Голландский физик Хендрик Антон Лоренц родился в Арнхеме в семье Геррита Фредерика Лоренца и Гертруды (ван Гинкель) Лоренц. Отец Л. содержал детские ясли. Мать мальчика умерла, когда ему исполнилось четыре года. Через пять лет отец женился вторично на Люберте Хупкес. Л. учился в средней школе Арнхема и имел отличные оценки по всем предметам.

В 1870 г. он поступил в Лейденский университет, где познакомился с профессором астрономии Фредериком Кайзером, чьи лекции по теоретической астрономии заинтересовали его. Менее чем за два года Л. стал бакалавром наук по физике и математике. Возвратившись в Арнхем, он преподавал в местной средней школе и одновременно готовился к экзаменам на докторскую степень, которые он отлично сдал в 1873 г. Через два года Л. успешно защитил в Лейденском университете диссертацию на соискание ученой степени доктора наук. Диссертация была посвящена теории отражения и преломления света. В ней Л. исследовал некоторые следствия из электромагнитной теории Джеймса Клерка Максвелла относительно световых волн. Диссертация была признана выдающейся работой.

Л. продолжал жить в родном доме и преподавать в местной средней школе до 1878 г., когда он был назначен на кафедру теоретической физики Лейденского университета. В то время теоретическая физика как самостоятельная наука делала еще только первые шаги. Кафедра в Лейдене была одной из первых в Европе. Новое назначение как нельзя лучше соответствовало вкусам и наклонностям Л., который обладал особым даром формулировать теорию и применять изощренный математический аппарат к решению физических проблем.

Продолжая заниматься исследованием оптических явлений, Л. в 1878 г. опубликовал работу, в которой теоретически вывел соотношение между плотностью тела и его показателем преломления (отношением скорости света в вакууме к скорости света в теле – величине, характеризующей, насколько сильно отклоняется от первоначального направления луч света при переходе из вакуума в тело). Случилось так, что несколько раньше ту же формулу опубликовал датский физик Людвиг Лоренц, поэтому она получила название формулы Лоренца – Лоренца. Однако работа Хендрика Л. представляет особый интерес потому, что основана на предположении, согласно которому материальный объект содержит колеблющиеся электрически заряженные частицы, взаимодействующие со световыми волнами. Она подкрепила отнюдь не общепринятую тогда точку зрения на то, что вещество состоит из атомов и молекул.

В 1880 г. научные интересы Л. были связаны главным образом с кинетической теорией газов, описывавшей движение молекул и установление соотношения между их температурой и средней кинетической энергией. В 1892 г. Л. приступил к формулированию теории, которую как сам он, так и другие впоследствии назвали теорией электронов. Электричество, утверждал Л., возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов. Позднее было установлено, что все электроны отрицательно заряжены. Л. заключил, что колебания этих крохотных заряженных частиц порождают электромагнитные волны, в том числе световые и радиоволны, предсказанные Максвеллом и открытые Генрихом Герцем в 1888 г. В 1890-е гг. Л. продолжил занятия теорией электронов. Он использовал ее для унификации и упрощения электромагнитной теории Максвелла, опубликовал серьезные работы по многим проблемам физики, в том числе о расщеплении спектральных линий в магнитном поле.

Когда свет от раскаленного газа проходит через щель и разделяется спектроскопом на составляющие частоты, или чистые цвета, возникает линейчатый спектр – серия ярких линий на черном фоне, положение которых указывает соответствующие частоты. Каждый такой спектр характерен для вполне определенного газа. Л. предположил, что частоты колеблющихся электронов определяют частоты в испускаемом газом свете. Кроме того, он выдвинул гипотезу о том, что магнитное поле должно сказываться на движении электронов и слегка изменять частоты колебаний, расщепляя спектр на несколько линий. В 1896 г. коллега Л. по Лейденскому университету Питер Зееман поместил натриевое пламя между полюсами электромагнита и обнаружил, что две наиболее яркие линии в спектре натрия расширились. После дальнейших тщательных наблюдений над пламенем различных веществ Зееман подтвердил выводы теории Л., установив, что расширенные спектральные линии в действительности представляют собой группы из близких отдельных компонент. Расщепление спектральных линий в магнитном поле получило название эффекта Зеемана. Зееман подтвердил и предположение Л. о поляризации испускаемого света.

Хотя эффект Зеемана не удалось полностью объяснить до появления в XX в. квантовой теории, предложенное Л. объяснение на основе колебаний электронов позволило понять простейшие особенности этого эффекта. В конце XIX в. многие физики считали (как выяснилось впоследствии, правильно), что спектры должны стать ключом к разгадке строения атома. Поэтому применение Л. теории электронов для объяснения спектрального явления можно считать необычайно важным шагом на пути к выяснению строения вещества. В 1897 г. Дж.Дж. Томсон открыл электрон в виде свободно движущейся частицы, возникающей при электрических разрядах в вакуумных трубках. Свойства открытой частицы оказались такими же, как у постулированных Л. электронов, колеблющихся в атомах.

Зееман и Л. были удостоены Нобелевской премии по физике 1902 г. «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения». «Наиболее значительным вкладом в дальнейшее развитие электромагнитной теории света мы обязаны профессору Л., – заявил на церемонии вручения премии Ялмар Теель из Шведской королевской академии наук. – Если теория Максвелла свободна от каких бы то ни было допущений атомистического характера, то Л. начинает с гипотезы о том, что вещество состоит из микроскопических частиц, называемых электронами, которые являются носителями вполне определенных зарядов».

В конце XIX – начале XX в. Л. по праву считался ведущим физиком-теоретиком мира. Работы Л. охватывали не только электричество, магнетизм и оптику, но и кинетику, термодинамику, механику, статистическую физику и гидродинамику. Его усилиями физическая теория достигла пределов, возможных в рамках классической физики. Идеи Л. оказали влияние на развитие современной теории относительности и квантовой теории.

В 1904 г. Л. опубликовал наиболее известные из выведенных им формул, получившие название преобразований Лоренца. Они описывают сокращение размеров движущегося тела в направлении движения и изменение хода времени. Оба эффекта малы, но возрастают, если скорость движения приближается к скорости света. Эту работу он предпринял в надежде объяснить неудачи, постигавшие все попытки обнаружить влияние эфира – загадочного гипотетического вещества, якобы заполняющего все пространство.

Считалось, что эфир необходим как среда, в которой распространяются электромагнитные волны, например свет, подобно тому как молекулы воздуха необходимы для распространения звуковых волн. Несмотря на многочисленные трудности, встретившиеся на пути тех, кто пытался определить свойства вездесущего эфира, который упорно не поддавался наблюдению, физики все же были убеждены в том, что он существует. Одно из следствий существования эфира должно было бы наблюдаться обязательно: если скорость света измерять движущимся прибором, то она должна быть больше при движении к источнику света и меньше при движении в другую сторону. Эфир можно было бы рассматривать как ветер, переносящий свет и заставляющий его распространяться быстрее, когда наблюдатель движется против ветра, и медленнее, когда он движется по ветру.

В знаменитом эксперименте, выполненном в 1887 г. Альбертом А. Майкельсоном и Эдвардом У. Морли с помощью высокоточного прибора, называемого интерферометром, лучи света должны были пройти определенное расстояние в направлении движения Земли и затем такое же расстояние в противоположном направлении. Результаты измерений сравнивались с измерениями, произведенными над лучами, распространяющимися туда и обратно перпендикулярно направлению движения Земли. Если бы эфир как-то влиял на движение, то времена распространения световых лучей вдоль направления движения Земли и перпендикулярно ему из-за различия в скоростях отличались бы достаточно для того, чтобы их можно было измерить интерферометром. К удивлению сторонников теории эфира, никакого различия обнаружено не было.

Множество объяснений (например, ссылка на то, что Земля увлекает за собой эфир и поэтому он покоится относительно нее) были весьма неудовлетворительны. Для решения этой задачи Л. (и независимо от него ирландский физик Дж. Ф. Фитцджералд) предположил, что движение сквозь эфир приводит к сокращению размеров интерферометра (и, следовательно, любого движущегося тела) на величину, которая объясняет кажущееся отсутствие измеримого различия скорости световых лучей в эксперименте Майкельсона – Морли.

Преобразования Л. оказали большое влияние на дальнейшее развитие теоретической физики в целом и в частности на создание в следующем году Альбертом Эйнштейном специальной теории относительности. Эйнштейн питал к Л. глубокое уважение. Но если Л. считал, что деформация движущихся тел должна вызываться какими-то молекулярными силами, изменение времени – не более чем математический трюк, а постоянство скорости света для всех наблюдателей должно следовать из его теории, то Эйнштейн подходил к относительности и постоянству скорости света как к основополагающим принципам, а не проблемам. Приняв радикально новую точку зрения на пространство, время и несколько фундаментальных постулатов, Эйнштейн вывел преобразования Л. и исключил необходимость введения эфира.

Л. сочувственно относился к новаторским идеям и одним из первых выступил в поддержку специальной теории относительности Эйнштейна и квантовой теории Макса Планка. На протяжении почти трех десятилетий нового века Л. проявлял большой интерес к развитию современной физики, сознавая, что новые представления о времени, пространстве, материи и энергии позволили разрешить многие проблемы, с которыми ему приходилось сталкиваться в собственных исследованиях. О высоком авторитете Л. среди коллег свидетельствует хотя бы такой факт: по их просьбе он в 1911 г. стал председателем первой Сольвеевской конференции по физике – международного форума самых известных ученых – и ежегодно, до самой смерти, выполнял эти обязанности.

В 1912 г. Л. ушел в отставку из Лейденского университета с тем, чтобы уделять большую часть времени научным исследованиям, но раз в неделю он продолжал читать лекции. Переехав в Гарлем, Л. принял на себя обязанности хранителя физической коллекции Музея гравюр Тейлора. Это давало ему возможность работать в лаборатории. В 1919 г. Л. принял участие в одном из величайших в мире проектов предупреждения наводнений и контроля за ними. Он возглавил комитет по наблюдению за перемещениями морской воды во время и после осушения Зюйдерзее (залива Северного моря). После окончания первой мировой войны Л. активно способствовал восстановлению научного сотрудничества, прилагая усилия к тому, чтобы восстановить членство граждан стран Центральной Европы в международных научных организациях. В 1923 г. он был избран в международную комиссию по интеллектуальному сотрудничеству Лиги Наций. В состав этой комиссии входили семь ученых с мировым именем. Через два года Л. стал ее председателем. Л. сохранял интеллектуальную активность до самой смерти, последовавшей 4 февраля 1928 г. в Гарлеме.

В 1881 г. Л. женился на Аллетте Катерине Кайзер, племяннице профессора астрономии Кайзера. У супругов Лоренц родилось четверо детей, один из которых умер в младенческом возрасте. Л. был необычайно обаятельным и скромным человеком. Эти качества, а также его удивительные способности к языкам позволили ему успешно руководить международными организациями и конференциями.

Помимо Нобелевской премии Л. был удостоен медалей Копли и Румфорда Лондонского королевского общества. Он был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Германского физического обществ. В 1912 г. Л. стал секретарем Нидерландского научного общества.

, Академик

Хендрик Антон Лоренц (часто пишется Гендрик) (1853-1928) - выдающийся нидерландский физик , иностранный член-корреспондент Петербургской АН (1910) и иностранный почетный член АН СССР, (1925). Труды по теоретической физике. Создал классическую электронную теорию, с помощью которой объяснил многие электрические и оптические явления, в том числе эффект Зеемана. Разработал электродинамику движущихся сред. Вывел преобразования, названные его именем. Х. Лоренц близко подошел к созданию теории относительности. Нобелевская премия (1902, совместно с П. Зееманом).

Я счастлив, что принадлежу к нации, слишком маленькой, чтобы совершать большие глупости.

Лоренц Хендрик Антон

Хендрик Лоренц родился 18 июля 1853, Арнем, в Нидерландах. Скончался 4 февраля 1928, Харлем.

Детство

В 1857 Хендрик и его старший брат остались, потеряв мать, на попечении отчима, а через 4 года в доме появилась мачеха. К этой женщине Хендрик на всю жизнь сохранил самые теплые чувства. Маленький Лоренц, как казалось, очень отставал в развитии. Когда его сводный брат уже пошел в школу, Хендрик мог лишь с трудом произнести «до свидания». Хрупкий и не отличавшийся крепким здоровьем мальчик не увлекался резвыми играми, хотя и не сторонился сверстников.

В шесть лет Хендрик был отдан в школу, считавшейся лучшей в Арнеме, и вскоре он стал первым в своем классе. В 1866 он перешел в только что открывшуюся тогда Высшую гражданскую школу. И здесь он учился блестяще. Приобщение к наукам было увлекательным и успехи порождали поддерживавшую его всю жизнь уверенность в своих силах. Обладая исключительной памятью Хендрик Лоренц, помимо всех школьных дел успел выучить английский, французский, и немецкий языки, а перед поступлением в университет еще греческий и латынь (до старости он мог сочинять стихи по латыни).

Но на первом месте уже тогда была наука - математика и, особенно, физика. В 1870 Хендрик Лоренц поступил в Лейденский университет. И здесь произошло событие, во многом определившее весь дальнейший путь Лоренца в науке: он познакомился с трудами Джеймса Клерка Максвелла. К этому времени «Трактат об электричестве» был понят лишь немногими физиками. Более того, когда юный Хендрик попросил парижского переводчика «Трактата...» объяснить ему физический смысл уравнений Максвелла, он услышал в ответ, что «...никакого физического смысла эти уравнения не имеют и понять их нельзя; их следует рассматривать как чисто математическую абстракцию».

Хендрик Лоренц не только досконально изучил, но и развил теорию Максвелла . Дело в том, что эта теория как бы распадалась на две части. Одна из них - это так называемые полевые уравнения; они позволяют по заданному распределению источников, т. е. зарядов и токов, вычислить напряженности электрического и магнитного полей. Но есть и вторая часть: нужно выяснять, что же собой представляют сами источники, т.е. носители зарядов и как на них действуют эти поля. Лоренц выдвинул идею, что основное влияние на электрические и магнитные свойства сред оказывают мельчайшие носители электрических зарядов - электроны. Это может показаться невероятным: диссертацию, в которой впервые была намечена грандиозная программа объяснения всех электрических и магнитных свойств сред, в которой центральная роль отводилась электронам, Лоренц защитил 11 декабря 1875 г., т.е. за двадцать лет до «официального рождения» электрона! Догадки о дискретной структуре электричества, о мельчайших носителях заряда высказывались уже в начале 19 века, но в ту пору, когда об устройстве атомов физики, в сущности, почти ничего не знали (и даже еще не располагали доказательствами самого факта их существования), нужна была большая научная смелость и убежденность, чтобы выдвинуть такую программу. Тем более, что и «образ» самого электрона совершенно не был ясен.

Хендрик Антон Лоренц и начал с этого вопроса, приняв, что электрон - частица, имеющая определенную массу и электрический заряд и подчиняющаяся законам классической механики Ньютона. Из-за малости массы электрона он сильнее всех остальных частиц реагирует на действие электрических и магнитных сил и становится поэтому наиболее активным участником всех электромагнитных процессов в веществах. Наши сегодняшние представления об электронах сильно отличаются от лоренцовских, теперь принято, что они «живут» по законам квантовой, а не классической физики, но глубочайшие идеи Лоренца не потеряли актуальности и поныне.

Лоренц - профессор Лейденского университета

Утрехтский университет предложил Х. Лоренцу место профессора математики, но он предпочел должность учителя в лейденской классической гимназии, в надежде на профессуру в Лейденском университете. Надеждам суждено было вскоре сбыться, и 25 января 1878 двадцатипятилетний Лоренц, профессор первой в истории всех университетов кафедры теоретической физики, произнес вступительную речь «Молекулярные теории в физике».

В начале 1881 Хендрик Лоренц женился, и Алетта Лоренц сумела сделать все, чтобы его жизнь была спокойной, деятельной и счастливой. Он жил размеренной жизнью, наполненной повседневным напряженным и счастливым творческим трудом, небогатой внешними событиями. Он в первый раз поехал с научным докладом за границу (в Париж, на Международный конгресс физиков) в 1900 году. Он к тому времени был уже известным ученым. В 1895 вышла его книга «Опыт теории электрических и магнитных явлений в движущихся телах». Ее автор писал о том, как на базе представлений об электронах можно описать многие эффекты - от явлений дисперсии, т.е. зависимости показателя преломления в веществах от частоты, до явлений проводимости. И еще он там писал о том, что вскоре стало в электродинамике наиболее актуальным и волнующим, об электромагнитных явлениях в движущихся средах.

Основу теории Максвелла составляли уравнения, определяющие зависимость напряженностей электрических и магнитных полей от координат точек пространства. Но со времен Ньютона и даже Галилео-Галилея было известно, что эти величины относительны, что они меняются при переходе от одной системы отсчета к другой, движущейся относительно первой. В какой же системе отсчета записываются уравнения Максвелла? Может быть, в той, в которой рассматриваемое тело покоится? Но ведь движение относительно, как, по крайней мере, считается в механике. А в электродинамике?

Лоренц, как и многие его предшественники, в том числе, и великие Майкл Фарадей и Максвелл, считали, что все пространство заполнено особой средой - эфиром, натяжения в котором и проявляются как напряженности электромагнитных полей. Если эфир в целом не увлекается материальными телами в их движении, значит существует абсолютное движение - движение по отношению к эфиру. Окончательное решение проблемы - за экспериментом. Такой эксперимент был осуществлен в конце 19 века Майкельсоном и Морли, пытавшимися обнаружить движение Земли относительно эфира. Но обнаружить «эфирный ветер» не удалось, и это породило принципиальную проблему в электродинамике движущихся сред.

Попытку спасти положение предпринял в 1892 Джордж Фицджеральд (1851-1901). Это было всего лишь блестящей гипотезой, но Лоренц предложил ее обоснование. Он исходил из того, что все положения атомов и молекул в любой линейке определяются почти лишь электростатическими силами; Лоренц (эти вопросы были детально исследованы в его работах) уже знал, что кулоновские поля движущихся зарядов испытывают точно такое же сокращение, что и должно было объяснять фицджералдово сокращение (теперь все называют его лоренцовым).

Впоследствии появилась критика этой интерпретации (в роли «линейки» могут выступать не твердые тела, а сами электромагнитные волны, а они вовсе не состоят из атомов). Анализ всего комплекса возникающих здесь проблем привел к пересмотру многих классических представлений о пространстве и времени, к возникновению одной из великих теорий 20 века - теории относительности. Воспитанный в традициях классической теории и сделавший весьма многое для ее углубления и развития, Лоренц не мог легко и быстро принять все те грандиозные перемены, которые пришли в физику с началом нового века. Но он не только не препятствовал распространению новых идей, но, всегда стремился глубже их понять и популяризировать. Не случайно он в глазах многих был достоин почетного титула «Старейшины физической науки». В 1902 он совместно с Зееманом был удостоен Нобелевской премии, многократно приглашался для чтения лекций в университеты Европы и Америки.

Особо нужно отметить участие Хенрика Лоренца в подготовке и проведении Сольвеевских конгрессов. Уже на первом из этих авторитетнейших собраний ведущих физиков, проходившем в 1911, как и на последующих четырех, до 1927 Лоренц неизменно избирался председателем и блистательно справлялся с этой ролью. Далеко не последнее значение здесь имели человеческие черты личности Лоренца - его высочайшая научная компетентность и исключительные нравственные качества. Можно с уверенностью сказать, что именно на этих конгрессах и происходило формирование новой - квантовой и релятивистской физики.

Хенрик Лоренц не замыкался в одной лишь теоретической физике. Он много лет вел трудоемкие расчеты, связанные с проблемой осушения Зейдер-Зе, большое внимание уделял вопросам преподавания, добился организации в Лейдене бесплатных библиотек, во время и после войны тратил много усилий для объединения ученых разных стран.

Зейдер-Зе (Zuiderzee) - залив Северного моря, у берегов Нидерландов. Образовался в 1282 в результате наводнения. Отделен от моря Западно-Фризскими о-вами. Глубина 3-4 м, на фарватерах 8-24 метров. Перегорожен шлюзовой дамбой. Внутренняя часть (залив-озеро Эйсселмер) частично осушена, оставшаяся часть (560 км2) осваивается с 1980.

Лоренц любил свою страну и писал: «Я счастлив, что принадлежу к нации, слишком маленькой, чтобы совершать большие глупости». Он пользовался огромным уважением и любовью как у себя на родине, так и везде, где его знали. Празднование пятидесятилетия со дня защиты им докторской диссертации, начавшееся 11 декабря 1925 года вылилось в общенациональный праздник.

(1853 - 1928)

Хендрик Лоренц , нидерландский физик, родился 18 июля 1853 г. в г.Арнеме, в семье мелкого предпринимателя, который удерживал детские ясли. Начальное и среднее образование Хендрик получил в местной школе.

С 1870 г. продолжает обучение в Лейденском университете, посещает лекции известного к тому времени профессора астрономии Фредерика Кайзера. За 2 года Лоренц получает звание бакалавра наук по физике и математике и возвращаеться в Арнем учителем местной средней школы. 1873 г. успешно составляет экзамены на присвоение докторской степени и исследует теорию отбивания и преломление света, а 1875 г. защищает в Лейденском университете докторскую диссертацию по этой проблеме.

1878 г. Лоренц переезжает с Арнема в Лейден и работает на кафедре теоретической физики университета, одной из первых в Европе, продолжая изучать оптические явления. Здесь он публикует работу, в которой теоретически обосновывается соотношение между плотностью вещества и показателями его преломления, опираясь на общепринятую точку зрения, а именно на то, что вещество составляется из молекул и атомов.

В 1881 г. он вступает в брак с племянницей профессора астрономии Кайзера Аллеттой Кайзер. У них родилось четверо детей, однако один ребенок умерший грудным ребенком.

Продолжая работать в университете, Лоренц 1892 г. формулирует теорию электронов, публикует работы по расщеплению спектральных линий в магнитном поле.

1896 г. коллега Хендрика Лоренца Питер Зееман подтвердил его теоретическое положение о поляризации света. В это время Лоренц применяет теорию электронов для объяснения спектрального явления, которое было самым важным шагом на пути понимания строения вещества.

За развитие электромагнитной теории света 1902 г. Лоренц вместе с Зееманом получают Нобелевскую премию по физике, а вместе с тем и мировое признание руководящих ученых-физиков.

1911 г. он возглавляет первую Сольвеевскую конференцию по физике — международный форум известнейших ученых. Каждый год, до конца своей жизни, он председательствовал на этих конференциях.

1912 г. Лоренц подает в отставку из Лейденского университета, однако раз в неделю читает лекции и исполняет обязанности секретаря Нидерландского научного общества. Через год переезжает в Гаарлем, где работает директором физического кабинета Тейлеровського музея.

С 1923 г. входит в состав международной комиссии по интеллектуальному сотрудничеству Лиги Наций, а 1925 г. возглавляет ее.

Кроме Нобелевской премии, Хендрик Лоренц был награжден медалями Копли и Румфорда Лондонского королевского общества, был почетным доктором Парижского и Кембриджского университетов, членом Лондонского королевского и Немецкого физического обществ.

Хендрик Лоренц сохранял интеллектуальную активность до самой смерти.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Фотопортрет 1902 года Хендрик (часто пишется Гендрик) Антон Лоренц (нидерл. Hendrik Antoon Lorentz; 18 июля 1853, Арнем, Нидерланды - 4 февраля 1928, Харлем, Нидерланды) - нидерландский физик-теоретик, лауреат Нобелевской премии по физике (1902, совместно с Питером Зееманом) и других наград, член Нидерландской королевской академии наук (1881), ряда иностранных академий наук и научных обществ. Лоренц известен прежде всего своими работами в области электродинамики и оптики. Объединив концепцию непрерывного электромагнитного поля с представлением о дискретных электрических зарядах, входящих в состав вещества, он создал классическую электронную теорию и применил её для решения множества частных задач: получил выражение для силы, действующей на движущийся заряд со стороны электромагнитного поля (сила Лоренца), вывел формулу, связывающую показатель преломления вещества с его плотностью (формула Лоренца - Лоренца), разработал теорию дисперсии света, объяснил ряд магнитооптических явлений (в частности, эффект Зеемана) и некоторые свойства металлов. На основе электронной теории учёный развил электродинамику движущихся сред, в том числе выдвинул гипотезу о сокращении тел в направлении их движения (сокращение Фицджеральда - Лоренца), ввёл понятие о «местном времени», получил релятивистское выражение для зависимости массы от скорости, вывел соотношения между координатами и временем в движущихся относительно друг друга инерциальных системах отсчёта (преобразования Лоренца). Работы Лоренца способствовали становлению и развитию идей специальной теории относительности и квантовой физики. Кроме того, им был получен ряд существенных результатов в термодинамике и кинетической теории газов, общей теории относительности, теории теплового излучения. Общие сведения 

3 слайд

Описание слайда:

Хендрик Антон Лоренц родился 15 июля 1853 года в Арнеме. Его предки происходили из прирейнской области Германии и занимались в основном земледелием. Отец будущего ученого, Геррит Фредерик Лоренц (Gerrit Frederik Lorentz, 1822-1893), владел питомником плодовых деревьев близ Велпа (нидерл. Velp). Мать Хендрика Антона, Гертруда ван Гинкел (Geertruida van Ginkel, 1826-1861), выросла в Ренсвауде (нидерл. Renswoude) в провинции Утрехт, была замужем, рано овдовела и на третьем году вдовства вышла замуж во второй раз - за Геррита Фредерика. У них было двое сыновей, однако второй из них умер ещё в младенческом возрасте; Хендрик Антон воспитывался вместе Хендриком Яном Якобом, сыном Гертруды от первого брака. В 1862 году, после ранней смерти супруги, отец семейства женился на Люберте Хюпкес (Luberta Hupkes, 1819/1820-1897), которая стала детям заботливой мачехой. В шестилетнем возрасте Хендрик Антон поступил в начальную школу Тиммера. Здесь, на уроках Герта Корнелиса Тиммера, автора учебников и научно-популярных книг по физике, юный Лоренц познакомился с основами математики и физики. В 1866 году будущий учёный успешно сдал вступительные экзамены в только что открывшуюся в Арнеме высшую гражданскую школу (нидерл. Hogereburgerschool), которая примерно соответствовала гимназии. Учёба легко давалась Хендрику Антону, чему способствовал педагогический талант учителей, в первую очередь Х. Ван-дер-Стадта, автора нескольких известных учебников по физике, и Якоба Мартина ван Беммелена, преподававшего химию. Как признавал сам Лоренц, именно Ван-дер-Стадт привил ему любовь к физике. Другой важной встречей в жизни будущего учёного стало знакомство с Германом Хагой (нидерл. Herman Haga), который учился в том же классе и впоследствии также стал физиком; они оставались близкими друзьями на протяжении всей жизни. Кроме естественных наук, Хендрик Антон интересовался историей, прочёл ряд трудов по истории Нидерландов и Англии, увлекался историческими романами; в литературе его привлекало творчество английских писателей - Вальтера Скотта, Уильяма Теккерея и особенно Чарльза Диккенса. Отличаясь хорошей памятью, Лоренц изучил несколько иностранных языков (английский, французский и немецкий), а перед поступлением в университет самостоятельно овладел греческим и латынью. Несмотря на общительный характер, Хендрик Антон был человеком стеснительным и не любил говорить о своих переживаниях даже с близкими. Он был чужд всякого мистицизма и, по свидетельству дочери, «лишён был веры в божью благодать… Вера в высшую ценность разума… заменяла ему религиозные убеждения». Происхождение и детские годы 

4 слайд

Описание слайда:

Одно из зданий Лейденского университета (1875) В 1870 году Лоренц поступил в Лейденский университет, старейший университет Голландии. Здесь он посещал лекции физика Питера Рейке (нидерл. Pieter Rijke) и математика Питера ван Гера (Pieter van Geer), читавшего курс аналитической геометрии, однако ближе всего сошёлся с профессором астрономии Фредериком Кайзером, который узнал о новом талантливом студенте от своего бывшего ученика Ван-дер-Стадта. Именно во время учёбы в университете будущий учёный познакомился с основополагающими работами Джеймса Клерка Максвелла и не без труда смог разобраться в них, чему способствовало изучение трудов Германа Гельмгольца, Огюстена Френеля и Майкла Фарадея. В ноябре 1871 года Лоренц с отличием сдал экзамены на степень магистра и, решив готовиться к докторским экзаменам самостоятельно, в феврале 1872 года покинул Лейден. Вернувшись в Арнем, он стал учителем математики в вечерней школе и в школе Тиммера, где когда-то учился сам; эта работа оставляла ему достаточно свободного времени, чтобы заниматься наукой. Основным направлением исследований Лоренца стала электромагнитная теория Максвелла. Кроме того, в школьной лаборатории он ставил оптические и электрические опыты и даже безуспешно пытался доказать существование электромагнитных волн, изучая разряды лейденской банки. Впоследствии, касаясь знаменитого сочинения британского физика, Лоренц говорил: «Его „Трактат об электричестве и магнетизме“ произвёл на меня, пожалуй, одно из самых сильных впечатлений в жизни; толкование света как электромагнитного явления по своей смелости превзошло всё, что я до сих пор знал. Но книга Максвелла была не из лёгких! Написанная в годы, когда идеи учёного ещё не получили окончательной формулировки, она не представляла законченного целого и не давала ответа на многие вопросы». Учёба в университете. Первые шаги в науке 

5 слайд

Описание слайда:

Фотопортрет Лоренца 1902 года 25 января 1878 года Лоренц официально вступил в звание профессора, произнеся вступительную речь-доклад «Молекулярные теории в физике». По признанию одного из его бывших студентов, молодой профессор «обладал своеобразным даром, несмотря на всю свою доброту и простоту, сохранять определённую дистанцию между собой и своими студентами, нисколько не стремясь к тому и сам того не замечая». Лекции Лоренца пользовались среди студентов популярностью; ему нравилось преподавать, несмотря на то, что эта деятельность отнимала значительную часть времени. Более того, в 1883 году он взял на себя дополнительную нагрузку, заменив своего коллегу Хейке Камерлинг-Оннеса, который из-за болезни не мог читать курс общей физики на медицинском факультете; Лоренц продолжал читать эти лекции даже после выздоровления Оннеса, вплоть до 1906 года. По мотивам курсов его лекций была издана серия известных учебников, которые неоднократно переиздавались и были переведены на многие языки. В 1882 году профессор Лоренц начал популяризаторскую деятельность, его выступления перед широкой аудиторией пользовались успехом благодаря его таланту доступно и ясно излагать сложные научные вопросы. Летом 1880 года Лоренц познакомился с Алеттой Кайзер (Aletta Catharina Kaiser, 1858-1931), племянницей профессора Кайзера и дочерью известного гравёра Йоханна Вилхелма Кайзера (нидерл. Johann Wilhelm Kaiser), директора Государственного музея в Амстердаме. Тем же летом состоялась помолвка, а в начале следующего года молодые люди поженились. В 1885 году у них родилась дочь Гертруда Люберта (нидерл. Geertruida de Haas-Lorentz), получившая имена в честь матери и мачехи учёного. В том же году Лоренц купил дом на Хойграхт, 48, где семья вела тихую, размеренную Профессор в Лейдене 

6 слайд

Описание слайда:

жизнь. В 1889 году родилась вторая дочь - Йоханна Вилхелмина (Johanna Wilhelmina), в 1893 году - первый сын, проживший менее года, а в 1895 - второй сын, Рудольф. Старшая дочь впоследствии стала ученицей отца, занималась физикой и математикой и была замужем за известным учёным Вандером Йоханнесом де Хаазом, учеником Камерлинг-Оннеса. Первые годы в Лейдене Лоренц провёл в добровольной самоизоляции: он мало печатался за границей и практически избегал контактов с внешним миром (вероятно, это было связано с его стеснительностью). Его работы были мало известны за пределами Голландии вплоть до середины 1890-х годов. Лишь в 1897 году он впервые посетил съезд немецких естествоиспытателей и врачей, проходивший в Дюссельдорфе, и с тех пор стал постоянным участником крупных научных конференций. Он познакомился с такими известными европейскими физиками, как Людвиг Больцман, Вильгельм Вин, Анри Пуанкаре, Макс Планк, Вильгельм Рентген и другими. Росло и признание Лоренца как учёного, чему способствовал успех созданной им электронной теории, дополнявшей электродинамику Максвелла представлением об «атомах электричества», то есть о существовании заряженных частиц, из которых состоит вещество. Первая версия этой теории была опубликована в 1892 году; впоследствии она активно развивалась автором и использовалась для описания различных оптических явлений (дисперсия, свойства металлов, основы электродинамики движущихся сред и так далее). Одним из наиболее ярких достижений электронной теории стало предсказание и объяснение расщепления спектральных линий в магнитном поле, открытого Питером Зееманом в 1896 году. В 1902 году Зееман и Лоренц разделили Нобелевскую премию по физике; лейденский профессор стал, таким образом, первым теоретиком, удостоенным этой награды. Профессор в Лейдене (продолжение) 

7 слайд

Описание слайда:

Музей Тейлора в Харлеме (современный вид) В 1911 году Лоренц получил предложение занять пост куратора музея Тейлора, в котором имелся физический кабинет с лабораторией, и Голландского научного общества (нидерл. Koninklijke Hollandsche Maatschappij der Wetenschappen) в Харлеме. Учёный согласился и принялся искать преемника на должность лейденского профессора. После отказа Эйнштейна, который к тому моменту уже принял приглашение из Цюриха, Лоренц обратился к работавшему в Санкт-Петербурге Паулю Эренфесту. Осенью 1912 года, когда кандидатура последнего была официально утверждена, Лоренц окончательно переехал в Харлем. В музее Тейлора он получил небольшую лабораторию в личное пользование; в его обязанности входила организация популярных лекций для учителей физики, которые он стал читать сам. Кроме того, он ещё на протяжении десяти лет оставался экстраординарным профессором Лейденского университета и каждый понедельник в 11 часов утра читал там специальные лекции, посвящённые новейшим физическим идеям. Этот ставший традиционным семинар получил широкую известность в научном мире, его посещали многие известные исследователи из различных стран мира. С возрастом Лоренц всё больше внимания уделял общественной деятельности, в особенности проблемам образования и международного научного сотрудничества. Так, он стал одним из основателей первого голландского лицея в Гааге и организатором первых бесплатных библиотек и читального зала в Лейдене. Он был одним из распорядителей Сольвеевского фонда, на средства которого был основан Международный физический институт, и возглавлял комитет, ведавший распределением пособий на проведение научных исследований учёными из различных стран. В одной из статей 1913 года Лоренц писал: «Все признают, что сотрудничество и преследование общей цели в конечном итоге порождает Харлем 

8 слайд

Описание слайда:

драгоценное чувство взаимного уважения, сплочённость и хорошие дружественные отношения, что в свою очередь укрепляет мир». Однако наступившая вскоре Первая мировая война надолго прервала связи между учёными враждовавших стран; Лоренц, как гражданин нейтральной страны, старался по мере своих сил сгладить эти противоречия и восстановить сотрудничество между отдельными исследователями и научными обществами. Так, войдя в руководство основанного после войны Международного исследовательского совета (предшественника Международного совета по науке), голландский физик и его единомышленники добились исключения из устава этой организации пунктов, дискриминирующих представителей побеждённых стран. В 1923 году Лоренц вошёл в состав Комитета по интеллектуальному сотрудничеству (англ. International Committee on Intellectual Cooperation), учреждённого Лигой наций для укрепления научных связей между европейскими государствами, а спустя некоторое время сменил философа Анри Бергсона на посту председателя этого учреждения. В 1918 году Лоренц был назначен председателем государственного комитета по осушению залива Зёйдерзе и до конца жизни уделял много времени этому проекту, осуществляя непосредственное руководство инженерными расчётами. Сложность задачи требовала учёта многочисленных факторов и разработки оригинальных математических методов; здесь пригодились познания учёного в различных областях теоретической физики. Сооружение первой дамбы началось в 1920 году; проект завершился много лет спустя, уже после смерти его первого руководителя. Глубокий интерес к проблемам педагогики привёл Лоренца в 1919 году в правление народного образования, а в 1921 году он возглавил департамент высшего образования Нидерландов. В следующем году по приглашению Калифорнийского технологического института учёный во второй раз посетил США и выступил с лекциями в ряде городов этой страны. Впоследствии он побывал за океаном ещё дважды: в 1924 году и осенью-зимой 1926/27 года, когда прочитал в Пасадене курс лекций. В 1923 году, по достижении предельного возраста, Лоренц официально ушёл в отставку, однако продолжал читать свои понедельничные лекции в качестве почётного профессора. В декабре 1925 года в Лейдене прошли торжества по случаю 50-летия со дня защиты Лоренцем докторской диссертации. На это празднество было приглашено около двух тысяч человек со всех концов мира, в том числе многие крупные физики, представители нидерландского государства, ученики и друзья юбиляра. 4 февраля 1928 года учёный скончался. Харлем (продолжение) 

9 слайд

Описание слайда:

Джеймс Клерк Максвелл К началу научной карьеры Лоренца электродинамика Максвелла смогла полностью описать лишь распространение световых волн в пустом пространстве, тогда как вопрос о взаимодействии света с веществом ещё ждал своего решения. Уже в первых работах голландского учёного были сделаны некоторые шаги к объяснению оптических свойств вещества в рамках электромагнитной теории света. Основываясь на этой теории (точнее, на её интерпретации в духе дальнодействия, предложенной Германом Гельмгольцем), в своей докторской диссертации (1875) Лоренц решил проблему отражения и преломления света на границе раздела двух прозрачных сред. Предшествующие попытки решить эту задачу в рамках упругой теории света, в которой свет трактуется как механическая волна, распространяющаяся в особом светоносном эфире, столкнулись с принципиальными трудностями. Метод устранения этих трудностей предложил Гельмгольц в 1870 году; математически строгое доказательство было дано Лоренцем, который показал, что процессы отражения и преломления света определяются четырьмя граничными условиями, налагаемыми на векторы электрического и магнитного поля на поверхности раздела сред, и вывел отсюда известные формулы Френеля. Далее в диссертации были рассмотрены полное внутреннее отражение и оптические свойства кристаллов и металлов. Таким образом, в работе Лоренца содержались основы современной электромагнитной оптики. Что не менее важно, здесь появились первые признаки той особенности творческого метода Лоренца, которую Пауль Эренфест выразил следующими словами: «чёткое разделение той роли, которую в каждом данном случае оптических или электромагнитных явлений, возникающих в куске стекла или металла, играют „эфир“, с одной стороны, и „весомая материя“ - с другой». Разграничение между эфиром и веществом способствовало Ранние работы по электромагнитной теории света 

10 слайд

Описание слайда:

11 слайд

Описание слайда:

Титульный лист первого издания «Теории электронов» (1909) К началу 1890-х годов Лоренц окончательно отказался от концепции дальнодействующих сил в электродинамике в пользу близкодействия, то есть представления о конечной скорости распространения электромагнитного взаимодействия. Этому, вероятно, способствовало открытие Генрихом Герцем электромагнитных волн, предсказанных Максвеллом, а также чтение лекций Анри Пуанкаре (1890), содержавших глубокий анализ следствий теории электромагнитного поля Фарадея - Максвелла. А уже в 1892 году Лоренц дал первую формулировку своей электронной теории. Электронная теория Лоренца представляет собой максвелловскую теорию электромагнитного поля, дополненную представлением о дискретных электрических зарядах как основе строения вещества. Взаимодействие поля с движущимися зарядами является источником электрических, магнитных и оптических свойств тел. В металлах движение частиц порождает электрический ток, тогда как в диэлектриках смещение частиц из положения равновесия вызывает электрическую поляризацию, обуславливающую величину диэлектрической постоянной вещества. Первое последовательное изложение электронной теории появилось в большой работе «Электромагнитная теория Максвелла и её применение к движущимся телам» (фр. La théorie électromagnétique de Maxwell et son application aux corps mouvants, 1892), в которой Лоренц, помимо прочего, в простой форме получил формулу для силы, с которой поле действует на заряды (сила Лоренца). Впоследствии учёный дорабатывал и совершенствовал свою теорию: в 1895 году вышла книга «Опыт теории электрических и оптических явлений в движущихся телах» (нем. Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern), а в 1909 году - известная монография «Теория электронов и её применение Электронная теория. Общая схема теории 

12 слайд

Описание слайда:

к явлениям света и теплового излучения» (англ. The theory of electrons and its applications to the phenomena of light and radiant heat), содержащая самое полное изложение вопроса. В отличие от первоначальных попыток (в работе 1892 года) получить основные соотношения теории из принципов механики, здесь Лоренц уже начинал с уравнений Максвелла для пустого пространства (эфира) и аналогичных феноменологических уравнений, справедливых для макроскопических тел, и далее ставил вопрос о микроскопическом механизме электромагнитных процессов в веществе. Такой механизм, на его взгляд, связан с движением малых заряженных частиц (электронов), входящих в состав всех тел. Предполагая конечные размеры электронов и неподвижность эфира, присутствующего как вне, так и внутри частиц, Лоренц внёс в вакуумные уравнения члены, отвечающие за распределение и перемещение (ток) электронов. Полученные микроскопические уравнения (уравнения Лоренца - Максвелла) дополняются выражением для силы Лоренца, действующей на частицы со стороны электромагнитного поля. Эти соотношения лежат в основе электронной теории и позволяют единым образом описывать широкий круг явлений. Хотя попытки построить теорию, объясняющую электродинамические явления взаимодействием электромагнитного поля с движущимися дискретными зарядами, предпринимались и ранее (в работах Вильгельма Вебера, Бернгарда Римана и Рудольфа Клаузиуса), теория Лоренца принципиально от них отличалась. Если ранее полагалось, что заряды действуют непосредственно друг на друга, то теперь считалось, что электроны взаимодействуют со средой, в которой они находятся - неподвижным электромагнитным эфиром, подчиняющимся уравнениям Максвелла. Такое представление об эфире близко современному понятию электромагнитного поля. Лоренц провёл чёткое различие между материей и эфиром: они не могут сообщать друг другу механическое движение («увлекаться»), их взаимодействие ограничено сферой электромагнетизма. Сила этого взаимодействия для случая точечного заряда носит имя Лоренца, хотя аналогичные выражения были ранее получены Клаузиусом и Хевисайдом из иных соображений. Одним из важных и много обсуждавшихся в своё время следствий немеханического характера воздействия, описываемого силой Лоренца, было нарушение ею ньютоновского принципа действия и противодействия. В теории Лоренца гипотеза увлечения эфира движущимся диэлектриком была заменена на предположение о поляризации молекул тела под действием электромагнитного поля (это осуществлялось введением соответствующей диэлектрической постоянной). Электронная теория. Общая схема (продолжение) 

13 слайд

Описание слайда:

Применяя свою теорию к различным физическим ситуациям, Лоренц получил ряд значительных частных результатов. Так, ещё в первой работе по электронной теории (1892) учёный вывел закон Кулона, выражение для силы, действующей на проводник с током, и закон электромагнитной индукции. Здесь же он получил формулу Лоренца - Лоренца с помощью приёма, известного под названием сферы Лоренца. Для этого было рассчитано по отдельности поле внутри и вне воображаемой сферы, описанной вокруг молекулы, и впервые явным образом введено так называемое локальное поле, связанное с величиной поляризации на границе сферы. В статье «Оптические явления, обусловленные зарядом и массой иона» (нидерл. Optische verschijnselen die met de lading en de massa der ionen in verband staan, 1898) была в полном виде, близком к современному, изложена классическая электронная теория дисперсии. Основная идея состояла в том, что дисперсия есть результат взаимодействия света с колеблющимися дискретными зарядами - электронами (по первоначальной терминологии Лоренца - «ионами»). Записав уравнение движения электрона, на который действуют вынуждающая сила со стороны электромагнитного поля, возвращающая упругая сила и сила трения, обуславливающая поглощение, учёный пришёл к известной формуле дисперсии, задающей так называемую лоренцеву форму зависимости диэлектрической постоянной от частоты. В серии работ, опубликованных в 1905 году, Лоренц развил электронную теорию проводимости металлов, основы которой были заложены в трудах Пауля Друде, Эдуарда Рикке и Дж. Дж. Томсона. Исходным пунктом было предположение о наличии большого количества свободных заряженных частиц (электронов), движущихся в промежутках между неподвижными атомами (ионами) металла. Голландский физик учёл распределение электронов в металле по скоростям (распределение Максвелла) и, применив статистические методы кинетической теории газов (кинетическое уравнение для функции распределения), вывел формулу для удельной электропроводности, а также дал анализ термоэлектрических явлений и получил отношение теплопроводности к электропроводности, согласующееся в целом с законом Видемана - Франца. Теория Лоренца имела большое историческое значение для развития теории металлов, а также для кинетической теории, представляя собой первое точное решение кинетической задачи такого рода. Вместе с тем она не могла обеспечить точное количественное согласие с экспериментальными данными, в частности не объясняла магнитные свойства металлов и малый вклад свободных электронов в удельную теплоёмкость металла. Электронная теория. Применения: оптическая дисперсия и проводимость металлов 

14 слайд

Описание слайда:

Электронная теория. Применения: магнитооптика, эффект Зеемана, открытие электрона 

15 слайд

Описание слайда:

16 слайд

Описание слайда:

17 слайд

Описание слайда:

электрические. Это означало, что теория и её преобразования применимы не только к заряженным частицам (электронам), но и к весомой материи любого рода. Таким образом, следствия из лоренцевской теории, построенной на синтезе представлений об электромагнитном поле и движении частиц, очевидно, выходили за пределы ньютоновской механики. В решении задач электродинамики движущихся сред вновь проявилось стремление Лоренца провести резкую границу между свойствами эфира и весомой материи, а значит отказаться от каких-либо спекуляций о механических свойствах эфира. В 1920 году Альберт Эйнштейн писал по этому поводу: «Что касается механической природы лоренцова эфира, то в шутку можно сказать, что Лоренц оставил ему лишь одно механическое свойство - неподвижность. К этому можно добавить, что всё изменение, которое внесла специальная теория относительности в концепцию эфира, состояло в лишении эфира и последнего его механического свойства». Последней работой Лоренца перед появлением специальной теории относительности (СТО) была статья «Электромагнитные явления в системе, движущейся с любой скоростью, меньшей скорости света» (нидерл. Electromagnetische verschijnselen in een stelsel dat zich met wille-keurige snelheid, kleiner dan die van het licht, beweegt., 1904). Эта работа была нацелена на устранение недостатков, существовавших в теории на тот момент: требовалось дать единое обоснование отсутствия влияния движения Земли в экспериментах любого порядка относительно v/c и объяснить результаты новых экспериментов (таких, как опыты Траутона - Нобла и Релея - Брэйса (англ. Experiments of Rayleigh and Brace)). Отталкиваясь от основных уравнений электронной теории и вводя гипотезы сокращения длин и местного времени, учёный сформулировал требование сохранения формы уравнений при переходе между системами отсчёта, движущимися равномерно и прямолинейно друг относительно друга. Другими словами, речь шла об инвариантности теории относительно некоторых преобразований, которые были найдены Лоренцем и использованы для записи векторов электрического и магнитного полей в движущейся системе отсчёта. Однако полной инвариантности Лоренцу в этой работе добиться не удалось: в уравнениях электронной теории оставались лишние члены второго порядка. Этот недостаток был устранён в том же году Анри Пуанкаре, который дал итоговым преобразованиям имя преобразований Лоренца. В окончательном виде СТО была сформулирована в следующем году Эйнштейном. Электродинамика движущихся сред. Основные результаты (продолжение) 

18 слайд

Описание слайда:

Лоренц (примерно 1916 год) Следует особо остановиться на отличиях теории Лоренца от специальной теории относительности. Так, в электронной теории не уделялось никакого внимания принципу относительности и не содержалось никакой его формулировки, отсутствие же наблюдаемых свидетельств движения Земли относительно эфира (и постоянство скорости света) являлось лишь следствием взаимной компенсации нескольких эффектов. Преобразование времени выступает у Лоренца лишь в качестве удобного математического приёма, тогда как сокращение длин носит динамический (а не кинематический) характер и объясняется реальным изменением взаимодействия между молекулами вещества. Впоследствии голландский физик полностью усвоил формализм СТО и излагал его в своих лекциях, однако до конца жизни так и не принял его интерпретацию: он не собирался отказываться от представлений об эфире («лишней сущности», согласно Эйнштейну) и об «истинном» (абсолютном) времени, определяемом в системе отсчёта покоящегося эфира (пусть и необнаружимой экспериментально). Существование привилегированной системы отсчёта, связанной с эфиром, приводит к невзаимности преобразований координат и времени в теории Лоренца. Отказываться или нет от эфира, по мнению Лоренца, было вопросом личного вкуса. Существенно отличались и общие подходы к объединению механики и электродинамики, реализованные в работах Лоренца и Эйнштейна. С одной стороны, электронная теория находилась в центре «электромагнитной картины мира», исследовательской программы, предусматривавшей объединение всей физики на электромагнитной основе, откуда классическая механика должна была следовать в качестве частного случая. Лоренц и специальная теория относительности 

19 слайд

Описание слайда:

Эйнштейн и Лоренц у дверей дома Эренфеста в Лейдене (фото сделано хозяином дома, 1921) Первоначально проблема гравитации заинтересовала Лоренца в связи с попытками доказать электромагнитное происхождение массы («электромагнитная картина мира»), которым он уделял большое внимание. В 1900 году учёный предпринял собственную попытку объединить тяготение с электромагнетизмом. Отталкиваясь от идей Оттавиано Моссотти, Вильгельма Вебера и Иоганна Цёлльнера, Лоренц представил материальные частицы вещества состоящими из двух электронов (положительного и отрицательного). Согласно основной гипотезе теории, гравитационное взаимодействие частиц объясняется тем, что притяжение разноимённых зарядов несколько сильнее отталкивания одноимённых. Теория имела важные следствия: а) естественное объяснение равенства инертной и гравитационной масс как производных числа частиц (электронов); б) скорость распространения тяготения, интерпретируемого как состояние электромагнитного эфира, должна быть конечна и равна скорости света. Лоренц понимал, что построенный формализм можно трактовать не в смысле сведения гравитации к электромагнетизму, а в смысле создания теории тяготения по аналогии с электродинамикой. Полученные результаты и выводы из них были необычны для механической традиции, в которой гравитация представлялась дальнодействующей силой. Хотя расчёты векового движения перигелия Меркурия по теории Лоренца не давали удовлетворительного объяснения наблюдениям, эта концептуальная схема вызвала значительный интерес в научном мире. В 1910-е годы Лоренц с глубоким интересом следил за развитием общей теории относительности (ОТО), тщательно изучал её формализм и физические следствия и написал несколько важных работ на эту тему. Так, в 1913 году он Гравитация и общая теория относительности 

20 слайд

Описание слайда:

детально проработал раннюю версию ОТО, содержавшуюся в статье Эйнштейна и Гроссмана «Проект обобщённой теории относительности и теории тяготения» (нем. Entwurf einer verallgemeinerten Relativitatstheorie und Theorie der Gravitation), и обнаружил, что полевые уравнения этой теории ковариантны относительно произвольных преобразований координат только в случае симметричного тензора энергии-импульса. Этот результат он сообщил в письме Эйнштейну, который согласился с выводом голландского коллеги. Год спустя, в ноябре 1914 года, Лоренц вновь обратился к теории гравитации в связи с выходом работы Эйнштейна «Формальные основы общей теории относительности» (нем. Die formale Grundlage der allgemeinen Relativitatstheorie). Голландский физик провёл большой объём вычислений (несколько сотен страниц черновиков) и в начале следующего года опубликовал статью, в которой вывел полевые уравнения из вариационного принципа (принципа Гамильтона). Одновременно в переписке двух ученых дискутировалась проблема общей ковариантности: в то время как Эйнштейн пытался обосновать нековариантность полученных уравнений относительно произвольных преобразований координат при помощи так называемого «аргумента дырки» (hole argument, согласно которому нарушение ковариантности является следствием требования единственности решения), Лоренц не видел ничего страшного в существовании выделенных систем отсчёта. Гравитация и общая теория относительности (продолжение) 

21 слайд

Описание слайда:

Пауль Эренфест, Хендрик Антон Лоренц, Нильс Бор и Хейке Камерлинг-Оннес в лейденской криогенной лаборатории (1919) Проблемой теплового излучения Лоренц начал заниматься приблизительно с 1900 года. Его главной целью стало объяснение свойств этого излучения на основе электронных представлений, в частности получение из электронной теории формулы Планка для спектра равновесного теплового излучения. В статье «Об испускании и поглощении металлом тепловых лучей большой длины волны» (англ. On the emission and absorption by metals of rays of heat of great wave-lengths, 1903) Лоренц рассмотрел тепловое движение электронов в металле и получил выражение для распределения испускаемого ими излучения, которое совпало с длинноволновым пределом формулы Планка, известным ныне как закон Рэлея - Джинса. В этой же работе содержится, по-видимому, первый в научной литературе серьёзный анализ теории Планка, которая, по мнению Лоренца, не ответила на вопрос о механизме явлений и причине появления загадочных квантов энергии. В последующие годы учёный пытался обобщить свой подход на случай произвольных длин волн и найти такой механизм испускания и поглощения излучения электронами, который удовлетворял бы экспериментальным данным. Однако все попытки добиться этого оказались тщетными. В 1908 году в своём докладе «Распределение энергии между весомой материей и эфиром» (фр. Le partage de l’énergie entre la matière pondérable et l’éther), прочитанном на Международном математическом конгрессе в Риме, Лоренц показал, что классические механика и электродинамика приводят к теореме о равнораспределении энергии по степеням свободы, откуда можно получить лишь формулу Рэлея - Джинса. В качестве заключения он предположил, что будущие измерения помогут сделать выбор между теорией Планка и гипотезой Джинса, согласно которой отклонение от закона Рэлея - Джинса является следствием неспособности системы достигнуть равновесия. Это заключение вызвало критику со стороны Вильгельма Вина и других экспериментаторов, которые привели дополнительные аргументы против формулы Рэлея - Джинса. Позже в том же Тепловое излучение и кванты 

22 слайд

Описание слайда:

году Лоренц был вынужден признать: «Теперь мне стало ясно, с какими огромными трудностями мы встречаемся на этом пути; я могу заключить, что вывод законов излучения из электронной теории вряд ли возможен без глубоких изменений её основ, и я должен рассматривать теорию Планка как единственно возможную». Римская лекция голландского физика, содержавшая результаты большой общности, привлекла внимание научного сообщества к проблематике зарождавшейся квантовой теории. Этому способствовал и авторитет Лоренца как учёного. Подробный анализ возможностей, предоставляемых классической электродинамикой для описания теплового излучения, содержится в докладе «Применение теоремы о равномерном распределении энергии к излучению» (фр. Sur l’application au rayonnement du théorème de l’équipartition de l’énergie), с которым Лоренц выступил на первом Сольвеевском конгрессе (1911). Итог рассмотрения («все механизмы, которые можно придумать, привели бы к формуле Рэлея, если только их природа такова, что к ним применимы уравнения Гамильтона») указывал на необходимость пересмотра основных представлений о взаимодействии света и вещества. Хотя Лоренц принял гипотезу Планка о квантах энергии и в 1909 году предложил известный комбинаторный вывод формулы Планка, он не мог согласиться с более радикальным предположением Эйнштейна о существовании квантов света. Основное возражение, которое выдвигал голландский учёный, заключалось в трудности согласования этой гипотезы с интерференционными оптическими явлениями. В 1921 году в результате дискуссий с Эйнштейном он сформулировал идею, которую рассматривал в качестве возможного компромисса между квантовыми и волновыми свойствами света. Согласно этой идее, излучение состоит из двух частей - кванта энергии и волновой части, которая не переносит энергию, но участвует в создании интерференционной картины. Величина «интенсивности» волновой части определяет количество квантов энергии, попадающих в данную область пространства. Хотя эта идея не привлекла внимания научного сообщества, по содержанию она близка к так называемой теории волны-пилота, развитой несколько лет спустя Луи де Бройлем. Тепловое излучение и кванты (продолжение) 

23 слайд

Описание слайда:

Людвиг Больцман (1875) С самого начала своей научной карьеры Лоренц был убеждённым атомистом, что нашло отражение не только в построенной им электронной теории, но и в глубоком интересе к молекулярно-кинетической теории газов. Свои взгляды на атомистическое строение материи учёный выразил ещё в 1878 году, в своей речи «Молекулярные теории в физике» (нидерл. De moleculaire theorien in de natuurkunde), произнесённой при вступлении в должность профессора Лейденского университета. В дальнейшем он не раз обращался к решению конкретных задач кинетической теории газов, которая, по мнению Лоренца, способна не только обосновать результаты, полученные в рамках термодинамики, но и позволяет выйти за эти пределы. Первая работа Лоренца, посвящённая кинетической теории газов, вышла в 1880 году под названием «Уравнения движения газов и распространение звука в соответствии с кинетической теорией газов» (нидерл. De bewegingsvergelijkingen der gassen en de voortplanting van het geluid volgens de kinetische gastheorie). Рассмотрев газ молекул с внутренними степенями свободы (многоатомных молекул), учёный получил уравнение для одночастичной функции распределения, аналогичное кинетическому уравнению Больцмана (1872). Лоренц впервые показал, как из этого уравнения получить уравнения гидродинамики: в низшем приближении вывод даёт уравнение Эйлера, тогда как в высшем - уравнения Навье - Стокса. Представленный в статье метод, отличаясь большой общностью, позволил определить те минимальные предположения, которые требуются для вывода уравнений гидродинамики. Кроме того, в этой статье впервые на основе кинетической теории газов было получено лапласово выражение для скорости звука, а также введена новая величина, связанная с внутренними степенями свободы Термодинамика и кинетическая теория газов 

24 слайд

Описание слайда:

молекул и известная ныне как коэффициент объёмной вязкости. Полученные в этой работе результаты Лоренц вскоре применил к исследованию поведения газа при наличии градиента температуры и сил тяготения. В 1887 году голландский физик опубликовал статью, в которой подверг критике первоначальный вывод H-теоремы Больцмана (1872) и показал неприменимость этого вывода к случаю газа многоатомных (несферических) молекул. Больцман признал свою ошибку и вскоре представил улучшенный вариант своего доказательства. Кроме того, в той же статье Лоренц предложил упрощённый вывод H-теоремы для одноатомных газов, близкий к используемому в современных учебниках, и новое доказательство сохранения при столкновениях элементарного объёма в пространстве скоростей; эти результаты также получили одобрение со стороны Больцмана. Другая проблема кинетической теории, интересовавшая Лоренца, касалась применения теоремы вириала для получения уравнения состояния газа. В 1881 году он рассмотрел газ упругих шариков и с помощью теоремы вириала смог учесть силы отталкивания между частицами при столкновениях. Полученное уравнение состояния содержало член, отвечающий за эффект исключённого объёма в уравнении Ван-дер-Ваальса (этот член ранее вводился лишь из качественных соображений). В 1904 году Лоренц показал, что можно прийти к тому же уравнению состояния без использования теоремы вириала. В 1891 году он опубликовал работу, посвящённую молекулярной теории разбавленных растворов. В ней была предпринята попытка описать свойства растворов (включая осмотическое давление) с точки зрения баланса сил, действующих между различными компонентами раствора, а также указаны возражения против аналогичной попытки Больцмана применить кинетическую теорию для вычисления осмотического давления. Кроме того, начиная с 1885 года Лоренц написал несколько статей, посвящённых термоэлектрическим явлениям, а в 1900-е годы использовал методы кинетической теории газов для описания движения электронов в металлах. Термодинамика и кинетическая теория газов (продолжение) 

26 слайд

Описание слайда:

В 1925 году Нидерландская королевская академия наук учредила золотую медаль Лоренца, которая присуждается раз в четыре года за достижения в области теоретической физики. Имя Лоренца носит система шлюзов (Lorentzsluizen), которая входит в комплекс сооружений дамбы Афслёйтдейк, отделяющей залив Зёйдерзе от Северного моря. Именем Лоренца названы многочисленные объекты (улицы, площади, школы и так далее) в Нидерландах. В 1931 году в Арнеме, в парке Сонсбек (Sonsbeek), был открыт памятник Лоренцу работы скульптора Освальда Венкебаха (нидерл. Oswald Wenckebach). В Харлеме на площади Лоренца и в Лейдене у входа в Институт теоретической физики находятся бюсты учёного. На зданиях, связанных с его жизнью и деятельностью, расположены мемориальные доски. В 1953 году, к столетнему юбилею знаменитого физика, была учреждена стипендия Лоренца для студентов из Арнема, обучающихся в голландских университетах. В Лейденском университете имя Лоренца носят институт теоретической физики (Instituut-Lorentz), почётная кафедра (Lorentz Chair), которую каждый год занимает кто-либо из видных физиков-теоретиков, и международный центр по проведению научных конференций. Один из лунных кратеров назван именем Лоренца. Памятник Лоренцу в Арнеме Мемориальная доска в Эйндховене Память 

27 слайд

Описание слайда:

Книги H. A. Lorentz. Impressions of his Life and Work / ed. G. L. De Haas-Lorentz.. - Amsterdam, 1957. Франкфурт У. И. Специальная и общая теория относительности (исторические очерки). - М.: Наука, 1968. Кляус Е. М., Франкфурт У. И., Френк А. М. Гендрик Антон Лоренц. - М.: Наука, 1974. Darrigol O. Electrodynamics from Ampere to Einstein. - Oxford University Press, 2000. Уиттекер Э. История теории эфира и электричества. - Ижевск: НИЦ РХД, 2001. Статьи Де Бройль Л. Жизнь и труды Гендрика Антона Лорентца // Де Бройль Л. По тропам науки. - М.: Изд-во иностр. лит-ры, 1962. - С. 9-39. Hirosige T. Origins of Lorentz’ Theory of Electrons and the Concept of the Electromagnetic Field // Historical Studies in the Physical Sciences. - 1969. - Vol. 1. - P. 151-209. Schaffner K. F. The Lorentz Electron Theory of Relativity // American Journal of Physics. - 1969. - Vol. 37. - P. 498-513. Голдберг С. Электронная теория Лоренца и теория относительности Эйнштейна // УФН. - 1970. - Vol. 102. - P. 261-278. McCormmach R. H. A. Lorentz and the Electromagnetic View of Nature // Isis. - 1970. - Vol. 61. - P. 459-497. McCormmach R. Einstein, Lorentz, and the Electron Theory // Historical Studies in the Physical Sciences. - 1970. - Vol. 2. - P. 41-87. Литература 

28 слайд

Описание слайда:

Хендрик Антон Лоренц – выдающийся голландский физик, лауреат Нобелевской премии, ввел понятие силы, которая действует на электрический заряд в магнитном поле (сила Лоренца). Он создал классическую электронную теорию, с помощью которой объяснялись многие электрические и оптические явления. Разработал электродинамику движущихся тел.

Хендрик Лоренц родился 18 июля 1853 года в городе Арнем (Нидерланды). В 1859 родители отдают мальчика в местную школу, считавшуюся лучшей в городе. Через семь лет очень успешного обучения его переводят в только что открывшуюся Высшую гражданскую школу. Благодаря своей феноменальной памяти за время учебы в школе будущий ученый успел выучить пять языков: английский, немецкий, французский, греческий и латынь.

В 1970 году Хендрик поступает в Лейденский университет, где знакомится с научными трудами Джеймса Максвелла , во многом определившими дальнейшее становление Лоренца как будущего великого ученого. Через пять лет он защищает диссертацию, в которой попытался объяснить электрические и магнитные свойства сред, исследуя некоторые следствия из электромагнитной теории Максвелла. В этой же диссертации Лоренц предполагает, что электричество это дискретная среда, состоящая из мельчайших частиц (носителей заряда). Все бы ничего, но это было в 1875 году за 20 лет до официального открытия электрона английским физиком Джозефом Томсоном . Лоренц принял электрон за частицу, имеющую определенную массу и электрический заряд, а его движение подчинил законам классической механики.

После защиты диссертации ученый некоторое время работал преподавателем в Лейденской классической гимназии, через три с половиной года в 1878 стал профессором в родном университете, возглавив первую в истории всех университетов кафедру теоретической физики. Работая в университете Лоренц публикует работу в которой выводит соотношение между плотностью тела и его показателем преломления. Работа ученого была интересна тем, что предполагала наличие в веществе колеблющихся электрических заряженных частиц, взаимодействующих со световыми волнами. На то время это было одно из обоснований отнюдь не общепринятой теории о том, что любое вещество состоит из атомов и молекул.

В 1892 году Хендрик Лоренц формирует собственную теорию электронов. По его утверждению электричество возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов. Также ученый заключил, что колебания заряженных частиц способны порождать электромагнитные волны . Хотя его утверждение о положительных и отрицательных электронах было в последствие опровергнуто (на самом деле все электроны заряжены отрицательно) – все же его теория была настоящим прорывом в области изучения электричества. В 1890-е годы ученый публикует работы о расщеплении спектральных линий в магнитном поле . Кроме того он предполагает, что магнитное поле сказывается на траектории движения электронов, слегка изменяя частоты их колебаний и тем самым расщепляя спектр на несколько линий.

На основании теории Лоренца о колеблющихся электронах его коллега Питер Зееман в 1896 году открывает эффект расщепления спектральных линий в магнитном поле, позже названный его именем. Хотя эффект Зеемана и не удалось полностью описать теорией Лоренца – полностью он был описан лишь при помощи квантовой теории – все же она стала необычайно важным шагом на пути дальнейшего изучения строения вещества. За свои работы в 1902 году Лоренц вместе с Зееманом удостаиваются Нобелевской премии. Свойства, открытого позже электрона удивительно совпадали с предположениями Хендрика Лоренца.

Хендрик Лоренц за свою научную деятельность создал много научных трудов. Им была сформулирована теория дисперсии света, объяснена зависимость электропроводности от теплопроводности вещества, выведена формула для связи диэлектрической проницаемости и плотности вещества, определена сила, которая действует на электрический заряд в электрическом поле.

Помимо Нобелевской премии за свои заслуги перед наукой великий ученый был удостоен медалей Копли и Румфорда Лондонского королевского общества. Он являлся почетным доктором наук Парижского и Кембриджского университетов. Был членом Лондонского и Германского физических обществ. Умер Хендрик Лоренц 4 февраля 1928 года .