Генеральная совокупность (в англ. - population ) - совокупность всех объектов (единиц), относительно которых учёный намерен делать выводы при изучении конкретной проблемы.

Генеральная совокупность состоит из всех объектов, которые подлежат изучению. Состав генеральной совокупности зависит от целей исследования. Иногда генеральная совокупность - это все население определённого региона (например, когда изучается отношение потенциальных избирателей к кандидату), чаще всего задаётся несколько критериев, определяющих объект исследования. Например, мужчины 30-50 лет, использующие бритву определённой марки не реже раза в неделю, и имеющие доход не ниже $100 на одного члена семьи.

Выборка или выборочная совокупность - множество случаев (испытуемых, объектов, событий, образцов), с помощью определённой процедуры выбранных из генеральной совокупности для участия в исследовании.

Характеристики выборки:

· Качественная характеристика выборки – кого именно мы выбираем и какие способы построения выборки мы для этого используем.

· Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.

Необходимость выборки

· Объект исследования очень обширный. Например, потребители продукции глобальной компании – огромное количество территориально разбросанных рынков.

· Существует необходимость в сборе первичной информации.

Объём выборки

Объём выборки - число случаев, включённых в выборочную совокупность. Из статистических соображений рекомендуется, чтобы число случаев составляло не менее 30 – 35.

Зависимые и независимые выборки

При сравнении двух (и более) выборок важным параметром является их зависимость. Если можно установить гомоморфную пару (то есть, когда одному случаю из выборки X соответствует один и только один случай из выборки Y и наоборот) для каждого случая в двух выборках (и это основание взаимосвязи является важным для измеряемого на выборках признака), такие выборки называются зависимыми . Примеры зависимых выборок:

· пары близнецов,

· два измерения какого-либо признака до и после экспериментального воздействия,

· мужья и жёны

· и т. п.

В случае, если такая взаимосвязь между выборками отсутствует, то эти выборки считаются независимыми , например:

· мужчины и женщины,

· психологи и математики.

Соответственно, зависимые выборки всегда имеют одинаковый объём, а объём независимых может отличаться.

Сравнение выборок производится с помощью различных статистических критериев:

· t-критерий Стьюдента

· Критерий Уилкоксона

· U-критерий Манна-Уитни

· Критерий знаков

· и др.

Репрезентативность

Выборка может рассматриваться в качестве репрезентативной или нерепрезентативной.

Пример нерепрезентативной выборки

В США одним из наиболее известных исторических примеров нерепрезентативной выборки считается случай, происшедший во время президентских выборов в 1936 году . Журнал «Литрери Дайджест», успешно прогнозировавший события нескольких предшествующих выборов, ошибся в своих предсказаниях, разослав десять миллионов пробных бюллетеней своим подписчикам, а также людям, выбранным по телефонным книгам всей страны и людям из регистрационных списков автомобилей. В 25 % вернувшихся бюллетеней (почти 2,5 миллиона) голоса были распределены следующим образом:

· 57 % отдавали предпочтение кандидату-республиканцу Альфу Лэндону

· 40 % выбрали действующего в то время президента-демократа Франклина Рузвельта

На действительных же выборах, как известно, победил Рузвельт, набрав более 60 % голосов. Ошибка «Литрери Дайджест» заключалась в следующем: желая увеличить репрезентативность выборки, - так как им было известно, что большинство их подписчиков считают себя республиканцами, - они расширили выборку за счёт людей, выбранных из телефонных книг и регистрационных списков. Однако они не учли современных им реалий и в действительности набрали ещё больше республиканцев: во время Великой депрессии обладать телефонами и автомобилями могли себе позволить в основном представители среднего и высшего класса (то есть большинство республиканцев, а не демократов).

Виды плана построения групп из выборок

Выделяют несколько основных видов плана построения групп :

1. Исследование с экспериментальной и контрольной группами, которые ставятся в разные условия.

2. Исследование с экспериментальной и контрольной группами с привлечением стратегии попарного отбора

3. Исследование с использованием только одной группы - экспериментальной.

4. Исследование с использованием смешанного (факторного) плана - все группы ставятся в разные условия.

Типы выборки

Выборки делятся на два типа:

· вероятностные

· невероятностные

Вероятностные выборки

1. Простая вероятностная выборка:

o Простая повторная выборка. Использование такой выборки основывается на предположении, что каждый респондент с равной долей вероятности может попасть в выборку. На основе списка генеральной совокупности составляются карточки с номерами респондентов. Они помещаются в колоду, перемешиваются и из них наугад вынимается карточка, записывается номер, потом возвращается обратно. Далее процедура повторяется столько раз, какой объём выборки нам необходим. Минус: повторение единиц отбора.

Процедура построения простой случайной выборки включает в себя следующие шаги:

1. необходимо получить полный список членов генеральной совокупности и пронумеровать этот список. Такой список, напомним, называется основой выборки;

2. определить предполагаемый объем выборки, то есть ожидаемое число опрошенных;

3. извлечь из таблицы случайных чисел столько чисел, сколько нам требуется выборочных единиц. Если в выборке должно оказаться 100 человек, из таблицы берут 100 случайных чисел. Эти случайные числа могут генерироваться компьютерной программой.

4. выбрать из списка-основы те наблюдения, номера которых соответствуют выписанным случайным числам

· Простая случайная выборка имеет очевидные преимущества. Этот метод крайне прост для понимания. Результаты исследования можно распространять на изучаемую совокупность. Большинство подходов к получению статистических выводов предусматривают сбор информации с помощью простой случайной выборки. Однако метод простой случайной выборки имеет как минимум четыре существенных ограничения:

1. зачастую сложно создать основу выборочногo наблюдения, которая позволила бы провести простую случайную выборку.

2. результатом применения простой случайной выборки может стать большая совокупность, либо совокупность, распределенная по большой географической территории, что значительно увеличивает время и стоимость сбора данных.

3. результаты применения простой случайной выборки часто характеризуются низкой точностью и большей стандартной ошибкой, чем результаты применения других вероятностных методов.

4. в результате применения SRS может сформироваться нерепрезентативная выборка. Хотя выборки, полученные простым случайным отбором, в среднем адекватно представляют генеральную совокупность, некоторые из них крайне некорректно представляют изучаемую совокупность. Вероятность этого особенно велика при небольшом объеме выборки.

· Простая бесповторная выборка. Процедура построения выборки такая же, только карточки с номерами респондентов не возвращаются обратно в колоду.

1. Систематическая вероятностная выборка. Является упрощенным вариантом простой вероятностной выборки. На основе списка генеральной совокупности через определённый интервал (К) отбираются респонденты. Величина К определяется случайно. Наиболее достоверный результат достигается при однородной генеральной совокупности, иначе возможны совпадение величины шага и каких-то внутренних циклических закономерностей выборки (смешение выборки). Минусы: такие же как и в простой вероятностной выборке.

2. Серийная (гнездовая) выборка. Единицы отбора представляют собой статистические серии (семья, школа, бригада и т. п.). Отобранные элементы подвергаются сплошному обследованию. Отбор статистических единиц может быть организован по типу случайной или систематической выборки. Минус: Возможность большей однородности, чем в генеральной совокупности.

3. Районированная выборка. В случае неоднородной генеральной совокупности, прежде, чем использовать вероятностную выборку с любой техникой отбора, рекомендуется разделить генеральную совокупность на однородные части, такая выборка называется районированной. Группами районирования могут выступать как естественные образования (например, районы города), так и любой признак, заложенный в основу исследования. Признак, на основе которого осуществляется разделение, называется признаком расслоения и районирования.

4. «Удобная» выборка. Процедура «удобной» выборки состоит в установлении контактов с «удобными» единицами выборки - с группой студентов, спортивной командой, с друзьями и соседями. Если необходимо получить информацию о реакции людей на новую концепцию, такая выборка вполне обоснована. «Удобную» выборку часто используют для предварительного тестирования анкет.

Невероятностные выборки

Отбор в такой выборке осуществляется не по принципам случайности, а по субъективным критериям – доступности, типичности, равного представительства и т.д.

1. Квотная выборка – выборка строится как модель, которая воспроизводит структуру генеральной совокупности в виде квот (пропорций) изучаемых признаков. Число элементов выборки с различным сочетанием изучаемых признаков определяется с таким расчётом, чтобы оно соответствовало их доле (пропорции) в генеральной совокупности. Так, например, если генеральная совокупность у нас представлена 5000 человек, из них 2000 женщин и 3000 мужчин, тогда в квотной выборке у нас будут 20 женщин и 30 мужчин, либо 200 женщин и 300 мужчин. Квотированные выборки чаще всего основываются на демографических критериях: пол, возраст, регион, доход, образование и прочих. Минусы: обычно такие выборки нерепрезентативны, т.к. нельзя учесть сразу несколько социальных параметров. Плюсы: легкодоступный материал.

2. Метод снежного кома. Выборка строится следующим образом. У каждого респондента, начиная с первого, просятся контакты его друзей, коллег, знакомых, которые подходили бы под условия отбора и могли бы принять участие в исследовании. Таким образом, за исключением первого шага, выборка формируется с участием самих объектов исследования. Метод часто применяется, когда необходимо найти и опросить труднодоступные группы респондентов (например, респондентов, имеющих высокий доход, респондентов, принадлежащих к одной профессиональной группе, респондентов, имеющих какие-либо схожие хобби/увлечения и т.д.)

3. Стихийная выборка – выборка так называемого «первого встречного». Часто используется в теле- и радиоопросах. Размер и состав стихийных выборок заранее не известен, и определяется только одним параметром – активностью респондентов. Минусы: невозможно установить какую генеральную совокупность представляют опрошенные, и как следствие – невозможность определить репрезентативность.

4. Маршрутный опрос – часто используется, если единицей изучения является семья. На карте населённого пункта, в котором будет производиться опрос, нумеруются все улицы. С помощью таблицы (генератора) случайных чисел отбираются большие числа. Каждое большое число рассматривается как состоящее из 3-х компонентов: номер улицы (2-3 первых числа), номер дома, номер квартиры. Например, число 14832: 14 – это номер улицы на карте, 8 – номер дома, 32 – номер квартиры.

5. Районированная выборка с отбором типичных объектов. Если после районирования из каждой группы отбирается типичный объект, т.е. объект, который по большинству изучаемых в исследовании характеристик приближается к средним показателям, такая выборка называется районированной с отбором типичных объектов.

Стратегии построения групп

Отбор групп для их участия в психологическом эксперименте осуществляется с помощью различных стратегий, которые нужны для того, чтобы обеспечить максимально возможное соблюдение внутренней и внешней валидности .

· Рандомизация (случайный отбор)

· Попарный отбор

· Стратометрический отбор

· Приближённое моделирование

· Привлечение реальных групп

Рандомизация , или случайный отбор , используется для создания простых случайных выборок. Использование такой выборки основывается на предположении, что каждый член популяции с равной вероятностью может попасть в выборку. Например, чтобы сделать случайную выборку из 100 студентов вуза, можно сложить бумажки с именами всех студентов вуза в шляпу, а затем достать из неё 100 бумажек - это будет случайным отбором (Гудвин Дж., с. 147).

Попарный отбор - стратегия построения групп выборки, при котором группы испытуемых составляются из субъектов, эквивалентных по значимым для эксперимента побочным параметрам. Данная стратегия эффективна для экспериментов с использованием экспериментальных и контрольных групп с лучшим вариантом - привлечением близнецовых пар (моно- и дизиготных), так как позволяет создать...

Стратометрический отбор - рандомизация с выделением страт (или кластеров). При данном способе формирования выборки генеральная совокупность делится на группы (страты), обладающие определёнными характеристиками (пол, возраст, политические предпочтения, образование, уровень доходов и др.), и отбираются испытуемые с соответствующими характеристиками.

Приближённое моделирование - составление ограниченных выборок и обобщение выводов об этой выборке на более широкую популяцию. Например, при участии в исследовании студентов 2-го курса университета, данные этого исследования распространяются на «людей в возрасте от 17 до 21 года». Допустимость подобных обобщений крайне ограничена.

Приближенное моделирование – формирование модели, которая для четко оговоренного класса систем (процессов) описывает его поведение (или нужные явления) с приемлемой точностью.

Статистическая совокупность - множество единиц, обладающих массовостью, типичностью, качественной однородностью и наличием вариации.

Статистическая совокупность состоит из материально существующих объектов (Работники, предприятия, страны, регионы), является объектом .

Единица совокупности — каждая конкретная единица статистической совокупности.

Одна и таже статистическая совокупность может быть однородна по одному признаку и неоднородна по другому.

Качественная однородность — сходство всех единиц совокупности по какому-либо признаку и несходство по всем остальным.

В статистической совокупности отличия одной единицы совокупности от другой чаще имеют количественную природу. Количественные изменения значений признака разных единиц совокупности называются вариацией.

Вариация признака — количественное изменение признака (для количественного признака) при переходе от одной единицы совокупности к другой.

Признак - это свойство, характерная черта или иная особенность единиц, объектов и явлений, которая может быть наблюдаема или измерена. Признаки делятся на количественные и качественные. Многообразие и изменчивость величины признака у отдельных единиц совокупности называется вариацией .

Атрибутивные (качественные) признаки не поддаются числовому выражению (состав населения по полу). Количественные признаки имеют числовое выражение (состав населения по возрасту).

Показатель — это обобщающая количественно качестванная характеристика какого-либо свойства единиц или совокупности в цельм в конкретных условиях времени и места.

Система показателей — это совокупность показателей всесторонне отражающих изучаемое явление.

Например, изучается зарплата:
  • Признак — оплата труда
  • Статистическая совокупность — все работники
  • Единица совокупности — каждый работник
  • Качественная однородность — начисленная зарплата
  • Вариация признака — ряд цифр

Генеральная совокупность и выборка из нее

Основу составляет множество данных, полученных в результате измерения одного или нескольких признаков. Реально наблюдаемая совокупность объектов, статистически представленная рядом наблюдений случайной величины , является выборкой , а гипотетически существующая (домысливаемая) — генеральной совокупностью . Генеральная совокупность может быть конечной (число наблюдений N = const ) или бесконечной (N = ∞ ), а выборка из генеральной совокупности — это всегда результат ограниченного ряда наблюдений. Число наблюдений , образующих выборку, называется объемом выборки . Если объем выборки достаточно велик (n → ∞ ) выборка считается большой , в противном случае она называется выборкой ограниченного объема . Выборка считается малой , если при измерении одномерной случайной величины объем выборки не превышает 30 (n <= 30 ), а при измерении одновременно нескольких (k ) признаков в многомерном пространстве отношение n к k не превышает 10 (n/k < 10) . Выборка образует вариационный ряд , если ее члены являются порядковыми статистиками , т. е. выборочные значения случайной величины Х упорядочены по возрастанию (ранжированы), значения же признака называются вариантами .

Пример . Практически одна и та же случайно отобранная совокупность объектов — коммерческих банков одного административного округа Москвы, может рассматриваться как выборка из генеральной совокупности всех коммерческих банков этого округа, и как выборка из генеральной совокупности всех коммерческих банков Москвы, а также как выборка из коммерческих банков страны и т.д.

Основные способы организации выборки

Достоверность статистических выводов и содержательная интерпретация результатов зависит от репрезентативности выборки, т.е. полноты и адекватности представления свойств генеральной совокупности, по отношению к которой эту выборку можно считать представительной. Изучение статистических свойств совокупности можно организовать двумя способами: с помощью сплошного и несплошного . Сплошное наблюдение предусматривает обследование всех единиц изучаемой совокупности , а несплошное (выборочное) наблюдение — только его части.

Существуют пять основных способов организации выборочного наблюдения:

1. простой случайный отбор , при котором объектов случайно извлекаются из генеральной совокупности объектов (например с помощью таблицы или датчика случайных чисел), причем каждая из возможных выборок имеют равную вероятность. Такие выборки называются собственно-случайными ;

2. простой отбор с помощью регулярной процедуры осуществляется с помощью механической составляющей (например, даты, дня недели, номера квартиры, буквы алфавита и др.) и полученные таким способом выборки называются механическими ;

3. стратифицированный отбор заключается в том, что генеральная совокупность объема подразделяется на подсовокупности или слои (страты) объема так что . Страты представляют собой однородные объекты с точки зрения статистических характеристик (например, население делится на страты по возрастным группам или социальной принадлежности; предприятия — по отраслям). В этом случае выборки называются стратифицированными (иначе, расслоенными, типическими, районированными );

4. методы серийного отбора используются для формирования серийных или гнездовых выборок . Они удобны в том случае, если необходимо обследовать сразу "блок" или серию объектов (например, партию товара, продукцию определенной серии или население при территориально-административном делении страны). Отбор серий можно осуществить собственно-случайным или механическим способом. При этом проводится сплошное обследование определенной партии товара, или целой территориальной единицы (жилого дома или квартала);

5. комбинированный (ступенчатый) отбор может сочетать в себе сразу несколько способов отбора (например, стратифицированный и случайный или случайный и механический); такая выборка называется комбинированной .

Виды отбора

По виду различаются индивидуальный, групповой и комбинированный отбор. При индивидуальном отборе в выборочную совокупность отбираются отдельные единицы генеральной совокупности, при групповом отборе — качественно однородные группы (серии) единиц, а комбинированный отбор предполагает сочетание первого и второго видов.

По методу отбора различают повторную и бесповторную выборку.

Бесповторным называется отбор, при котором попавшая в выборку единица не возвращается в исходную совокупность и в дальнейшем выборе не участвует; при этом численность единиц генеральной совокупности N сокращается в процессе отбора. При повторном отборе попавшая в выборку единица после регистрации возвращается в генеральную совокупность и таким образом сохраняет равную возможность наряду с другими единицами быть использованной в дальнейшей процедуре отбора; при этом численность единиц генеральной совокупности N остается неизменной (метод в социально-экономических исследованиях применяется редко). Однако, при большом N (N → ∞) формулы для бесповторного отбора приближаются к аналогичным для повторного отбора и практически чаще используются последние (N = const ).

Основные характеристики параметров генеральной и выборочной совокупности

В основе статистических выводов проведенного исследования лежит распределение случайной величины , наблюдаемые же значения (х 1 , х 2 , … , х n) называются реализациями случайной величины Х (n — объем выборки). Распределение случайной величины в генеральной совокупности носит теоретический, идеальный характер, а ее выборочный аналог является эмпирическим распределением. Некоторые теоретические распределения заданы аналитически, т.е. их параметры определяют значение функции распределения в каждой точке пространства возможных значений случайной величины . Для выборки же функцию распределения определить трудно, а иногда невозможно, поэтому параметры оценивают по эмпирическим данным, а затем их подставляют в аналитическое выражение, описывающее теоретическое распределение. При этом предположение (или гипотеза ) о виде распределения может быть как статистически верным, так и ошибочным. Но в любом случае восстановленное по выборке эмпирическое распределение лишь грубо характеризует истинное. Важнейшими параметрами распределений являются математическое ожидание и дисперсия .

По своей природе распределения бывают непрерывными и дискретными . Наиболее известным непрерывным распределением является нормальное . Выборочными аналогами параметров идля него являются: среднее значение и эмпирическая дисперсия . Среди дискретных в социально-экономических исследованиях наиболее часто применяется альтернативное (дихотомическое) распределение. Параметр математического ожидания этого распределения выражает относительную величину (или долю ) единиц совокупности, которые обладают изучаемым признаком (она обозначена буквой ); доля совокупности, не обладающая этим признаком, обозначается буквой q (q = 1 — p) . Дисперсия же альтернативного распределения также имеет эмпирический аналог .

В зависимости от вида распределения и от способа отбора единиц совокупности по-разному вычисляются характеристики параметров распределения. Основные из них для теоретического и эмпирического распределений приведены в табл. 9.1.

Долей выборки k n называется отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:

k n = n/N .

Выборочная доля w — это отношение единиц, обладающих изучаемым признаком x к объему выборки n :

w = n n /n .

Пример. В партии товара, содержащей 1000 ед., при 5% выборке доля выборки k n в абсолютной величине составляет 50 ед. (n = N*0,05); если же в этой выборке обнаружено 2 бракованных изделия, то выборочная доля брака w составит 0,04 (w = 2/50 = 0,04 или 4%).

Так как выборочная совокупность отлична от генеральной, то возникают ошибки выборки .

Таблица 9.1 Основные параметры генеральной и выборочной совокупностей

Ошибки выборки

При любом (сплошном и выборочном) могут встретиться ошибки двух видов: регистрации и репрезентативности. Ошибки регистрации могут иметь случайный и систематический характер. Случайные ошибки складываются из множества различных неконтролируемых причин, носят непреднамеренный характер и обычно по совокупности уравновешивают друг друга (например, изменения показателей прибора при температурных колебаниях в помещении).

Систематические ошибки тенденциозны, так как нарушают правила отбора объектов в выборку (например, отклонения в измерениях при изменении настройки измерительного прибора).

Пример. Для оценки социального положения населения в городе предусмотрено обследовать 25% семей. Если при этом выбор каждой четвертой квартиры основан на ее номере, то существует опасность отобрать все квартиры только одного типа (например, однокомнатные), что обеспечит систематическую ошибку и исказит результаты; выбор же номера квартиры по жребию более предпочтителен, так как ошибка будет случайной.

Ошибки репрезентативности присущи только выборочному наблюдению, их невозможно избежать и они возникают в результате того, что выборочная совокупность не полностью воспроизводит генеральную. Значения показателей, получаемых по выборке, отличаются от показателей этих же величин в генеральной совокупности (или получаемых при сплошном наблюдении).

Ошибка выборочного наблюдения есть разность между значением параметра в генеральной совокупности и ее выборочным значением. Для среднего значения количественного признака она равна: , а для доли (альтернативного признака) — .

Ошибки выборки свойственны только выборочным наблюдениям. Чем больше эти ошибки, тем больше эмпирическое распределение отличается от теоретического. Параметры эмпирического распределения и являются случайными величинами, следовательно, ошибки выборки также являются случайными величинами, могут принимать для разных выборок разные значения и поэтому принято вычислять среднюю ошибку .

Средняя ошибка выборки есть величина , выражающая среднее квадратическое отклонение выборочной средней от математического ожидания. Эта величина при соблюдении принципа случайного отбора зависит прежде всего от объема выборки и от степени варьирования признака: чем больше и чем меньше вариация признака (следовательно, и значение ), тем меньше величина средней ошибки выборки . Соотношение между дисперсиями генеральной и выборочной совокупностей выражается формулой:

т.е. при достаточно больших можно считать, что . Средняя ошибка выборки показывает возможные отклонения параметра выборочной совокупности от параметра генеральной. В табл. 9.2 приведены выражения для вычисления средней ошибки выборки при разных методах организации наблюдения.

Таблица 9.2 Средняя ошибка (m) выборочных средней и доли для разных видов выборки

Где - средняя из внутригрупповых выборочных дисперсий для непрерывного признака;

Средняя из внутригрупповых дисперсий доли;

— число отобранных серий, — общее число серий;

,

где — средняя -й серии;

— общая средняя по всей выборочной совокупности для непрерывного признака;

,

где — доля признака в -й серии;

— общая доля признака по всей выборочной совокупности.

Однако о величине средней ошибки можно судить лишь с определенной, вероятностью Р (Р ≤ 1). Ляпунов А.М. доказал, что распределение выборочных средних , a следовательно, и их отклонений от генеральной средней, при достаточно большом числе приближенно подчиняется нормальному закону распределения при условии, что генеральная совокупность обладает конечной средней и ограниченной дисперсией.

Математически это утверждение для средней выражается в виде:

а для доли выражение (1) примет вид:

где - есть предельная ошибка выборки , которая кратна величине средней ошибки выборки , а коэффициент кратности — есть критерий Стьюдента ("коэффициент доверия"), предложенный У.С. Госсетом (псевдоним "Student"); значения для разного объема выборки хранятся в специальной таблице.

Значения функции Ф(t) при некоторых значениях t равны:

Следовательно, выражение (3) может быть прочитано так: с вероятностью Р = 0,683 (68,3%) можно утверждать, что разность между выборочной и генеральной средней не превысит одной величины средней ошибки m (t = 1) , с вероятностью Р = 0,954 (95,4%) — что она не превысит величины двух средних ошибок m (t = 2) , с вероятностью Р = 0,997 (99,7%) — не превысит трех значений m (t = 3) . Таким образом, вероятность того, что эта разность превысит трехкратную величину средней ошибки определяет уровень ошибки и составляет не более 0,3% .

В табл. 9.3 приведены формулы для вычисления предельной ошибки выборки.

Таблица 9.3 Предельная ошибка (D) выборки для средней и доли (р) для разных видов выборочного наблюдения

Распространение выборочных результатов на генеральную совокупность

Конечной целью выборочного наблюдения является характеристика генеральной совокупности. При малых объемах выборки эмпирические оценки параметров ( и ) могут существенно отклоняться от их истинных значений ( и ). Поэтому возникает необходимость установить границы, в пределах которых для выборочных значений параметров ( и ) лежат истинные значения ( и ).

Доверительным интервалом какого-либо параметра θгенеральной совокупности называется случайная область значений этого параметра, которая с вероятностью близкой к 1 (надежностью ) содержит истинное значение этого параметра.

Предельная ошибка выборки Δ позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы , которые равны:

Нижняя граница доверительного интервала получена путем вычитания предельной ошибки из выборочного среднего (доли), а верхняя — путем ее добавления.

Доверительный интервал для средней использует предельную ошибку выборки и для заданного уровня достоверности определяется по формуле:

Это означает, что с заданной вероятностью Р , которая называется доверительным уровнем и однозначно определяется значением t , можно утверждать, что истинное значение средней лежит в пределах от ,а истинное значение доли — в пределах от

При расчете доверительного интервала для трех стандартных доверительных уровней Р = 95%, Р = 99% и Р = 99,9% значение выбирается по . Приложения в зависимости от числа степеней свободы . Если объем выборки достаточно велик, то соответствующие этим вероятностям значения t равны: 1,96, 2,58 и 3,29 . Таким образом, предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы:

Распространение результатов выборочного наблюдения на генеральную совокупность в социально-экономических исследованиях имеет свои особенности, так как требует полноты представительности всех ее типов и групп. Основой для возможности такого распространения является расчет относительной ошибки :

где Δ % - относительная предельная ошибка выборки; , .

Существуют два основных метода распространения выборочного наблюдения на генеральную совокупность: прямой пересчет и способ коэффициентов .

Сущность прямого пересчета заключается в умножении выборочного среднего значения!!\overline{x} на объем генеральной совокупности .

Пример . Пусть среднее число детей ясельного возраста в городе оценено выборочным методом и составило человека. Если в городе 1000 молодых семей, то число необходимых мест в муниципальных детских яслях получают умножением этой средней на численность генеральной совокупности N = 1000, т.е. составит 1200 мест.

Способ коэффициентов целесообразно использовать в случае, когда выборочное наблюдение проводится с целью уточнения данных сплошного наблюдения.

При этом используют формулу:

где все переменные — это численность совокупности:

Необходимый объем выборки

Таблица 9.4 Необходимый объем (n) выборки для разных видов организации выборочного наблюдения

При планировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки необходимо правильно оценить требуемый объем выборки . Этот объем может быть определен на основе допустимой ошибки при выборочном наблюдении исходя из заданной вероятности , гарантирующей допустимую величину уровня ошибки (с учетом способа организации наблюдения). Формулы для определения необходимой численности выборки n легко получить непосредственно из формул предельной ошибки выборки. Так, из выражения для предельной ошибки:

непосредственно определяется объем выборки n :

Эта формула показывает, что с уменьшением предельной ошибки выборки Δ существенно увеличивается требуемый объем выборки , который пропорционален дисперсии и квадрату критерия Стьюдента .

Для конкретного способа организации наблюдения требуемый объем выборки вычисляется согласно формулам, приведенным в табл. 9.4.

Практические примеры расчета

Пример 1. Вычисление среднего значения и доверительного интервала для непрерывного количественного признака.

Для оценки скорости расчета с кредиторами в банке проведена случайная выборка 10 платежных документов. Их значения оказались равными (в днях): 10; 3; 15; 15; 22; 7; 8; 1; 19; 20.

Необходимо с вероятностью Р = 0,954 определить предельную ошибку Δ выборочной средней и доверительные пределы среднего времени расчетов.

Решение. Среднее значение вычисляется по формуле из табл. 9.1 для выборочной совокупности

Дисперсия вычисляется по формуле из табл. 9.1.

Средняя квадратическая погрешность дня.

Ошибка средней вычисляется по формуле:

т.е. среднее значение равно x ± m = 12,0 ± 2,3 дней .

Достоверность среднего составила

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, и для Р = 0,954 уровня достоверности.

Таким образом, среднее значение равно `x ± D = `x ± 2m = 12,0 ± 4,6, т.е. его истинное значение лежит в пределах от 7,4 до16,6 дней.

Использование таблицы Стьюдента. Приложения позволяет заключить, что для n = 10 — 1 = 9 степеней свободы полученное значение достоверно с уровнем значимости a £ 0,001, т.е. полученное значение среднего достоверно отличается от 0.

Пример 2. Оценка вероятности (генеральной доли) р.

При механическом выборочном способе обследования социального положения 1000 семей выявлено, что доля малообеспеченных семей составила w = 0,3 (30%) (выборка была 2% , т.е. n/N = 0,02 ). Необходимо с уровнем достоверности р = 0,997 определить показатель р малообеспеченных семей во всем регионе.

Решение. По представленным значениям функции Ф(t) найдем для заданного уровня достоверности Р = 0,997 значение t = 3 (см. формулу 3). Предельную ошибку доли w определим по формуле из табл. 9.3 для бесповторного отбора (механическая выборка всегда является бесповторной):

Предельная относительная ошибка выборки в % составит:

Вероятность (генеральная доля) малообеспеченных семей в регионе составит р=w±Δ w , а доверительные пределы р вычисляются исходя из двойного неравенства:

w — Δ w ≤ p ≤ w — Δ w , т.е. истинное значение р лежит в пределах:

0,3 — 0,014 < p <0,3 + 0,014, а именно от 28,6% до 31,4%.

Таким образом, с вероятностью 0,997 можно утверждать, что доля малообеспеченных семей среди всех семей региона составляет от 28,6% до 31,4%.

Пример 3. Вычисление среднего значения и доверительного интервала для дискретного признака, заданного интервальным рядом.

В табл. 9.5. задано распределение заявок на изготовление заказов по срокам их выполнения предприятием.

Таблица 9.5 Распределение наблюдений по срокам появления

Решение. Средний срок выполнения заявок вычисляется по формуле:

Средний срок составит:

= (3*20 + 9*80 + 24*60 + 48*20 + 72*20)/200 = 23,1 мес.

Тот же ответ получим, если используем данные о р i из предпоследней колонки табл. 9.5, используя формулу:

Заметим, что середина интервала для последней градации находится путем искусственного ее дополнения шириной интервала предыдущей градации равной 60 — 36 = 24 мес.

Дисперсия вычисляется по формуле

где х i - середина интервального ряда.

Следовательно!!\sigma = \frac {20^2 + 14^2 + 1 + 25^2 + 49^2}{4}, а средняя квадратическая погрешность .

Ошибка средней вычисляется по формуле мес., т.е. среднее значение равно!!\overline{x} ± m = 23,1 ± 13,4.

Предельную ошибку вычислим по формуле из табл. 9.3 для повторного отбора, так как численность генеральной совокупности неизвестна, для 0,954 уровня достоверности:

Таким образом, среднее значение равно:

т.е. его истинное значение лежит в пределах от 0 до 50 мес.

Пример 4. Для определения скорости расчетов с кредиторами N = 500 предприятий корпорации в коммерческом банке необходимо провести выборочное исследование методом случайного бесповторного отбора. Определить необходимый объем выборки n, чтобы с вероятностью Р = 0,954 ошибка среднего значения выборки не превышала 3-х дней, если пробные оценки показали, что среднее квадратическое отклонение s составило 10 дней.

Решение . Для определения числа необходимых исследований n воспользуемся формулой для бесповторного отбора из табл. 9.4:

В ней значение t определяется из для уровня достоверности Р = 0,954. Оно равно 2. Среднее квадратическое значение s = 10, объем генеральной совокупности N = 500, а предельная ошибка среднего значения Δ x = 3. Подставляя эти значения в формулу, получим:

т.е. выборку достаточно составить из 41 предприятия, чтобы оценить требуемый параметр — скорость расчетов с кредиторами.

Это наука, которая, основываясь на методах теории вероятностей, занимается систематизацией и обработкой статистических данных для получения научных и практических выводов.

Статистическими данными называются сведения о числе объектов, обладающих теми или иными признаками.

Группа объектов, объединенных по некоторому качественному или количественному признаку, называется статистической совокупностью . Объекты, входящие в совокупность, называются её элементами, а их общее число - ее объемом.

Генеральной совокупностью называется множество всех мыслимо возможных наблюдений, которые могли бы быть сделаны при данном реальном комплексе условий или более строго: генеральной совокупностью называется случайная величина x и связанное с ней вероятностное пространство {W,Á,Р}.

Распределение случайной величины x называют распределением генеральной совокупности (говорят, например, о нормально распределенной или просто нормальной генеральной совокупности).

Например, если производится ряд независимых измерений случайной величины x, то генеральная совокупность теоретически бесконечна (т.е. генеральная совокупность - абстрактное, условно - математическое понятие); если же проверяется число дефектных изделий в партии из N изделий, то эту партию рассматривают как конечную генеральную совокупность объема N.

В случае социально-экономических исследований генеральной совокупностью объема N может быть население какого-то города, региона или страны, а измеряемыми признаками - доходы, расходы или объем сбережений отдельно взятого человека. Если какой-то признак имеет качественный характер (например, пол, национальность, социальное положение, род деятельности и т.п.), но принадлежит к конечному множеству вариантов, то он может быть также закодирован числом (как это часто делают в анкетах).

Если число объектов N достаточно велико, то провести сплошное обследование затруднительно, а иногда физически невозможно (например, проверить качество всех патронов). Тогда случайным образом отбирают из всей генеральной совокупности ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью или просто выборкой объема n называется последовательность х 1 , х 2 , …, х n независимых одинаково распределенных случайных величин, распределение каждой из которых совпадает с распределением случайной величины x.

Например, результаты n первых измерений случайной величины x принято рассматривать как выборку объема n из бесконечной генеральной совокупности. Полученные данные называют наблюдениями случайной величины x, а также говорят, что случайная величина x "принимает значения" х 1 , х 2 , …, х n .


Основная задача математической статистики - сделать научно обоснованные выводы о распределении одной или более неизвестных случайных величин или их взаимосвязи между собой. Метод, состоящий в том, что на основании свойств и характеристик выборки делаются заключения о числовых характеристиках и законе распределения случайной величины (генеральной совокупности) называется выборочным методом.

Для того, чтобы характеристики случайной величины, полученные выборочным методом, были объективны, необходимо, чтобы выборка была репрезентативной, т.е. достаточно хорошо представляла исследуемую величину. В силу закона больших чисел можно утверждать, что выборка будет репрезентативной, если ее осуществить случайно, т.е. все объекты генеральной совокупности имеют одинаковую вероятность попасть в выборку. Для этого существуют различные виды отбора выборки.

1. Простым случайным отбором называется отбор, при котором объекты извлекаются по одному из всей генеральной совокупности.

2. Стратифицированный (расслоенный ) отбор заключается в том, что исходная генеральная совокупность объема N подразделяется на подмножества (страты) N 1 , N 2 ,…,N k , так что N 1 + N 2 +…+ N k = N. Когда страты определены, из каждого из них извлекается простая случайная выборка объема n 1 , n 2 , …, n k . Частным случаем стратифицированного отбора является типический отбор, при котором объекты отбирают не из всей генеральной совокупности, а из каждой типической ее части.

Комбинированный отбор сочетает в себе сразу несколько видов отбора, образующих различные фазы выборочного обследования. Существуют и другие методы организации выборки.

Выборка называется повторной , если отобранный объект перед выбором следующего возвращается в генеральную совокупность. Выборка называется бесповторной , если отобранный объект в генеральную совокупность не возвращается. Для конечной генеральной совокупности случайный отбор без возвращения приводит на каждом шаге к зависимости отдельных наблюдений, случайный равновозможный выбор с возвращением - к независимости наблюдений. На практике обычно имеют дело с бесповторными выборками. Тем не менее, когда объем генеральной совокупности N во много раз больше, чем объем выборки n (например, в сотни или тысячи раз), зависимостью наблюдений можно пренебречь.

Таким образом, случайная выборка х 1 , х 2 , …, х n - это результат последовательных и независимых наблюдений над случайной величиной ξ, представляющую генеральную совокупность, и все элементы выборки имеют тоже распределении, что исходная случайная величина x.

Функцию распределения F x (х) и другие числовые характеристики случайной величины x будем называть теоретическими, в отличие от выборочных характеристик , которые определяются по результатам наблюдений.

Пусть выборка х 1 , х 2 , …, х к есть результат независимых наблюдений случайной величины x, причем х 1 наблюдалось n 1 раз, х 2 - n 2 раза, …, х к - n к раз, так что n i = n - объем выборки. Число n i , показывающее, сколько раз появилось значение х i в n наблюдениях, называется частотой данного значения, а отношение n i /n = w i - относительной частотой . Очевидно, что числа w i рациональны и .

Статистическая совокупность, расположенная в порядке возрастания признака, называется вариационным рядом . Его члены обозначают x (1) , x (2), … x (n) и называют вариантами . Вариационный ряд называется дискретным , если его члены принимают конкретные изолированные значения. Статистическим распределением выборки дискретной случайной величины x называется перечень вариант и соответствующих им относительных частот w i . Полученная таблица называется статистическим рядом.

X (1) x (2) ... x k(k)
ω 1 ω 2 ... ω k

Наибольшее и наименьшее значения вариационного ряда обозначают x min и x max и называют крайними членами вариационного ряда.

Если изучается непрерывная случайная величина, то группировка заключается в разбиении интервала наблюдаемых значений на k частичных интервалов равной длины h, и подсчете числа попаданий наблюдений в эти интервалы. Полученные числа принимают за частоты n i (для некоторой новой, уже дискретной случайной величины). В качестве новых значений вариант x i обычно берутся середины интервалов (либо в таблице указываются сами интервалы). Согласно формуле Стерждеса рекомендуемое число интервалов разбиения k » 1 + log 2 n , а длины частичных интервалов равны h = (x max - x min)/k. Предполагается, что весь интервал имеет вид .

Графически статистические ряды могут быть представлены в виде полигона, гистограммы или графика накопленных частот.

Полигоном частот называют ломаную линию, отрезки которой соединяют точки (x 1 , n 1), (x 2 , n 2), …, (x k , n k). Полигоном относительных частот называют ломаную, отрезки которой соединяют точки (x 1 , w 1), (x 2 , w 2), …, (x k , w k). Полигоны обычно служат для изображения выборки в случае дискретных случайных величин (рис. 7.1.1).

Рис. 7.1

.1.

Гистограммой относительных частот называется ступенчатая фигура, состоящая из прямоугольников, основанием которых служат частичные интервалы длиною h , а высоты

равны w i /h.

Гистограмма обычно служит для изображения выборки в случае непрерывных случайных величин. Площадь гистограммы равна единице (рис. 7.1.2). Если на гистограмме относительных частот соединить середины верхних сторон прямоугольников, то полученная ломанная образует полигон относительных частот. Поэтому гистограмму можно рассматривать как график эмпирической (выборочной) плотности распределения f n (x). Если у теоретического распределения существует конечная плотность, то эмпирическая плотность является некоторым приближением теоретической.

Графиком накопленных частот называется фигура, строящаяся аналогично гистограмме с той разницей, что для расчета высот прямоугольников берутся не простые, а накопленные относительные частоты , т.е. величины . Эти величины не убывают, и график накопленных частот имеет вид ступенчатой "лестницы" (от 0 до 1).

График накопленных частот на практике используются для приближения теоретической функции распределения.

Задача. Анализируется выборка из 100 малых предприятий региона. Цель обследования - измерение коэффициента соотношения заемных и собственных средств (х i) на каждом i-ом предприятии. Результаты представлены в таблице 7.1.1.

Таблица Коэффициенты соотношений заемных и собственных средств предприятий.

5,56 5,45 5,48 5,45 5,39 5,37 5,46 5,59 5,61 5,31
5,46 5,61 5,11 5,41 5.31 5,57 5,33 5,11 5,54 5,43
5,34 5,53 5,46 5,41 5,48 5,39 5,11 5,42 5,48 5,49
5,36 5,40 5,45 5,49 5,68 5,51 5,50 5,68 5,21 5,38
5,58 5,47 5,46 5,19 5,60 5,63 5,48 5,27 5,22 5,37
5,33 5,49 5,50 5,54 5,40 5.58 5,42 5,29 5,05 5,79
5,79 5,65 5,70 5,71 5,85 5,44 5,47 5,48 5,47 5,55
5,67 5,71 5,73 5,05 5,35 5,72 5,49 5,61 5,57 5,69
5,54 5,39 5,32 5,21 5,73 5,59 5,38 5,25 5,26 5,81
5,27 5,64 5,20 5,23 5,33 5,37 5,24 5,55 5,60 5,51

Построить гистограмму и график накопленных частот.

Решение . Построим группированный ряд наблюдений:

1. Определим в выборке х min = 5,05 и x max = 5,85;

2. Разобьем весь диапазон на k равных интервалов: k » 1 + log 2 100 = 7,62; k = 8, отсюда длина интервала

Таблица 7.1.2. Сгруппированный ряд наблюдений

Номер Интервала Интервалы Середины интервалов х i w i f n (x)
5,05-5,15 5,1 0,05 0,05 0,5
5,15-5,25 5,2 0,08 0,13 0,8
5,25-5,35 5,3 0,12 0,25 1,2
5,35-5,45 5,4 0,20 0,45 2,0
5,45-5,55 5,5 0,26 0,71 2,6
5,55-5,65 5,6 0,15 0,86 1,5
5,65-5,75 5,7 0,10 0,96 1,0
5,75-5,85 5,8 0,04 1,00 0,4

На рис. 7.1.3 и 7.1.4, построенных по данным таблицы 7.1.2, представлены гистограмма и график накопленных частот. Кривые соответствуют плотности и функции нормального распределения, "подобранного" к данным.

Таким образом, распределение выборки является некоторым приближением распределения генеральной совокупности.

Распределение случайной величины содержит всю информацию о ее статистических свойствах. Много ли нужно знать значений случайной величины, чтобы построить ее распределение? Для этого нужно исследовать ее генеральную совокупность .

Генеральная совокупность - множество всех значений, которые может принимать данная случайная величина.

Число единиц в генеральной совокупности называется ее объемом N . Эта величина может быть конечной и бесконечной. Например, если исследуется рост жителей некоторого города, то объем генеральной совокупности будет равен числу жителей города. Если выполняется любой физический эксперимент, то объем генеральной совокупности будет бесконечным, т.к. число всех возможных значений любого физического параметра равно бесконечности.

Исследование генеральной совокупности не всегда возможно и целесообразно. Оно невозможно, если объем генеральной совокупности бесконечен. Но и при конечных объемах полное исследование не всегда оправдано, поскольку требует больших затрат времени и труда, а абсолютная точность результатов обычно не требуется. Менее точные результаты, но со значительно меньшими затратами сил и средств можно получить при исследовании только части генеральной совокупности. Такие исследования называются выборочными.

Статистические исследования, проводимые только на части генеральной совокупности, называются выборочными, а исследуемая часть генеральной совокупности называется выборкой.

На рисунке 7.2 символически показаны генеральная совокупность и выборка в виде множества и его подмножества.

Рисунок 7.2 Генеральная совокупность и выборка

Работая с некоторым подмножеством данной генеральной совокупности, часто составляющим незначительную ее часть, мы получаем результаты, по точности вполне удовлетворительные для практических целей. Исследование большей части генеральной совокупности только увеличивает точность, но не изменяет сути результатов, если выборка взята правильно со статистической точки зрения.

Для того, чтобы выборка отражала свойства генеральной совокупности и результаты были достоверными, она должна быть репрезентативной (представительной).

У некоторых генеральных совокупностей любая их часть является репрезентативной в силу их природы. Однако в большинстве случаев необходимо принимать специальные меры для обеспечения репрезентативности выборок.

Одним из главных достижений современной математической статистики считается разработка теории и практики метода случай ных выборок, обеспечивающих репрезентативность отбора данных.

Выборочные исследования всегда проигрывают в точности по сравнению с исследованием всей генеральной совокупности. Однако с этим можно примириться, если величина погрешности будет известной. Очевидно, что чем больше объем выборки будет приближаться к объему генеральной совокупности, тем погрешность будет меньшей. Отсюда ясно, что проблемы статистического вывода становятся особенно актуальными при работе с малыми выборками (N ? 10-50).

В математической статистике выделяют два фундаментальных понятия: генеральная совокупность и выборка.
Совокупностью - называется практически счетное множество некоторых объектов или элементов, интересующих исследователя;
Свойством совокупности называется реальное или воображаемое качество, присущее некоторым всем ее элементам. Свойство может быть случайным или неслучайным.
Параметром совокупности называется свойство, которое можно квантифицировать в виде константы или переменной величины.
Простая совокупность характеризуется:
отдельным свойством (например: все студенты России);
отдельным параметром в виде константы или переменной (Все студенты женского пола);
системой непересекающихся (несовместных) свойств, к примеру: Все учителя и ученики школ г. Владивостока.
Сложная совокупность характеризуется:
системой, хотя бы частично пересекающихся свойств (Студенты психологического и математических факультетов ДВГУ, окончивших школу с золотой медалью);
системой параметров независимых и зависимых в совокупности; при комплексном исследовании личности.
Гомогенной или однородной называется совокупность, все характеристики которой присущи каждому ее элементу;
Гетерогенной или неоднородной называется совокупность, характеристики которой сосредоточены в отдельных подмножествах элементов.
Важным параметром является объем совокупности - количество образующих ее элементов. Величина объема зависит от того, как определена сама совокупность, и какие вопросы нас конкретно интересуют. Допустим нас интересует эмоциональное состояние студента 1-го курса в период сдачи конкретного экзамена в сессию. Тогда генеральная совокупность исчерпывается в течении получаса. Если нас интересует эмоциональное состояние всех студентов 1-го курса, то совокупность будет гораздо больше, и еще больше, если взять эмоциональное состояние всех студентов 1-го курса данного вуза и т.д. Понятно, что совокупности большого объема можно исследовать только выборочным путем.
Выборкой называется некоторая часть генеральной совокупности, то, что непосредственно изучается.
Выборки классифицируются по репрезентативности, объему, способу отбора и схеме испытаний.
Репрезентативная - выборка адекватно отображающая генеральную совокупность в качественном и количественном отношениях. Выборка должна адекватно отображать генеральную совокупность, иначе результаты не совпадут с целями исследования.
Репрезентативность зависит от объема, чем больше объем, тем выборка репрезентативней. По способу отбора.
Случайная - если элементы отбираются случайным образом. Так как большинство методов математической статистики основывается на понятии случайной выборки, то естественно выборка должна быть случайной.
Неслучайная выборка:
механический отбор, когда вся совокупность делится на столько частей, сколько единиц планируется в выборке и затем из каждой части отбирается один элемент;
типический отбор - совокупность делится на гомогенные части, и из каждой осуществляется случайная выборка;
серийный отбор - совокупность делят на большое число разновеликих серий, затем делают выборку одной какой-либо серии;
комбинированный отбор - сочетаются рассматриваемые виды отбора, на разных этапах.
По схеме испытаний - выборки могут быть независимые и зависимые. По объему выборки делят на малые и большие. К малым относят выборки, в которых число элементов n 200 и средняя выборка удовлетворяет условию 30Малые выборки используются при статистическом контроле известных свойств уже изученных совокупностей.
Большие выборки используются для установки неизвестных свойств и параметров совокупности.

Еще по теме 1.3. Генеральная совокупность и выборка:

  1. 7.2 Характеристики выборочной и генеральной совокупности
  2. 1.6. Точечная и интервальная оценки коэффициентов корреляции нормально распределенной генеральной совокупности