Попробуем внести некоторую ясность в туманный вопрос – что же такое масса тела?
Отбросим древнюю и нередко имеющую место в наше время идентификацию массы тела и ее веса – все-таки мы уже люди умные и знаем, что вес – это всего лишь сила. Сила, с которой любое материальное тело притягивается к Земле-матушке или какой-нибудь другой планете, звезде и прочему мега телу, близ поверхности которого находится рассматриваемое тело.
Начнем анализировать представление человечества о массе с давних времен.

Термин «масса» придумали, по-видимому, древние домохозяйки, поскольку это слово с древнегреческого «μαζα» переводится, как «кусок теста». Античные ученые под массой подразумевали некоторое количество вещества, содержащегося в физическом теле, не уделяя ей излишнего внимания, считая, что и так все ясно – кусок себе, и кусок.
Подобные определения массы в популярных источниках информации встречаются и по сей день. Особой ясности в вопрос о массе такая терминология не вносит, и только вызывает дополнительные вопросы, – какого-такого количества вещества, и что это за вещество такое?

Первые научные труды, посвященные попытке дать определение понятию массы тел, принадлежат Ньютону, который установил связь между силовым взаимодействием тел и изменением характера движения этих тел, т. е. ускорением. На эти (по тем временам – гениальные) мысли Ньютона навели опыты любознательного итальянца Галилея, который с верхушки Пизанской башни бросал вниз разные предметы, пытаясь опровергнуть многовековое заблуждение человечества о том, что увесистое тело упадет на Землю быстрее, чем более легкое. К удивлению многочисленных зевак, все тела, которые сбрасывал Галилей, приземлялись одновременно.

Ньютон, ознакомившись с опытами Галилея, пошел в размышлениях и выводах дальше – он, в одном из своих знаменитых законов указал, что ускорение, обусловленное действием на тело любой внешней силы, пропорционально величине этой силы.
Т. е. одно и то же тело под действием разных по модулю сил будет ускоряться пропорционально величине (модулю) этих сил: F = ma , где m – и есть коэффициент этой пропорциональности для каждого конкретного тела, называемый его массой.

Ньютон, как и многие его предшественники, не осмелился окончательно разорвать связь между «куском теста» и массой тела, считая массу некоторой мерой количества вещества. Тем не менее, он сделал первые робкие шаги к разрыву между классическими понятиями о массе и материи, указав на нематериальную сторону массы – ее связь с инертностью тел, т. е. их вечным стремлением к покою. А это был уже прогресс в науке.

Итак, Ньютон первым использовал в своих размышлениях два понятия массы: как меры инерции и как источника тяготения, т. е. – гравитации, не отрывая, впрочем, массу от количества вещества в теле. Однако толкование массы как меры «количества материи» все чаще подвергалось критике со стороны физиков, и уже в XIX веке было признано ненаучным, нефизическим и бессодержательным.

Забегая вперед, скажем, что окончательный разрыв между понятиями массы и количеством вещества «юридически» был оформлен в прошлом веке, когда в Международную систему единиц СИ, наряду с семеркой основных и двух дополнительных единиц измерения, ввели единицу измерения количества вещества – моль.



Ошеломляющий переворот в представлении человечества об окружающем мире вызвали открытия очередного гения – Альберта Эйнштейна. Своей теорией относительности он выпустил в понятие массы очередную порцию тумана, опровергнув бытующие догмы о постоянстве массы тел.
Вдруг выяснилось, что масса зависит от скорости тела, при этом материальное тело никогда не может передвигаться с предельной скоростью – скоростью света, иначе его масса станет бесконечно большой. Выводы Эйнштейна наталкивали на мысль о тесной связи массы с энергией тела, и получалось, что весь окружающий нас мир – не что иное, как некоторая форма существования энергии, которая, как известно на сегодняшний день, штука постоянная по величине.

Физикам осталось разобраться лишь с некоторыми неувязками по массе частиц, передвигающихся со скоростью света – фотонов, а также гипотетических глюонов и гравитонов. Ведь, согласно приведенным выше выводам, масса таких частиц должна быть бесконечной, а это уж – ни в какие ворота...
Неподдающийся логике гордиев узел разрубили небрежным взмахом – признали фотоны, глюоны и гравитоны нематериальными частицами, не имеющими массы в обычном понимании.

Дальнейшие размышления в ученой среде о массе привели даже к некоторой классификации этого понятия – различают гравитационную (или пассивную) массу, характеризующую взаимодействие тела с внешними силовыми полями и способность тел создавать такие поля, и инертную массу – характеризующую свойство тел сопротивляться увеличению кинетической энергии.
Если проследить за логикой виднейших умов человечества, то напрашивается вывод о том, что все вокруг нас стремится избавиться от кинетической энергии, то бишь - энергии движения, а значит - и от излишков массы, поскольку со скоростью материальных тел растет и их масса.
В общем - не такая уж простая это вещь - масса тела... По крайней мере - с куском теста ее уж точно не сравнить.

В некоторых источниках информации встречаются термины масса покоя и релятивистская масса, увязывающие эту физическую величину со скоростью движения тела, а также понятие «нулевая масса», которой обладают частицы, перемещающиеся со скоростью света - фотоны, глюоны и гравитоны, объединенные общим названием - люксоны. Люксоны не обладают массой покоя – они могут существовать лишь во время движения.

Можно смело догадываться, что размышления человечества о природе массы тел далеки до логического завершения, поскольку в последние годы появились гипотезы и теории, пытающиеся перечеркнуть все познания человечества о Вселенной. Некоторые из таких теорий полагают, что скорость света не является рубежной – существуют и сверхсветовые скорости. В рамках специальной теории относительности теоретически возможно существование частиц с мнимой массой, так называемых тахионов. Скорость таких частиц должна быть выше скорости света.

Другие гипотезы вводят понятия отрицательной и положительной массы, утверждая, что возможно существование материальных тел или частиц, у которых импульс и энергия движения не совпадают с направлением перемещения в пространстве. Как видите, фантазии ученых безграничны, и какова будет формулировка понятия «масса тела» через десяток-другой лет предсказать невозможно.

Подводя итог статье, можно уверенно указать лишь на неоднозначность таких понятий, как масса, вес и количество вещества в теле.
Ну а окончательный ответ на вопрос – что же такое масса тела – за потомками.



Понятие, с которым мы знакомы с самого раннего детства, - масса. И все же в курсе физики с ее изучением связаны некоторые трудности. Поэтому нужно четко определить, Как ее можно узнать? И почему она не равна весу?

Определение массы

Естественнонаучный смысл этой величины в том, что она определяет количество вещества, которое содержится в теле. Для ее обозначения принято использовать латинскую букву m. Единицей измерения в стандартной системе является килограмм. В задачах и повседневной жизни часто используются и внесистемные: грамм и тонна.

В школьном курсе физики ответ на вопрос: «Что такое масса?» дается при изучении явления инерции. Тогда она определяется, как способность тела сопротивляться изменению скорости своего движения. Поэтому массу еще называют инертной.

Что такое вес?

Во-первых, это сила, то есть вектор. Масса же является скалярной веса всегда приложен к опоре или подвесу и направлен в ту же сторону, что и сила тяжести, то есть вертикально вниз.

Формула для вычисления веса зависит от того, движется ли эта опора (подвес). В случае покоя системы используется такое выражение:

Р = m * g, где Р (в английских источниках используется буква W) — вес тела, g — ускорение свободного падения. Для земли g принято брать равным 9,8 м/с 2 .

Из нее может быть выведена формула массы: m = Р / g.

При движении вниз, то есть в направлении действия веса, его значение уменьшается. Поэтому формула принимает вид:

Р = m (g - а). Здесь «а» — это ускорение движения системы.

То есть при равенстве этих двух ускорений наблюдается состояние невесомости, когда вес тела равен нулю.

Когда тело начинает двигаться вверх, то говорят об увеличении веса. В этой ситуации возникает состояние перегрузки. Потому что вес тела увеличивается, а формула его будет выглядеть так:

Р = m (g + а).

Как масса связана с плотностью?

Решение. 800 кг/м 3 . Для того чтобы воспользоваться уже известной формулой, нужно знать объем пятна. Его легко вычислить, если принять пятно за цилиндр. Тогда формула объема будет такой:

V = π * r 2 * h.

Причем r — это радиус, а h — высота цилиндра. Тогда объем получится равным 668794,88 м 3 . Теперь можно сосчитать массу. Она получится такой: 535034904 кг.

Ответ: масса нефти приблизительно равна 535036 т.

Задача № 5. Условие: Длина самого длинного телефонного кабеля равна 15151 км. Чему равна масса меди, которая пошла на его изготовление, если сечение проводов равно 7,3 см 2 ?

Решение. Плотность меди равна 8900 кг/м 3 . Объем находится по формуле, которая содержит произведение площади основания на высоту (здесь длину кабеля) цилиндра. Но сначала нужно перевести эту площадь в квадратные метры. То есть разделить данное число на 10000. После расчетов получается, что объем всего кабеля приблизительно равен 11000 м 3 .

Теперь нужно перемножить значения плотности и объема, чтобы узнать, чему равна масса. Результатом оказывается число 97900000 кг.

Ответ: масса меди равна 97900 т.

Еще одна задача, связанная с массой

Задача № 6. Условие: Самая большая свеча массой 89867 кг была диаметром 2,59 м. Какой была ее высота?

Решение. Плотность воска — 700 кг/м 3 . Высоту потребуется найти из То есть V нужно разделить на произведение π и квадрата радиуса.

А сам объем вычисляется по массе и плотности. Он оказывается равным 128,38 м 3 . Высота же составила 24,38 м.

Ответ: высота свечи равна 24,38 м.

При движении тела его скорость может изменяться по модулю и направлению. Это означает, что тело двигается с некоторым ускорением . В кинематике не ставится вопрос о физической причине, вызвавшей ускорение движения тела. Как показывает опыт, любое изменение скорости тела возникает под влиянием других тел. Динамика рассматривает действие одних тел на другие как причину, определяющую характер движения тел.

Взаимодействием тел принято называть взаимное влияние тел на движение каждого из них.

Раздел механики, изучающий законы взаимодействия тел, называется динамикой.

Законы динамики были открыты в 1687 г. великим ученым Исааком Ньютоном. Сформулированные им закона динамики лежат в основе так называемой классической механики. Законы Ньютона следует рассматривать как обобщение опытных фактов. Выводы классической механики справедливы только при движении тел с малыми скоростями, значительно меньшими скорости света c .

Самой простой механической системой является изолированное тело , на которое не действуют никакие тела. Так как движение и покой относительны, в различных системах отсчета движение изолированного тела будет разным. В одной системе отсчета тело может находиться в покое или двигаться с постоянной скоростью, в другой системе это же тело может двигаться с ускорением.

Первый закон Ньютона (или закон инерции ) из всего многообразия систем отсчета выделяет класс так называемых инерциальных систем .

В инерциальной системе отсчета тело движется равномерно и прямолинейно при отсутствии действующих на него сил.

Существуют такие системы отсчета, относительно которых изолированные поступательно движущиеся тела сохраняют свою скорость неизменной по модулю и направлению.

Свойство тел сохранять свою скорость при отсутствии действия на него других тел называется инерцией . Поэтому первый закон Ньютона называют законом инерции .

Впервые закон инерции был сформулирован Галилео Галилеем (1632 г.). Ньютон обобщил выводы Галилея и включил их в число основных законов движения.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

При описании движения тел вблизи поверхности Земли системы отсчета, связанные с Землей, приближенно можно считать инерциальными. Однако, при повышении точности экспериментов, обнаруживаются отклонения от закона инерции, обусловленные вращением Земли вокруг своей оси.

Примером тонкого механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко . Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко относительно Земли оставалась бы неизменной. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1.7.1).

С высокой степенью точности инерциальной является гелиоцентрическая система отсчета (или система Коперника), начало которой помещено в центр Солнца, а оси направлены на далекие звезды. Эту систему использовал Ньютон при формулировании закона всемирного тяготения (1682 г.).

Инерциальных систем существует бесконечное множество. Система отсчета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, - тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы (см 1.2).

Итак, причиной изменения скорости движения тела в инерциальной системе отсчета всегда является его взаимодействие с другими телами. Для количественного описания движения тела под воздействием других тел необходимо ввести две новые физические величины - инертную массу тела и силу .

Масса - это свойство тела, характеризующее его инертность. При одинаковом воздействии со стороны окружающих тел одно тело может быстро изменять свою скорость, а другое в тех же условиях - значительно медленнее. Принято говорить, что второе из этих двух тел обладает большей инертностью, или, другими словами, второе тело обладает большей массой.

Если два тела взаимодействуют друг с другом, то в результате изменяется скорость обоих тел, т. е. в процессе взаимодействия оба тела приобретают ускорения. Отношение ускорений двух данных тел оказывается постоянным при любых воздействиях. В физике принято, что массы взаимодействующих тел обратно пропорциональны ускорениям, приобретаемым телами в результате их взаимодействия.

В этом соотношении величины и следует рассматривать как проекции векторов и на ось OX (рис. 1.7.2). Знак «минус» в правой части формулы означает, что ускорения взаимодействующих тел направлены в противоположные стороны.

В Международной системе единиц (СИ) масса тела измеряется в килограммах (кг) .

Масса любого тела может быть определена на опыте путем сравнения с массой эталона (m эт = 1 кг). Пусть m 1 = m эт = 1 кг. Тогда

Масса тела - скалярная величина . Опыт показывает, что если два тела с массами m 1 и m 2 соединить в одно, то масса m составного тела оказывается равной сумме масс m 1 и m 2 этих тел:

M=m 1 +m 2

Это свойство масс называют аддитивностью .

Сила - это количественная мера взаимодействия тел. Сила является причиной изменения скорости тела. В механике Ньютона силы могут иметь различную физическую природу: сила трения, сила тяжести, упругая сила и т. д. Сила является векторной величиной, имеет модуль, направление и точку приложения .

Векторная сумма всех сил, действующих на тело, называется равнодействующей силой .

Для измерения сил необходимо установить эталон силы и способ сравнения других сил с этим эталоном.

В качестве эталона силы можно взять пружину, растянутую до некоторой заданной длины. Модуль силы F 0 , с которой эта пружина при фиксированном растяжении действует на прикрепленное к ней тело, называют эталоном силы . Способ сравнения других сил с эталоном состоит в следующем: если тело под действием измеряемой силы и эталонной силы остается в покое (или движется равномерно и прямолинейно), то силы равны по модулю F = F 0 (рис. 1.7.3).

Если измеряемая сила F больше (по модулю) эталонной силы, то можно соединить две эталонные пружины параллельно (рис. 1.7.4). В этом случае измеряемая сила равна 2F 0 . Аналогично могут быть измерены силы 3F 0 , 4F 0 и т. д.

Измерение сил, меньших 2F 0 , может быть выполнено по схеме, показанной на рис. 1.7.5.

Эталонная сила в Международной системе единиц называется Ньютон(Н).

Сила в 1 Н сообщает телу массой 1 кг ускорение 1 м/с 2

Размерность [Н]

На практике нет необходимости все измеряемые силы сравнивать с эталоном. Для измерения сил используют пружины, откалиброванные описанным выше способом. Такие откалиброванные пружины называются динамометрами . Сила измеряется по растяжению динамометра (рис. 1.7.6).

Что такое масса. Определение "массы". Инертная масса, гравитационная масса.

Что такое "масса"?

МАССА (от латинского massa - глыба, ком, кусок), фундаментальная физическая величина, одна из основных характеристик материи, определяющая инертные и гравитационные свойства всех тел - от макроскопических тел до атомов и элементарных частиц. Соответственно различают Массу инертную и Массу гравитационную (тяжелую, тяготеющую).

Понятие Масса было введено в механику И. Ньютоном. В классической механике Ньютона Масса входит в определение импульса (количества движения) тела: импульс р пропорционален скорости движения тела v , p = mv (1). Коэффициент пропорциональности - постоянная для данного тела величина m - и есть Масса тела. Эквивалентное определение Массы получается из уравнения движения классической механики f = ma (2). Здесь Масса - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a . Определенная соотношениями (1) и (2) Масса называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше Масса тела, тем меньшее ускорение оно приобретает, т. е. тем медленнее меняется состояние его движения (тем больше его инерция). Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения Масса этих тел: m1: m2: m3... = а1: а2: а3... ; если одну из Масс принять за единицу измерения, можно найти Массу остальных тел.

В теории гравитации Ньютона Масса выступает в другой форме - как источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное Массе тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна Массе тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой законом тяготения Ньютона:

где r - расстояние между телами, G - универсальная гравитационная постоянная, a m1 и m2 - Массы притягивающихся тел. Из формулы (3) легко получить формулу для веса Р тела массы m в поле тяготения Земли: Р = mg (4).

Здесь g = G*M/r 2 - ускорение свободного падения в гравитационном поле Земли, а r примерно равен R - радиусу Земли. Масса, определяемая соотношениями (3) и (4), называется гравитационной массой тела. В принципе ниоткуда не следует, что Масса, создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная Масса и гравитационная Масса пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея, установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности. Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной Масс была произведена Л. Этвешем, который нашел, что Массы совпадают с ошибкой ~ 10 -8 . В 1959-64 годах американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10 -11 , а в 1971 году советские физики В.Б. Брагинский и В.И. Панов - до 10 -12 .

Принцип эквивалентности позволяет наиболее естественно определять Массу тела взвешиванием.

Первоначально Масса рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчеркивает аддитивность Массы - Масса тела равна сумме Массы его частей. Масса однородного тела пропорциональна его объему, поэтому можно ввести понятие плотности - Массы единицы объема тела.

В классической физике считалось, что Масса тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения Массы (вещества), открытый М.В.Ломоносовым и А.Л.Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма Масс исходных компонентов равна сумме Масс конечных компонентов. Понятие Масса приобрело более глубокий смысл в механике специальной теории относительности А. Эйнштейна, рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ~ 3x10 10 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы дается соотношением:

При малых скоростях (v << c ) это соотношение переходит в Ньютоново соотношение р = mv . Поэтому величину m 0 называют массой покоя, а Массу движущейся частицы m определяют как зависящий от скорости коэффициент пропорциональности между p и v :

Имея в виду, в частности, эту формулу, говорят, что Масса частицы (тела) растет с увеличением ее скорости. Такое релятивистское возрастание Массы частицы по мере повышения ее скорости необходимо учитывать при конструировании ускорителей заряженных частиц высоких энергий. Масса покоя m 0 (Масса в системе отсчета, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определенными значениями m 0 , присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение Массы из уравнения движения (2) не эквивалентно определению Массы как коэффициента пропорциональности между импульсом и скоростью частицы, так как ускорение перестает быть параллельным вызвавшей его силе и Масса получается зависящей от направления скорости частицы.

Согласно теории относительности, Масса частицы m связана с ее энергией Е соотношением:

Масса покоя определяет внутреннюю энергию частицы - так называемую энергию покоя E 0 = m 0 с 2 . Таким образом, с Массой всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения Массы и закона сохранения энергии - они слиты в единый закон сохранения полной (т. е. включающей энергию покоя частиц) энергии. Приближенное разделение на закон сохранения энергии и закон сохранения Массы возможно лишь в классической физике, когда скорости частиц малы (v << c ) и не происходят процессы превращения частиц.

В релятивистской механике Масса не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи) D Е , который соответствует Массе D m = D E/с 2 . Поэтому Масса составной частицы меньше суммы Масс образующих его частиц на величину D E/с 2 (так называемый дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях. Например, Масса дейтрона (d ) меньше суммы Масс протона (p ) и нейтрона (n ); дефект Масс D m связан с энергией Е g гамма-кванта ( g ), рождающегося при образовании дейтрона: р + n -> d + g , E g = D mc 2 . Дефект Массы, возникающий при образовании составной частицы, отражает органическую связь Массы и энергии.

Единицей Массы в СГС системе единиц служит грамм , а в Международной системе единиц СИ - килограмм . Масса атомов и молекул обычно измеряется в атомных единицах массы. Масса элементарных частиц принято выражать либо в единицах Массы электрона m e , либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, Масса электрона составляет 0,511 Мэв, Масса протона - 1836,1 m e , или 938,2 Мэв и т. д.

Природа Массы - одна из важнейших нерешенных задач современной физики. Принято считать, что Масса элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория Массы еще не создана. Не существует также теории, объясняющей, почему Масса элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике Масса тела, создающего гравитационное поле, определяет так называемый гравитационный радиус тела R гр = 2GM/c 2 . Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом R =. Звезды таких размеров будут невидимы; поэтому их назвали "черными дырами".

Чаще всего в нашей повседневной жизни слово “масса” мы используем как синоним веса. Если мы говорим о массе тела, то подразумеваем именно вес человека. Несколько реже мы употребляем его также в других значениях. На самом деле это довольно широкое понятие, определение которого следует знать каждому. Поэтому в данной статье мы расскажем, что такое масса и в каких единицах она измеряется.

Масса: определение

В переводе с греческого языка “масса” означает “кусок теста”. В своем основном значении, которое мы употребляем чаще всего, слово подразумевает одну из главных величин в физике. Изначально данная физическая величина обозначала количество вещества в объекте. До девятнадцатого столетия считалось, что вес и инертность физического объекта зависели именно от нее.

Слово имеет и другие значения. Например, массой называют также смесь для приготовления чего-либо (шоколадная масса). Кроме того, в разговорной речи можно часто встретить такое определение слова, как большое количество. К примеру, говорят “масса людей” или “масса продуктов”.

Принцип эквивалентности массы

В природе масса проявляется разными способами. Привычное нам значение массы как синонима веса проявляется пассивной гравитационной массой. Она передает силу, с которой происходит взаимодействие тела с внешними гравитационными полями. Она измеряется посредством взвешивания и используется в сегодняшней метрологии. Активная гравитационная масса является показателем созданного самим телом гравитационного поля. Данное понятие относится к Закону всемирного тяготения. И, наконец, инертная масса показывает инертность тела. О ней можно прочесть во втором законе Ньютона. Важно добавить, что инертная и гравитационная массы равны.

Принцип эквивалентности масс рассматривает действия равноускоренного движения и гравитации, которые мы можем испытывать на себе ежедневно. Так, принцип эквивалентности понятным образом можно объяснить на примере лифта.

Наверняка каждый при передвижении на скоростном лифте испытывал непривычные ощущения относительно изменения собственного веса. Когда лифт поднимается вверх, кажется, будто тело стало тяжелым, и наоборот, когда он трогается вниз, создается впечатление, что земля уходит из-под ног. Это и есть эффект принципа эквивалентности массы. Двигаясь вверх, лифт обретает ускорение, дополняемое ускорением свободного падения в неинерциальной системе отсчета. Таким образом, вес тела увеличивается. Затем, набрав нужную скорость, лифт приходит к равномерному движению, в связи с чем вес возвращается в привычное состояние. Получается, что ускорение обладает действием, характерным для гравитации.