий шаг в познании наследственности - менделевские «наследственные факторы» были помещены в хромосомы. Так, перейдя на более глубокий (субклеточный) уровень, начала формироваться хромосомная теория наследственности. Наконец, в 1950—1960-х гг. были раскрыты химические, или молекулярные, основы наследственности. «Веществом наследственности» оказались сложные биополимеры - нуклеиновые кислоты (ДНК и РНК). Раскрытие пространственной структуры ДНК позволило объяснить, как гены (участки ДНК) осуществляют свою функцию по хранению, воспроизведению и реализации наследственности. Процесс наследования стали рассматривать как процесс передачи генетической информации, которая заключена в химическом строении ДНК. Стали понятными также и такие фундаментальные качества наследственности, как её консервативность, устойчивость, с одной стороны, и способность претерпевать передающиеся в поколениях изменения - с другой. Первое свойство обеспечивает точность, постоянство воспроизведения и реализации генетического материала, а следовательно, и постоянство видовых признаков; второе свойство даёт возможность биологическим видам, изменяясь, приспосабливаться к условиям среды, эволюционировать. Таким образом, наследственность и изменчивость неразрывно связаны, т. к. в их основании лежат одни и те же материальные (клеточные и молекулярные) структуры. Наследственность всегда реализуется во взаимодействии генетических факторов и условий существования. При индивидуальном развитии организмов (их онтогенезе) наследственность определяет границы (норму реакции) изменчивости организма, т. е. набор тех возможных вариантов (фенотипов), которые допускает данный генотип при изменениях среды (модификационная, онтогенетическая изменчивость). При историческом развитии организмов (их филогенезе) наследственность, закрепляя изменения генетического материала (генотипическая изменчивость), создаёт предпосылки для эволюции организмов. Наряду с ядерной (хромосомной) наследственностью существует т. н. цитоплазматическая (нехромосомная) наследственность, обусловленная наличием генов у органоидов (митохондрий, хлоропластов и некоторых других), находящихся в цитоплазме клетки и способных независимо от клеточного ядра синтезировать необходимые им белки.

Энциклопедия Биология. 2012

Смотрите еще толкования, синонимы, значения слова и что такое НАСЛЕДСТВЕННОСТЬ в русском языке в словарях, энциклопедиях и справочниках:

  • НАСЛЕДСТВЕННОСТЬ в Энциклопедии трезвого образа жизни:
    — свойство организма без изменений передавать через наследственный аппарат половых клеток родителей структурные и функциональные признаки потомству. Это свойство определяет …
  • НАСЛЕДСТВЕННОСТЬ в Лексиконе секса:
    свойство организмом повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивает постоянство и многообразие форм …
  • НАСЛЕДСТВЕННОСТЬ в Толковом словаре психиатрических терминов:
    Способность живого организма передавать потомству признаки и особенности своего развития. Обеспечивает преемственность ряда поколений по их морфологической, физиологической и биохимической …
  • НАСЛЕДСТВЕННОСТЬ в Медицинских терминах:
    свойство живой материи передавать потомству признаки и особенности развития родителей; обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ в …
  • НАСЛЕДСТВЕННОСТЬ в Педагогическом энциклопедическом словаре:
    , передача тех или иных черт, особенностей (в генетических терминах - признаков) от предков к потомкам. Обеспечивает биологическую преемственность поколений, …
  • НАСЛЕДСТВЕННОСТЬ в Большом энциклопедическом словаре:
    свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивается самовоспроизведением материальных единиц наследственности …
  • НАСЛЕДСТВЕННОСТЬ в Энциклопедическом словаре Брокгауза и Евфрона:
    (физиол.) — Под Н. разумеется способность организмов передавать свои свойства и особенности от одного поколения в другое, покуда длится самый …
  • НАСЛЕДСТВЕННОСТЬ в Современном энциклопедическом словаре:
  • НАСЛЕДСТВЕННОСТЬ в Энциклопедическом словарике:
    свойство организмов повторять в ряду поколений признаки и особенности развития. Обеспечивается самовоспроизведением материальных единиц наследственности - генов, локализованных в специфических …
  • НАСЛЕДСТВЕННОСТЬ в Энциклопедическом словаре:
    , -и, ж. Свойства организмов повторять от поколения к поколению сходные природные признаки. Материальные носители наследственнос- ти …
  • НАСЛЕДСТВЕННОСТЬ
    НАСЛ́ЕДСТВЕННОСТЬ СТРУКТУРЫ МЕТАЛЛОВ, восстановление формы и кристаллографич. ориентации к.-л. элементов структуры металлов после прямого (при охлаждении) и обратного (при нагревании) …
  • НАСЛЕДСТВЕННОСТЬ в Большом российском энциклопедическом словаре:
    НАСЛ́ЕДСТВЕННОСТЬ, свойство организмов повторять в ряду поколений сходные типы обмена в-в и индивид. развития в целом. Обеспечивается самовоспроизведением материальных единиц …
  • НАСЛЕДСТВЕННОСТЬ в Энциклопедии Брокгауза и Ефрона:
    (физиол.) ? Под Н. разумеется способность организмов передавать свои свойства и особенности от одного поколения в другое, покуда длится самый …
  • НАСЛЕДСТВЕННОСТЬ в Словаре Кольера:
    присущее всем живым существам свойство быть похожим на своих родителей. Однако особи каждого вида, будучи в целом схожими, все же …
  • НАСЛЕДСТВЕННОСТЬ в Полной акцентуированной парадигме по Зализняку:
    насле"дственность, насле"дственности, насле"дственности, насле"дственностей, насле"дственности, насле"дственностям, насле"дственность, насле"дственности, насле"дственностью, насле"дственностями, насле"дственности, …
  • НАСЛЕДСТВЕННОСТЬ в словаре Синонимов русского языка:
    гомозиготность, …
  • НАСЛЕДСТВЕННОСТЬ в Новом толково-словообразовательном словаре русского языка Ефремовой:
    ж. 1) Отвлеч. сущ. по знач. прил.: наследственный (4). 2) Способность живых существ передавать свои качества, свойства потомству. 3) Совокупность …
  • НАСЛЕДСТВЕННОСТЬ в Словаре русского языка Лопатина:
    насл`едственность, …
  • НАСЛЕДСТВЕННОСТЬ в Полном орфографическом словаре русского языка:
    наследственность, …
  • НАСЛЕДСТВЕННОСТЬ в Орфографическом словаре:
    насл`едственность, …

Наследственность определяют как совокупность природных свойств организма, передаваемых от поколения к поколению, или как «свойство живых систем воспроизводить свою организацию, или, иначе говоря, свойство живых организмов воссоздавать себе подобных в ряду поколений».

Биологическая наследственность имеет огромное значение в жизни человека. Она сохраняет человека как природное существо, как уникальную популяцию (вид) в биологическом мире. С момента рождения ребенок наследует многие врожденные свойства и инстинкты, относящиеся к группе безусловных рефлексов (по И.П. Павлову). К ним относятся:

· пищеварительные рефлексы (слюноотделение),

· оборонительные (отдергивание рук от горячего, зажмуривание глаз при ярком свете),

· ориентировочные (реакция на звук, свет и т.д.).

Говоря о нерасторжимой связи человека с животным миром, следует отметить, что эти свойства характерны и для высших животных.

Однако в пределах биологической эволюции возникла новая форма отражения, обеспечившая переход предков в современных людей:

· развитие «собственно человеческих задатков» (движение в вертикальном положении - прямохождение, развитие речи),

· предрасположенность к целенаправленному труду,

· развитие мыслительных способностей человека,

· осознание своих действий, поступков, деятельности.

Наследственность программирует передачу от взрослых детям ряда биохимических, физических качеств:

· физический облик,

· цвет волос,

· физические данные;

· группу крови и резус-фактор,

· задатки способностей;

· программирует также свойства нервной системы,

· свойства зрительных органов (дальтонизм, особая чувствительность, цвет глаз) и др.

Биологическая наследственность определяет как то общее, что делает человека человеком, так и то отличное, что делает людей столь разными и внешне и внутренне. Под наследственностью понимается передача от родителей к детям определенных качеств и особенностей, заложенных в их генетическую программу.

Великая роль наследственности заключается в том, что по наследству ребенок получает человеческий организм, человеческую нервную систему, человеческий мозг и органы чувств. От родителей к детям передаются особенности телосложения, окраска волос, цвет глаз, кожи – внешние факторы, отличающие одного человека от другого. По наследству передаются и некоторые особенности нервной системы, на основе которых развивается определенный тип нервной деятельности.

Наследственность предполагает также формирование определенных способностей к какой-либо области деятельности на основе природных задатков ребенка. Согласно данным физиологии и психологии, врожденными у человека являются не готовые способности, а лишь потенциальные возможности для их развития, т.е. задатки. Проявление и развитие способностей ребенка во многом зависит от условий его жизни, образования и воспитания. Яркое проявление способностей принято называть одаренностью, или талантом.


Природные особенности (задатки) являются потенциальным условием формирования способностей. Они обусловлены индивидуальными структурно-функциональными различиями головного мозга и речедвигательных органов, органов чувств, и их следует рассматривать лишь как анатомо-морфологические предпосылки способностей.

Показатель развитости человека проявляется через интегрированную развитость его способностей. Выделяют общие и специальные способности. Общие способности определяют успехи человека в различных видах деятельности. Это

· умственные способности,

· тонкость и точность ручных движений,

· развитая память,

· совершенная речь и ряд других.

Специальные способности раскрывают индивидуальность личности и определяют успехи человека в специфических видах деятельности, для осуществления которых необходимы задатки особого рода и их развитие. К ним можно отнести:

· математические,

· музыкальные,

· лингвистические,

· литературные,

· художественно-творческие,

· технические,

· спортивные,

· организаторские,

· экономические и др.

Общие и специальные способности могут гармонизировать между собой, взаимно дополнять, компенсировать, усиливать и обогащать друг друга.

Значительный теоретический интерес представляет вопрос о наследовании задатков и способностей к определенному виду, а вернее, к области деятельности (искусству, конструированию, математике и т. п.). Для ответа на этот вопрос основополагающее значение имеет известное положение К. Маркса об определенных жизненных силах, которыми человек наделен от природы Так, К. Маркс писал: «Человек является непосредственно природным существом. В качестве природного существа, притом живого природного существа, он... наделен природными силами, жизненными силами, являясь деятельным природным существом, эти силы существуют в нем в виде задатков и способностей в виде влечений...». Эти слова К. Маркса указывают, прежде всего, на то, что в воспитании необходимо учитывать естественную природу человека, выявляя его задатки и способности, определяя характер и направленность заложенных в нем жизненных сил, особенности влечений, склонностей и интересов.

Эта направленность жизненных сил, заложенных в природе человека и проявляющихся в форме задатков и способностей, предполагает, прежде всего, возможность успешной деятельности в отдельных (в целом довольно широких) областях. Реализация же их во многом зависит от условий жизни и воспитания.

Наследование способностей в отдельных семьях, т. е. появление в ряде поколений людей, одаренных в определенной области, объясняется во многом не только передачей по наследству определенных задатков, но и тем, что в этих семьях дети воспитывались в атмосфере интереса к определенному виду деятельности, их довольно рано начали привлекать к этой деятельности.

Следует отметить, что задатки характеризуют лишь самые общие области деятельности. Они не ориентированы на какой-то определенный вид труда или творчества, которые всегда конкретно-исторически обусловлены и связаны с определенными видами производства, искусства, науки, определяются уровнем их развития.

Эти задатки заложены в структуре мозга, органах чувств, речедвигательных органах и служат одним из условий успешности выполнения затем какой-либо конкретной деятельности, выбранной самим человеком под влиянием условий и обстоятельств жизни. Однако в значительно большей степени успех в этой области деятельности будет обеспечен прилежанием, самой практикой и накоплением опыта в сфере данного вида труда.

Особенно острые, принципиальные теоретические споры вызывает вопрос о наследовании или наличии врожденных способностей к интеллектуальной деятельности. Педагогика признает, что может быть неблагоприятная для развития интеллектуальных способностей наследственность, например вялость клеток коры полушарий мозга детей алкоголиков, некоторые наследственные болезни и, в частности, психические заболевания. Имеющиеся же у нормальных (здоровых) людей различия в типах высшей нервной деятельности придают известное своеобразие протеканию мыслительных процессов, но не предопределяют качества и уровня самой интеллектуальной деятельности В целом следует признать, что развитие познавательных процессов и обучаемость физически здоровых и психически нормальных людей во многом определяется тем, в какие условия обучения они поставлены.

Признавая возможное биологическое неравенство задатков и способностей, педагогика делает акцент не на выявлении различий и приспособлений к ним обучения, а на создании равных условий для развития имеющихся у каждого задатков и способностей. Современная система обучения и воспитания на деле обеспечивает это равенство условий для всестороннего развития всех и каждого, что не исключает дифференцированного подхода к учащимся и учета их индивидуальных особенностей.

Не менее острым является вопрос о наследовании психических свойств и обусловленности форм поведения физиологическими задатками.

Развитие человека с физиологической точки зрения - очень сложный процесс. Различные его органы и системы на разных этапах возрастного созревания развиваются по-разному, наблюдается известная неравномерность и нескорректированность их развития в отдельные периоды роста и взросления человека, что в свою очередь сказывается на особенностях психического развития детей разного возраста, облегчая или, наоборот, усложняя работу воспитателей. Например, особые трудности представляет в силу особенностей анатомо-физиологического развития воспитание подростков. Однако это не дает основания считать, что те или иные формы поведения заложены в человеке от природы.

Современная педагогика и психология утверждают, что все психические качества личности приобретаются в процессе жизнедеятельности человека в труде и его общении с окружающей средой. В человеке от рождения не заложено никаких ни социальных, ни асоциальных программ поведения, т. е. его поведение в обществе биологически не запрограммировано. Люди рождаются свободными от моральных ценностей и представлений о формах поведения и отношения к другим людям, и процесс формирования этих личностных качеств для каждого человека начинается фактически с нуля. Поскольку же для каждого он протекает в индивидуально-неповторимых условиях, даже при одинаковых внешних условиях (ибо у каждого человека не одинаковы на них реакции), каждый из них развивается по-своему и формирует свое индивидуальное отношение к миру, что не отрицает общих закономерностей формирования личности человека в условиях целенаправленного воспитания

Психика человека, его психические проявления формируются под воздействием внешних условий, всегда преломляясь через внутренние индивидуальные условия каждого, и являются результатом, продуктом этого взаимодействия.

Социальные стороны, личность человека формируются только посредством социальных условий и не могут быть предетерминированы биологическими основами человека.

Говоря о роли наследственности в формировании и развитии ребенка, нельзя игнорировать тот факт, что существует ряд болезней и патологий, которые могут носить наследственный характер, например, болезни крови, шизофрения, эндокринные расстройства. Наследственные заболевания изучает медицинская генетика, однако их необходимо учитывать и в процессе социализации ребенка.

Итак, можно сделать вывод, что развитие человека – очень сложный процесс. Оно происходит под влиянием, как внешних воздействий, так и внутренних сил, которые свойственны человеку, как всякому живому и растущему организму.

К внешним факторам относятся, прежде всего, окружающая человека естественная и социальная среда, а также специальная, целенаправленная деятельность по формированию у детей определенных качеств личности; к внутренним – биологические, наследственные факторы.

Факторы, влияющие на развитие человека, могут быть управляемые и неуправляемые.

Развитие ребенка - не только сложный, но и противоречивый процесс – означает превращение его как биологического индивида в социальное существо – личность.

В процессе развития ребенок вовлекается в различные виды деятельности (игровую, трудовую, учебную, спортивную и т.д.) и вступает в общение (с родителями, сверстниками, посторонними людьми) проявляя при этом присущую ему активность. Это содействует приобретению им определенного социального опыта.

Взаимодействие наследственности и среды в развитии человека играет важную роль на протяжении всей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.

Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов - и наследственности, и среды.

Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. Поэтому каждый человек есть и часть природы, и продукт общественного развития.

С такой позицией сегодня согласно большинство ученых. Разногласие возникает тогда, когда речь заходит о роли наследственности и среды в исследовании умственных способностей человека. Одни считают, что умственные способности наследуются генетически, другие говорят о том, что развитие умственных способностей определяется влиянием социальной среды.

Наследственность - свойство (способность) живых организмов повторять в ряду поколений внешний облик, тип обмена веществ, особенности развития и другие признаки, характерные для каждого биологического вида. Наследственность осуществляется благодаря процессу наследования - повторяющегося в поколениях определённого способа передачи «вещества наследственности», или генетического материала.

Выделяют два вида наследственности:

1. Ядерная. Её ещё называют хромосомной из-за того, что наследственная информация передаётся через хромосомы ядра. Так наследственная информация передаётся в исходном виде без каких либо изменений (если не происходили соматические мутации).

Есть несколько критериев ядерного наследования:

  • А) Аутосомно-рецессивное наследование :
    • 2) если признак имеется у обоих родителей, то этот признак имеют все их дети;
    • 3) признак встречается и у детей, родители которых не имеют изучаемого признака;
    • 4) особи обеих полов с изучаемым признаком встречаются с приблизительно одинаковой частотой.
  • Б) Аутосомно-доминантное наследование :
    • 3) Оба пола с изучаемым признаком встречаются с приблизительно одинаковой частотой.
  • В) Сцепленное с Y-хромосомой, или голандрическое, наследование :
    • 1) признак встречается часто, в каждом поколении;
    • 2) признак встречается только у самцов;
    • 3) признак передается по линии мужской особи: от отца к сыну и т.д.
  • Г) Рецессивное сцепленное с Х-хромосомой наследование :
    • 1) признак встречается относительно редко, не в каждом поколении;
    • 2) признак встречается преимущественно у самцов, причем у их отцов признак обычно отсутствует, но имеется у дедов (прадедов) по материнской линии;
    • 3) у самок признак встречается только тогда, когда он имеется и у их отца.
  • Д) Доминантное сцепленное с Х-хромосомой наследование :
    • 1) признак встречается часто, в каждом поколении;
    • 2) признак встречается у детей, у которых хотя бы один из родителей имеет изучаемый признак;
    • 3) признак встречается и у самцов, и у самок, но самок с таким признаком приблизительно в два раза больше, чем самцов;
    • 4) если изучаемый признак имеет самец, то все его дочери будут иметь этот признак, а у всех его сыновей этот признак будет отсутствовать
    • 2. Цитоплазматическая. Происходит при передаче генов, находящихся в органоидах (митохондриях, хлоропластах и некоторых других), располагающихся в цитоплазме клетки и, независимо от клеточного ядра, способных синтезировать необходимые для них белки. Происходит такая наследственность в основном по материнской линии, так как мужские гаметы обычно не несут цитоплазмы. Признаки, передающиеся цитоплазматической наследственностью можно выявить путём реципроктных (когда материнский организм является и отцовским) скрещиваний. Цитоплазматическая наследственность нужна для более гибкого и своевременного реагирования на условия окружающей среды. Так как органоиды клетки в определённой степени развиваются самостоятельно. Гены, находящиеся в органоидах формитуют «плазмотип», или «цитотип», организма.

Большой вклад в изучение закономерностей распределения наследственных признаков в потомстве внёс Г. Мендель с 1856 по 1863 он проводил свои опыты по скрещиванию сортов гороха и вывел несколько закономерностей наследования признаков:

1. Закон единообразия гибридов первого поколения, или первый закон Менделя. (был замечен ещё в 19 веке различными учёными)

Потомство первого поколения от родителей, различающихся по одному признаку, будет иметь одинаковый фенотип по этому признаку сходный с фенотипом одного из родителей при полном доминировании и смешанный при кодоминировании (неполном доминировании, когда фенотипы родителей в равной степени проявляются у потомства)

2. Закон расщепления, или второй закон Менделя.

При скрещивании гибридов первого поколения получаются особи имеющие фенотипы исходных родительских форм в соотношении 3 (Доминантовые): 1 (рецессивные).

При неполном доминировании и кодоминировании получается соотношение 1 (доминантовое): 2 (смешанное): 1 (рецессивное)

Это свойство объясняется законом чистоты гамет, который гласит о том, что при образовании гамет в каждую их них попадает только одна аллель из пары аллелей этого гена родительской особи.

3. Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Если скрестить особей, отличающихся не по одному, а по двум или более альтернативным признакам, то эти признаки и гены, несущие их, наследуются независимо друг от друга. Этот закон соблюдается, когда гены находятся в различных парах гомологичных хромосом или же в одной, но далеко расположены. В противном случае может наблюдаться сцепленное наследование.

свойство организмов повторять в ряду поколений сходные признаки и свойства - типы обмена веществ, психологические особенности, типы индивидуального развития (в определенных условиях внешней среды) и т. п. Наследственность - неотъемлемое свойство живой материи. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы. Наследственность осуществляется на основе передачи наследственных факторов, ответственных за формирование признаков и свойств организма, т. е. на базе наследования. (См. Эволюция, Наследование)

Отличное определение

Неполное определение ↓

НАСЛЕДСТВЕННОСТЬ

присущая всем живым организмам необходимость происходить только в строгой преемственности от себе подобных форм. Жизнь, раз затеплившись, в буквальном смысле вечно сохраняет себя на основе Н., передаваясь бесконечному и бесчисл. потомству. Однако потомство никогда точно не повторяет своих родителей, а в силу изменчивости, идущей бок о бок с Н., получает новые признаки. Hек-рые новые признаки, полученные потомством, становятся новыми приобретениями самой H. Следовательно, благодаря Н. сохраняется и необычное разнообразие жизненных форм, возникших и возникающих на основе наследств. изменчивости. Поступат. движение в развитии органич. мира может быть понято лишь на основе представлений о преемственности, о непрерывной протяженности все развивающейся и меняющей свои формы жизни. Жизнь угасает в бесчисл. множестве отд. особей, успевших, однако, оставить потомков при своем размножении. Эти потомки также погибнут, но снова успевши произвести еще б?льшее потомство. И так извечно и всегда вперед. Известно, что в химич. составе любого живого существа нет ни одного элемента, не встречающегося в неорганич. природе. Но сочетания этих элементов в структуре живых организмов столь высокомолекулярны и сложны, что возникать заново в природе теперь они уже не способны. Во всей своей сложности они могут себя лишь повторять, копируя готовые образцы со своих предшественников. Их же предшественники – это те жизненные формы, к-рые создавались природой в течение историч. хода всей эволюции и, совершенствуясь на основе изменчивости, смогли выдержать беспощадное действие естественного отбора. Каждый новый организм – это результат Н., проявляющейся в нем как способность воссоздавать в результате развития признаки своих предков. Отсюда и возникла гл. загадка науки о Н. – как идет передача признаков предков к их потомкам, свойств и особенностей родителей к их детям? Ответ на этот вопрос заключен в осн. свойстве самой жизни. Если существ. признаком всех живых существ является постоянный обмен веществ с внешней средой, то с этой т. зр. и Н. в существе своем представляет лишь особую форму ассимиляции. Благодаря этой ассимиляции любой организм способен сохранять, восстанавливать и, главное, воспроизводить свое основное высокоорганизованное белковое строение, для данного организма специфичное и уникальное. Подобное же наследств. воспроизведение имеет место и в развитии многоклеточного организма, когда в клеточных поколениях одной-единственной яйцеклетки миллионы и миллиарды раз копируется осн. наследств. структура клетки-родоначальницы. И эта осн. структура присутствует в любых живых клетках многоклеточного организма, несмотря на то, что клетки различных его тканей могут быть столь непохожи друг на друга. Это и позволило Дарвину дать такое четкое, хотя и недостаточное, определение: "Наследственность нужно рассматривать просто как форму роста, подобную делению низкоорганизованного одноклеточного организма" (Соч., т. 4, М.–Л., 1951, с. 758). Значение развития органич. материи в ее вечно поступательном движении может быть осознано только на основе понимания всей глубины процесса ассимиляции. Это не только способность организма (клетки) постоянно восстанавливать свою высокоорганизованную белковую структуру, для него строго специфичную, но и способность размножать эту структуру, передавая ее последующим клеточным поколениям и последующим поколениям особей – потомкам. Любое живое существо (клетка) строит само себя и размножается за счет материала, поступающего в него извне, т.е. за счет поступающей в него, им перерабатываемой и, наконец, им ассимилируемой, т.е. "себе уподобляемой", пищи. При этом надо иметь в виду, что ассимиляция (+ диссимиляция) – это обмен веществ, а не условий. У классиков марксизма-ленинизма находит предельно ясное толкование развитие любого процесса и, в частности, биологич. развитие, как направляемое не условиями, в к-рых он протекает, а движимое в основном борьбой собственных, внутренних, свойственных именно этому процессу, противоречий. Энгельс говорил: "...теория развития показывает, как, начиная с простой клетки, каждый шаг вперед до наисложнейшего растения, с одной стороны, и до человека – с другой, совершается через постоянную борьбу наследственности и приспособления" ("Диалектика природы", 1955, с. 166). От самых истоков научного познания явлений Н. предпринимались попытки обосновать представление о материальных носителях Н. Раньше в этом отношении большое значение приписывалось крови, так что даже до наших дней сохранились в рус. речи такие выражения, как "кровное родство", "кровосмешение", "полукровка" и др. Дарвин, создавая свою "временную теорию пангенезиса", в крови же помещал гипотетич. частицы Н. – "геммулы", в к-рых можно видеть предвидение будущих генов – дискретных носителей Н. как целого. Однако со времени открытия клетки (Шванн, 1839) как той единицы, из размножения и дифференцирования к-рой вырастают все одноклеточные и многоклеточные организмы, наследственную преемственность стали совершенно правильно связывать с преемственностью клеток, возникающих только от себе подобных клеток. И теперь едва ли кто сомневается, что "...как растения, так и животные, включая человека, – вырастают каждый из одной клетки по закону клеточного деления..." (там же, с. 156). Последние десятилетия 19 в. принесли важнейшие свидетельства значения клетки в явлениях Н. и развития. Громадный фактич. материал говорил об особой роли ядра. Так, рус. ботаник Чистяков (1874) описал "непрямое" деление клеточного ядра у растений и основные элементы ядра – хромосомы. Вскоре (1878) киевский гистолог Перемежко у нас и Флемминг за рубежом открыли митоз (особый тип деления неполовых клеток) и хромосомы также и у животных организмов. Благодаря этим фактам было получено важнейшее доказательство единства происхождения растений и животных и сформулировано затем эволюционное обобщение о законе постоянства числа и формы хромосом для каждого вида растений и животных. Целый ряд открытий был связан с установлением ведущей роли клеточного ядра в явлениях полового размножения. Так, еще в 1875 О. Гертвиг доказал, что сущность оплодотворения состоит в слиянии ядер женской и мужской половых клеток, что было подтверждено и на растениях (Горожанкин, 1880). Ван Бенеден (1883) открыл у животных особое, т.н. редукционное, деление при образовании половых клеток (т. н. мейоз). В результате этого деления число хромосом в половых клетках всегда вдвое меньше, нем в остальных, т.н. соматич., клетках тела. При оплодотворении, т.е. при слиянии женской и мужской половых клеток, соматич. двойное число хромосом опять восстанавливается. Мейоз был установлен и у растений (Беляев и Страсбургер). Укажем еще на открытие С. Г. Навашиным (1898) двойного оплодотворения у высших покрытосеменных растений и получение в эксперименте И. И. Герасимовым первых полиплоидных форм. Перечисленные факты легли в основу т.н. ядерной теории Н., предложенной еще в 1884 О. Гертвигом и Страсбургером. Но факты и обобщения, добытые наукой о клетке, оставались в поле зрения сравнительно небольшого числа биологов. Крупнейший сдвиг в науке о Н. наступил в начале 20 в. В 1900 трое ученых из разных стран "переоткрыли" законы Менделя и нашли работу самого Г. Менделя, напечатанную еще в 1866 и оставшуюся незамеченной современниками. Мендель провел точные опыты по скрещиванию различающихся растений гороха и по анализу их гибридного потомства. Прослеживая наследование отд. пар альтернативных признаков (красный или белый цветок, желтое или зеленое семя, высокий или низкий рост и т.д.), он установил правила единообразия гибридного потомства и доминирования в нем одного из признаков: правило расщепления (3:1) в потомстве гибридов по каждой паре признаков; правило независимого наследования признаков (отношение 9:3:3:1), принадлежащих к разным альтернативным парам. Заслуга Менделя в том, что он теоретически осмыслил и объяснил все полученные им факты с т. зр. дискретности в Н., т.е. зависимости проявления каждого признака от своей собств. пары наследств. факторов (в будущем названных генами), получаемых по одному со стороны материнского и отцовского родительских организмов. Представление о дискретном строении вещества наследственности было оформлено в теорию гена. Развитие учения о гене шло теми же путями и претерпевало те же превращения, как и учение об атоме. В начале 20 в. ген был постулирован как гипотетич. единица, изменяемая и познаваемая только в результате мутационного процесса. В дальнейшем гены все более ощутимо материализовались, а в 30-х гг. их места уже довольно точно определялись в гигантских хромосомах двукрылых насекомых. В наст. время, гл. обр. благодаря развитию генетики микроорганизмов, понятие о гене превратилось в реальность. Ген теперь представляется как сложная функциональная единица (цистрон), состоящая из отд. участков, способных давать мутационные изменения (мутоны) и участвовать в рекомбинациях генетич. материала (реконы). Еще в 10-х гг. 20 в. было составлено представление о генах как о единицах, независимо определяющих "мозаичное" развитие и строение организмов. На самом же деле гены, расположенные как отдельности по длине хромосом, действуют в целостном комплексе всех структурных элементов Н. Уже в 1902 поведение наследств. факторов в скрещиваниях было сопоставлено (Сеттон и, независимо, Бовери) с поведением особых и непременных элементов клеточного ядра – хромосом, чем было сделано первое обобщение, положившее основу т.н. хромосомной теории Н. Материальная основа простых менделевских расщеплений находится в материнских и отцовских хромосомах, к-рые сначала объединяются в гибридах, а затем, согласно правилам простой вероятности, распределяются и сочетаются в потомстве этих гибридов. Противоречивое развитие генетики повело к ограничению применимости правил Менделя, до этого подтвержденных на множестве растит. и животных (вплоть до самого человека) видов. Кроме параллелизма в поведении наследств. факторов и хромосом, объясняющего материальную основу менделевских закономерностей, замечателен такой же параллелизм поведения хромосом (в частности, т.н. половых) при наследовании пола и сцепленных с ним признаков. Зримо на тех же гигантских хромосомах полностью подтвердились представления о внутри и межхромосомных перестройках (нехватки, инверсии и транслокации), ранее постулированные генетиками лишь на основе особенностей наследования различных признаков. Поучительно поведение хромосом при конъюгации бактерий, передающих тем большее количество признаков, чем дольше идет конъюгация и чем длиннее участок хромосомы, переданный от одной особи к другой. Примеры подобного параллелизма можно множить бесконечно. Созданная совместным трудом генетиков и цитологов хромосомная теория Н. оказалась плодотворнейшим обобщением. Она по праву дала совр. учению о Н. имя "цитогенетики". Это крупнейшее теоретическое достижение занимает в биологии такое же место, как молекулярная теория в химии и теория атомных структур в физике. В продолжении работ по уточнению "местонахождения вещества наследственности" в последние годы принимают участие уже не только биологи, но и физики, и химики. Их объединенная работа, идущая уже на уровне совр. молекулярной биологии, подошла с начала 60-х гг. 20 в. к величайшим открытиям в биологии. Теперь предметом самого пристального внимания оказались не только белковые компоненты хромосом, но и непременные их спутники – нуклеиновые (ядерные) кислоты. Это сложные высокополимерные соединения, в состав к-рых входят азотистые (два пуриновых и два пиримидиновых) основания, сахар и остаток молекулы фосфорной кислоты. Несмотря на то, что нуклеиновые кислоты гораздо проще по своей структуре, чем белки, они, как и белки, представляют собой беспредельно варьирующие полимеры. Одна из них, а именно дезоксирибонуклеиновая кислота (ДНК), образующая вместе с белками самый состав хромосом, теперь заслуженно признается осн. структурой, ответственной за явления Н. и ассимиляции. ДНК программирует синтез специфических белков в клетке. Кроме того, весь код наследств. информации сосредоточен в ДНК, вместе с ней размножается и вместе с ней передается в хромосомах следующим поколениям клеток, а через половые клетки к следующим поколениям организмов – особей. Итак, Н. и биосинтез специфических для каждого организма белков, т.е. важнейшие проявления жизни, идут в клетке при непременном участии нуклеиновых кислот в этих синтетических, ассимиляционных процессах. Однако само явление размножения (репродукции) хромосом осуществляется, в частности, в цитоплазматическом синтезе предшественников ДНК. Их же укладывание в единую длинную полимерную цепь – генетич. основу строения хромосомы – не может происходить без действия специальных белковых ферментов (полимераза). Исследования последних лет показали, что нуклеиновые кислоты оказались действительно молекулярной основой организации всех форм жизни, и клеточных и неклеточных – от человека, животных, растений, любых микроорганизмов и до вирусов. Попарнорасположенные основания образуют двойную спиральную нить ДНК. В каждой из нитей четыре основания располагаются линейно и их последовательные тройки создают неисчерпаемые возможности комбинаций, составляя т.н. триплетный код. Оказалось, что эта линейность представляется единственным расположением, при к-ром возможно дальнейшее размножение нитей ДНК, их ауторедупликация. Полностью подтвердилось то, что было постулировано генетиками еще пятьдесят лет назад (а предсказано значительно раньше) и формулировалось как "линейное расположение генов в хромосоме". Установленное на множестве растительных и животных видов, относящихся к клеточным формам, это явление линейного расположения оказалось универсальным для всех, и в т.ч. для неклеточных, форм жизни. Добавим только, что все события, связанные с передачей Н., совершаются в клетке и ядерные элементы – хромосомы непосредственно соприкасаются и взаимодействуют с цитоплазмой. Известны и случаи т.н. "цитоплазматической" и "пластидной" Н., хотя число подобных примеров несопоставимо мало по сравнению с Н. "хромосомной". Блестящее развитие молекулярной генетики наших дней является подтверждением и прямым продолжением генерального направления ей предшествовавшей науки о Н., в основу к-рой была положена хромосомная теория Н. Полностью оказались подтвержденными представления Н. К. Кольцова (1928) о том, что хромосомы не делятся, а ассимилируют возле себя свое подобие, после чего новая и старая хромосомы расходятся. Верным оказалось и его учение о генных мутациях как об ошибках в ассимиляции "наследственной молекулы". Оправдались и слова Э. Вильсона, сказанные еще в 1896: "наследственность это передача последовательным поколениям сходных форм обмена веществ". Лит.: Морган Т. Г., Структурные основы Н., пер. [с англ. ], М.–П., ; Кольцов Н. К., Организация клетки, М.–Л., 1936; Вильсон Э., Клетка и ее роль в развитии и Н., пер. с англ., т. 1–2, М.–Л., 1936–40; Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Робертис Е. де, Новинский В., Саэс Ф., Общая цитология, пер. с англ., М., 1962; Дубинин Н. П., Молекулярная генетика и действие излучений на Н., М., 1963; Эфроимсон В. П., Введение в медицинскую генетику, М., 1964; Жакоб Ф. и Вольман Э., Пол и генетика бактерий, пер. с англ., М., 1962; Лобашев M. E., Генетика, Л., 1963; Сэджер Р. и Райн Ф., Цитологич. и химич. основы Н., пер. с англ., М.. 1964. В. Сахаров. Москва.