Погрешность измерения – это отклонение результата измерений от истинного значения измеряемой величины. Чем меньше погрешность, тем выше точность. Виды погрешностей представлены на рис. 11.

Систематическая погрешность – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. К систематическим относятся, например, погрешности от несоответствия действительного значения меры, с помощью которой выполнялись измерения, ее номинальному значению (погрешности показания прибора при неправильной градуировке шкалы).

Систематические погрешности могут быть изучены опытным путем и исключены из результатов измерений путем введения соответствующих поправок.

Поправка – значение величины, одноименной с измеряемой, прибавляемое к полученному при измерениях значению с целью исключения систематической погрешности.

Случайная погрешность – это составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Например, погрешности вследствие вариации показаний измерительного прибора, погрешности округления или отсчитывания показаний прибора, колебаний температуры в процессе измерения и т.д. Их нельзя установить заранее, но их влияние можно уменьшить путем многократных повторных измерений одной величины и обработкой опытных данных на основе теории вероятности и математической статистики.

К грубым погрешностям (промахам) относятся случайные погрешности, значительно превосходящие погрешности, ожидаемые при данных условиях измерения. Например, неправильный отсчет по шкале прибора, неправильная установка измеряемой детали в процессе измерения и т.д. Грубые погрешности не принимаются во внимание и исключаются из результатов измерения, т.к. являются результатом просчета.

Рис.11. Классификация погрешностей

Абсолютная погрешность – погрешность измерения, выраженная в единицах измеряемой величины. Абсолютную погрешность определяют по формуле.

= изм. – , (1.5)

где изм. - измеренное значение; - истинное (действительное) значение измеряемой величины.

Относительная погрешность измерения – отношение абсолютной погрешности к истинному значению физической величины (ФВ):

= или 100% (1.6)

На практике вместо истинного значения ФВ используют действительное значение ФВ, под которым подразумевают значение, отличающееся от истинного так мало, что для данной конкретной цели этим отличием можно пренебречь.

Приведенная погрешность – определяется как отношение абсолютной погрешности к нормирующему значению измеряемой физической величины, то есть:



, (1.7)

где X N – нормирующее значение измеряемой величины.

Нормирующее значение X N выбирают в зависимости от вида и характера шкалы прибора. Это значение принимают равным:

Конечному значению рабочей части шкалы. X N = X К , если нулевая отметка – на краю или вне рабочей части шкалы (равномерная шкала рис.12, а - X N = 50; рис. 12, б - X N = 55; степенная шкала - X N = 4 на рис.12, е );

Сумме конечных значений шкалы (без учета знака), если нулевая отметка – внутри шкалы (рис.12, в - X N = 20 + 20 = 40; рис.12, г - X N = 20 + 40 = 60);

Длине шкалы, если она существенно неравномерна (рис.12, д ). В этом случае, поскольку длина выражается в миллиметрах, то абсолютная погрешность выражается также в миллиметрах.

Рис. 12. Виды шкал

Погрешность измерения является результатом наложения элементарных ошибок, вызываемых различными причинами. Рассмотрим отдельные составляющие суммарной погрешности измерений.

Методическая погрешность обусловлена несовершенством метода измерения, например, неправильно выбранной схемой базирования (установки) изделия, неправильно выбранной последовательностью проведения измерений и т.п. Примерами методической погрешности являются:

- Погрешность отсчитывания – возникает из-за недостаточно точного отсчитывания показаний прибора и зависит от индивидуальных способностей наблюдателя.

- Погрешность интерполяции при отсчитывании – происходит от недостаточно точной оценки на глаз доли деления шкалы, соответствующей положению указателя.

- Погрешность от параллакса возникает вследствие визирования (наблюдения) стрелки, расположенной на некотором расстоянии от поверхности шкалы в направлении не перпендикулярном поверхности шкалы (рис. 13).

- Погрешность от измерительного усилия возникают из-за контактных деформаций поверхностей в месте соприкосновения поверхностей измерительного средства и изделия; тонкостенных деталей; упругих деформаций установочного оборудования, например, скоб, стоек или штативов.


Рис.13. Схема возникновения погрешности от параллакса.

Погрешность от параллакса n прямопропорциональна расстоянию h указателя 1 от шкалы 2 и тангенсу угла φ линии зрения наблюдателя к поверхности шкалы n = h × tg φ (рис. 13).

Инструментальная погрешность – определяется погрешностью применяемых средств измерения, т.е. качеством их изготовления. Примером инструментальной погрешности является погрешность от перекоса.

Погрешность от перекоса возникает в приборах, в конструкции которых не соблюден принцип Аббе, состоящий в том, что линия измерения должная являться продолжением линии шкалы, например перекос рамки штангенциркуля, изменяет расстояние между губками 1 и 2 (рис. 14).

Погрешность определения измеряемого размера из-за перекоса пер. = l × cosφ . При выполнении принципа Аббе l × cosφ = 0 соответственно пер . = 0.

Субъективные погрешности связаны с индивидуальными особенностями оператора. Как правило, эта погрешность возникает из-за ошибок в отсчете показаний и неопытности оператора.

Рассмотренные выше разновидности инструментальной, методической и субъективной погрешностей вызывают появление систематических и случайных погрешностей, из которых складывается суммарная погрешность измерения. Они также могут приводить к грубым погрешностям измерений. В суммарную погрешность измерения могут входить погрешности, обусловленные влиянием условий измерений. К ним относятся основные и дополнительные погрешности.

Рис.14. Погрешность измерения от перекоса губок штангенциркуля.

Основная погрешность – это погрешность средства измерения при нормальных условиях эксплуатации. Как правило, нормальными условиями эксплуатации являются: температура 293 ± 5 К или 20 ± 5°С, относительная влажность воздуха 65 ± 15% при 20°С, напряжение в сети питания 220 В ± 10% с частотой 50 Гц ± 1%, атмосферное давление от 97,4 до 104 КПа, отсутствие электрических и магнитных полей.

В рабочих условиях, зачастую отличающихся от нормальных более широким диапазоном влияющих величин, появляется дополнительная погрешность средств измерений.

Дополнительная погрешность возникает в результате нестабильности режима работы объекта, электромагнитных наводок, колебания параметров источников питания, наличия влаги, ударов и вибраций, температуры и т.п.

Например, отклонение температуры от нормального значения +20°С приводит к изменению длины деталей измерительных средств и изделий. Если невозможно выполнить требования к нормальным условиям, то в результат линейных измерений следует вводить температурную поправку DХ t , определяемую по формуле:

DХ t = Х ИЗМ .. [α 1 (t 1 -20)- α 2 (t 2 -20)] (1.8)

где Х ИЗМ . - измеряемый размер; α 1 и α 2 - коэффициенты линейного расширения материалов измерительного средства и изделия; t 1 и t 2 - температуры измерительных средств и изделия.

Дополнительную погрешность нормируют в виде коэффициента, указывающего «на сколько» или «во сколько» изменяется погрешность при отклонении номинального значения. Например, указание, что температурная погрешность вольтметра составляет ±1% на 10°С, означает, что при изменении среды на каждые 10°С добавляется дополнительная погрешность 1%.

Таким образом, повышение точности измерения размеров добиваются за счет уменьшения влияния отдельных погрешностей на результат измерения. Например, нужно выбирать наиболее точные приборы, устанавливать их на ноль (размер) по концевым мерам длины высокого разряда, поручать измерения опытным специалистам и т.д.

Статические погрешности являются постоянными, не изменяющимися в процессе измерения, например неправильная установка начала отсчета, неправильная настройка СИ.

Динамические погрешности являются переменными в процессе измерения; они могут монотонно убывать, возрастать или изменяться периодически.

На каждое средство измерений погрешность приводится только в какой-то одной форме.

Если погрешность СИ при неизменных внешних условиях постоянна во всем диапазоне измерений (задается одним числом), то

D = ± а . (1.9)

Если погрешность меняется в указанном диапазоне (задается линейной зависимостью), то

D = ± (а + bx) (1.10)

При D = ± а погрешность называется аддитивной , а при D =± (а+bx) мультипликативной .

Если погрешность выражается в виде функции D = f(x) , то она называется нелинейной .

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. Точность измерения не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Вследствие погрешностей, присущих средству измерений, выбранному методу и методике измерений, отличия внешних условий, в которых выполняется измерение, от установленных, и других причин результат практически каждого измерения отягощен погрешностью. Эта погрешность вычисляется или оценивается и приписывается полученному результату.

Погрешность результата измерений (кратко — погрешность измерений) — отклонение результата измерения от истинного значения измеряемой величины.

Истинное значение величины вследствие наличия погрешностей остается неизвестным. Его применяют при решении теоретических задач метрологии. На практике пользуются действительным значением величины, которое заменяет истинное значение.

Погрешность измерения (Δх) находят по формуле:

x = x изм. - x действ. (1.3)

где х изм. — значение величины, полученное на основании измерений; х действ. — значение величины, принятое за действительное.

За действительное значение при однократных измерениях нередко принимают значение, полученное с помощью образцового средства измерений, при многократных измерениях — среднее арифметическое из значений отдельных измерений, входящих в данный ряд.

Погрешности измерения могут быть классифицированы по следующим признакам:

По характеру проявления — систематические и случайные;

По способу выражения — абсолютные и относительные;

По условиям изменения измеряемой величины — статические и динамические;

По способу обработки ряда измерений — средние арифметические и средние квадратические;

По полноте охвата измерительной задачи — частные и полные;

По отношению к единице физической величины — погрешности воспроизведения единицы, хранения единицы и передачи размера единицы.

Систематическая погрешность измерения (кратко — систематическая погрешность) — составляющая погрешности результата измерения, остающаяся постоянной для данного ряда измерений или же закономерно изменяющаяся при повторных измерениях одной и той же физической величины.

По характеру проявления систематические погрешности подразделяются на постоянные, прогрессивные и периодические. Постоянные систематические погрешности (кратко — постоянные погрешности) — погрешности, длительное время сохраняющие свое значение (например, в течение всей серии измерений). Это наиболее часто встречающийся вид погрешности.

Прогрессивные систематические погрешности (кратко — прогрессивные погрешности) — непрерывно возрастающие или убывающие погрешности (например, погрешности от износа измерительных наконечников, контактирующих в процессе шлифования с деталью при контроле ее прибором активного контроля).


Периодическая систематическая погрешность (кратко — периодическая погрешность) — погрешность, значение которой является функцией времени или функцией перемещения указателя измерительного прибора (например, наличие эксцентриситета в угломерных приборах с круговой шкалой вызывает систематическую погрешность, изменяющуюся по периодическому закону).

Исходя из причин появления систематических погрешностей, различают инструментальные погрешности, погрешности метода, субъективные погрешности и погрешности вследствие отклонения внешних условий измерения от установленных методиками.

Инструментальная погрешность измерения (кратко — инструментальная погрешность) является следствием ряда причин: износ деталей прибора, излишнее трение в механизме прибора, неточное нанесение штрихов на шкалу, несоответствие действительного и номинального значений меры и др.

Погрешность метода измерений (кратко — погрешность метода) может возникнуть из-за несовершенства метода измерений или допущенных его упрощений, установленных методикой измерений. Например, такая погрешность может быть обусловлена недостаточным быстродействием применяемых средств измерений при измерении параметров быстропротекающих процессов или неучтенными примесями при определении плотности вещества по результатам измерения его массы и объема.

Субъективная погрешность измерения (кратко — субъективная погрешность) обусловлена индивидуальными погрешностями оператора. Иногда эту погрешность называют личной разностью. Она вызывается, например, запаздыванием или опережением принятия оператором сигнала.

Погрешность вследствие отклонения (в одну сторону) внешних условий измерения от установленных методикой измерения приводит к возникновению систематической составляющей погрешности измерения.

Систематические погрешности искажают результат измерения, поэтому они подлежат исключению, насколько это возможно, путем введения поправок или юстировкой прибора с доведением систематических погрешностей до допустимого минимума.

Неисключенная систематическая погрешность (кратко — неисключенная погрешность) — это погрешность результата измерений, обусловленная погрешностью вычисления и введения поправки на действие систематической погрешности, или небольшой систематической погрешностью, поправка на действие которой не введена вследствие малости.

Иногда этот вид погрешности называют неисключенными остатками систематической погрешности (кратко — неисключенные остатки). Например, при измерении длины штрихового метра в длинах волн эталонного излучения выявлено несколько неисключенных систематических погрешностей (i): из-за неточного измерения температуры — 1 ; из-за неточного определения показателя преломления воздуха — 2 , из-за неточного значения длины волны — 3 .

Обычно учитывают сумму неисключенных систематических погрешностей (устанавливают их границы). При числе слагаемых N ≤ 3 границы неисключенных систематических погрешностей вычисляют по формуле

При числе слагаемых N ≥ 4 для вычислений используют формулу

(1.5)

где k — коэффициент зависимости неисключенных систематических погрешностей от выбранной доверительной вероятности Р при их равномерном распределении. При Р = 0,99, k = 1,4, при Р = 0,95, k = 1,1.

Случайная погрешность измерения (кратко — случайная погрешность) — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии измерений одного и того же размера физической величины. Причины случайных погрешностей: погрешности округления при отсчете показаний, вариация показаний, изменение условий измерений случайного характера и др.

Случайные погрешности вызывают рассеяние результатов измерений в серии.

В основе теории погрешностей лежат два положения, подтверждаемые практикой:

1. При большом числе измерений случайные погрешности одинакового числового значения, но разного знака, встречаются одинаково часто;

2. Большие (по абсолютному значению) погрешности встречаются реже, чем малые.

Из первого положения следует важный для практики вывод: при увеличении числа измерений случайная погрешность результата, полученного из серии измерений, уменьшается, так как сумма погрешностей отдельных измерений данной серии стремится к нулю, т. е.

(1.6)

Например, в результате измерений получен ряд значений электрического сопротивления (в которые введены поправки на действия систематических погрешностей): R 1 = 15,5 Ом, R 2 = 15,6 Ом, R 3 = 15,4 Ом, R 4 = 15,6 Ом и R 5 = 15,4 Ом. Отсюда R = 15,5 Ом. Отклонения от R (R 1 = 0,0; R 2 = +0,1 Ом, R 3 = -0,1 Ом, R 4 = +0,1 Ом и R 5 = -0,1 Ом) представляют собой случайные погрешности отдельных измерений в данной серии. Нетрудно убедиться, что сумма R i = 0,0. Это свидетельствует о том, что погрешности отдельных измерений данного ряда вычислены правильно.

Несмотря на то, что с увеличением числа измерений сумма случайных погрешностей стремится к нулю (в данном примере она случайно получилась равной нулю), обязательно производится оценка случайной погрешности результата измерений. В теории случайных величин характеристикой рассеяния значений случайной величины служит дисперсия о2. "|/о2 = а называют средним квадратическим отклонением генеральной совокупности или стандартным отклонением.

Оно более удобно, чем дисперсия, так как его размерность совпадает с размерностью измеряемой величины (например, значение величины получено в вольтах, среднее квадратическое отклонение тоже будет в вольтах). Так как в практике измерений имеют дело с термином «погрешность», для характеристики ряда измерений следует применять производный от него термин «средняя квадратическая погрешность». Характеристикой ряда измерений может служить средняя арифметическая погрешность или размах результатов измерений.

Размах результатов измерений (кратко — размах) — алгебраическая разность наибольшего и наименьшего результатов отдельных измерений, образующих ряд (или выборку) из n измерений:

R n = X max - Х min (1.7)

где R n — размах; X max и Х min — наибольшее и наименьшее значения величины в данном ряду измерений.

Например, из пяти измерений диаметра d отверстия значения R 5 = 25,56 мм и R 1 = 25,51 мм оказались максимальным и минимальным его значением. В этом случае R n = d 5 — d 1 = 25,56 мм — 25,51 мм = 0,05 мм. Это означает, что остальные погрешности данного ряда менее 0,05 мм.

Средняя арифметическая погрешность отдельного измерения в серии (кратко — средняя арифметическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из n равноточных независимых измерений, вычисляется по формуле

(1.8)

где Х і — результат і-го измерения, входящего в серию; х — среднее арифметическое из n значений величины: |Х і - X| — абсолютное значение погрешности i-го измерения; r — средняя арифметическая погрешность.

Истинное значение средней арифметической погрешности р определяется из соотношения

р = lim r, (1.9)

При числе измерений n > 30 между средней арифметической (r) и средней квадратической (s) погрешностями существуют соотношения

s = 1,25 r; r и= 0,80 s. (1.10)

Преимущество средней арифметической погрешности — простота ее вычисления. Но все же чаще определяют среднюю квадратическую погрешность.

Средняя квадратическая погрешность отдельного измерения в серии (кратко — средняя квадратическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из п равноточных независимых измерений, вычисляемая по формуле

(1.11)

Средняя квадратическая погрешность для генеральной выборки о, являющаяся статистическим пределом S, может быть вычислена при /і-мх > по формуле:

Σ = lim S (1.12)

В действительности число измерений всегда ограничено, поэтому вычисляется не σ, а ее приближенное значение (или оценка), которым является s. Чем больше п, тем s ближе к своему пределу σ.

При нормальном законе распределения вероятность того, что погрешность отдельного измерения в серии не превзойдет вычисленную среднюю квадратическую погрешность, невелика: 0,68. Следовательно, в 32 случаях из 100 или 3 случаях из 10 действительная погрешность может быть больше вычисленной.


Рисунок 1.2 Уменьшение значения случайной погрешности результата многократного измерения при увеличении числа измерений в серии

В серии измерений существует зависимость между средней квадратической погрешностью отдельного измерения s и средней квадратической погрешностью арифметического среднего S x:

которую нередко называют «правилом У n». Из этого правила следует, что погрешность измерений вследствие действия случайных причин может быть уменьшена в уn раз, если выполнять n измерений одного размера какой-либо величины, а за окончательный результат принимать среднее арифметическое значение (рис. 1.2).

Выполнение не менее 5 измерений в серии дает возможность уменьшить влияние случайных погрешностей более чем в 2 раза. При 10 измерениях влияние случайной погрешности уменьшается в 3 раза. Дальнейшее увеличение числа измерений не всегда экономически целесообразно и, как правило, осуществляется лишь при ответственных измерениях, требующих высокой точности.

Средняя квадратическая погрешность отдельного измерения из ряда однородных двойных измерений S α вычисляется по формуле

(1.14)

где x" i и х"" i — і-ые результаты измерений одного размера величины при прямом и обратном направлениях одним средством измерений.

При неравноточных измерениях среднюю квадратическую погрешность арифметического среднего в серии определяют по формуле

(1.15)

где p i — вес і-го измерения в серии неравноточных измерений.

Среднюю квадратическую погрешность результата косвенных измерений величины Y, являющейся функцией Y = F (X 1 , X 2 , X n), вычисляют по формуле

(1.16)

где S 1 , S 2 , S n — средние квадратические погрешности результатов измерений величин X 1 , X 2 , X n .

Если для большей надежности получения удовлетворительного результата проводят несколько серий измерений, среднюю квадратическую погрешность отдельного измерения из m серий (S m) находят по формуле

(1.17)

Где n — число измерений в серии; N — общее число измерений во всех сериях; m — число серий.

При ограниченном числе измерений часто необходимо знать погрешность средней квадратической погрешности. Для определения погрешности S, вычисляемой по формуле (2.7), и погрешности S m , вычисляемой по формуле (2.12), можно воспользоваться следующими выражениями

(1.18)

(1.19)

где S и S m — средние квадратические погрешности соответственно S и S m .

Например, при обработке результатов ряда измерений длины х получены

= 86 мм 2 при n = 10,

= 3,1 мм

= 0,7 мм или S = ±0,7 мм

Значение S = ±0,7 мм означает, что из-за погрешности вычисления s находится в пределах от 2,4 до 3,8 мм, следовательно, десятые доли миллиметра здесь ненадежны. В рассмотренном случае надо записать: S = ±3 мм.

Чтобы иметь большую уверенность в оценке погрешности результата измерений, вычисляют доверительную погрешность или доверительные границы погрешности. При нормальном законе распределения доверительные границы погрешности вычисляют как ±t-s или ±t-s x , где s и s x — средние квадратические погрешности соответственно отдельного измерения в серии и среднего арифметического; t — число, зависящее от доверительной вероятности Р и числа измерений n.

Важным понятием является надежность результата измерений (α), т.е. вероятность того, что искомое значение измеряемой величины попадет в данный доверительный интервал.

Например, при обработке деталей на станках в устойчивом технологическом режиме распределение погрешностей подчиняется нормальному закону. Предположим, что установлен допуск на длину детали, равный 2а. В этом случае доверительным интервалом, в котором находится искомое значение длины детали а, будет (а - а, а + а).

Если 2a = ±3s, то надежность результата a = 0,68, т. е. в 32 случаях из 100 следует ожидать выхода размера детали за допуск 2а. При оценивании качества детали по допуску 2a = ±3s надежность результата составит 0,997. В этом случае можно ожидать выхода за установленный допуск только трех деталей из 1000. Однако увеличение надежности возможно лишь при уменьшении погрешности длины детали. Так, для повышения надежности с a = 0,68 до a = 0,997 погрешность длины детали необходимо уменьшить в три раза.

В последнее время получил широкое распространение термин «достоверность измерений». В некоторых случаях он необоснованно применяется вместо термина «точность измерений». Например, в некоторых источниках можно встретить выражение «установление единства и достоверности измерений в стране». Тогда как правильнее сказать «установление единства и требуемой точности измерений». Достоверность нами рассматривается как качественная характеристика, отражающая близость к нулю случайных погрешностей. Количественно она может быть определена через недостоверность измерений.

Недостоверность измерений (кратко — недостоверность)— оценка несовпадения результатов в серии измерений вследствие влияния суммарного воздействия случайных погрешностей (определяемых статистическими и нестатистическими методами), характеризуемая областью значений, в которой находится истинное значение измеряемой величины.

В соответствии с рекомендациями Международного бюро мер и весов недостоверность выражается в виде суммарной средней квадратической погрешности измерений — Su включающей среднюю квадратическую погрешность S (определяемую статистическими методами) и среднюю квадратическую погрешность u (определяемую нестатистическими методами), т.е.

(1.20)

Предельная погрешность измерения (кратко — предельная погрешность) — максимальная погрешность измерения (плюс, минус), вероятность которой не превышает значение Р, при этом разность 1 - Р незначительная.

Например, при нормальном законе распределения вероятность появления случайной погрешности, равной ±3s, составляет 0,997, а разность 1-Р = 0,003 незначительна. Поэтому во многих случаях доверительную погрешность ±3s, принимают за предельную, т.е. пр = ±3s. В случае необходимости пр может иметь и другие соотношения с s при достаточно большом Р (2s, 2,5s, 4s и т.д.).

В связи с тем, в стандартах ГСИ вместо термина «средняя квадратическая погрешность» применен термин «среднее квадратическое откланение», в дальнейших рассуждениях мы будим придерживаться именно этого термина.

Абсолютная погрешность измерения (кратко — абсолютная погрешность) — погрешность измерения, выраженная в единицах измеряемой величины. Так, погрешность Х измерения длины детали Х, выраженная в микрометрах, представляет собой абсолютную погрешность.

Не следует путать термины «абсолютная погрешность» и «абсолютное значение погрешности», под которым понимают значение погрешности без учета знака. Так, если абсолютная погрешность измерения равна ±2мкВ, то абсолютное значение погрешности будет 0,2 мкВ.

Относительная погрешность измерения (кратко — относительная погрешность) — погрешность измерения, выраженная в долях значения измеряемой величины или в процентах. Относительную погрешность δ находят из отношений:

(1.21)

Например, имеется действительное значение длины детали х = 10,00 мм и абсолютное значение погрешности х = 0,01мм. Относительная погрешность составит

Статическая погрешность — погрешность результата измерения, обусловленная условиями статического измерения.

Динамическая погрешность — погрешность результата измерения, обусловленная условиями динамического измерения.

Погрешность воспроизведения единицы — погрешность результата измерений, выполняемых при воспроизведении единицы физической величины. Так, погрешность воспроизведения единицы при помощи государственного эталона указывают в виде ее составляющих: неисключенной систематической погрешности, характеризуемой ее границей; случайной погрешностью, характеризуемой средним квадратическим отклонением s и нестабильностью за год ν.

Погрешность передачи размера единицы — погрешность результата измерений, выполняемых при передаче размера единицы. В погрешность передачи размера единицы входят неисключенные систематические погрешности и случайные погрешности метода и средств передачи размера единицы (например, компаратора).

ПОГРЕШНОСТИ ИЗМЕРЕНИЙ ФИЗИЧЕСКИХ ВЕЛИЧИН И

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Измерением называют нахождение значений физических величин опытным путем с помощью специальных технических средств. Измерения бывают прямые и косвенные. При прямом измерении искомое значение физической величины находят непосредственно с помощью измерительных приборов (например, измерение размеров тел с помощью штангенциркуля). Косвенным называют измерение, при котором искомое значение физической величины находят на основании известной функциональной зависимости между измеряемой величиной и величинами, подвергаемыми прямым измерениям. Например, при определении объема V цилиндра измеряют его диаметр D и высоту Н, а затем по формуле p D 2 /4 вычисляют его объем.

Вследствие неточности измерительных приборов и трудности учета всех побочных явлений при измерениях неизбежно возникают погрешности измерений. Погрешностью или ошибкой измерения называют отклонение результата измерения от истинного значения измеряемой физической величины. Погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Классификация погрешностей измерений

Погрешности разделяют на три вида:

1) грубые или промахи,

2) систематические,

3) случайные .

Грубые погрешности - это ошибочные измерения, возникающие в результате небрежности отсчета по прибору, неразборчивости записи показаний. Например, запись результата 26,5 вместо 2,65; отсчет по шкале 18 вместо 13 и т.д. При обнаружении грубой ошибки результат данного измерения следует сразу отбросить, а само измерение повторить.

Систематические погрешности - ошибки, которые при повторных измерениях остаются постоянными или изменяются по определенному закону. Эти погрешности могут быть обусловлены неправильным выбором метода измерения, несовершенством или неисправностью приборов (например, измерения с помощью прибора, у которого смещен нуль). Для того, чтобы максимально исключить систематические погрешности, следует всегда тщательно анализировать метод измерений, сверять приборы с эталонами. В дальнейшем будем считать, что все систематические погрешности устранены, кроме тех, которые вызваны неточностью изготовления приборов и ошибкой отсчета. Эту погрешность будем называть аппаратурной.

Случайные погрешности - это ошибки, причина которых заранее не может быть учтена. Случайные погрешности зависят от несовершенства наших органов чувств, от непрерывного действия изменяющихся внешних условий (изменение температуры, давления, влажности, вибрация воздуха и т.д.). Случайные погрешности являются неустранимыми, они неизбежно присутствуют во всех измерениях, но их можно оценить, применяя методы теории вероятностей.

Обработка результатов прямых измерений

Пусть в результате прямых измерений физической величины получен ряд ее значений:

x 1 , x 2 , ... x n .

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

. (1)

Здесь x i – результат i–го измерения; n – число измерений. Случайная ошибка измерения может быть оценена величиной абсолютной погрешности D x, которую вычисляют по формуле

, (2)

где t(a ,n) – коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a . Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятного для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Таблица 1

Число

измерений n

Доверительная вероятность a

0,95

0,98

1,38

12,7

31,8

1,06

0,98

0,94

0,92

0,90

0,90

0,90

0,88

0,84

Из табл. 1 видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a . Практически выбирают a =0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a , используя числовую ось. Пусть среднее значение измеряемой величины (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от справа и слева. Полученный числовой интервал от (- D x) до (+ D x) называется доверительным интервалом . Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

Рис.1

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a .

Вычислив величину абсолютной погрешности D x по формуле (2), истинное значение x измеряемой физической величины можно записать в виде x= ±D x.

Для оценки точности измерения физической величины подсчитывают относительную погрешность , которую обычно выражают в процентах,

. (3)

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз.

2. Вычислить среднее арифметическое значение по формуле (1).

3. Задать доверительную вероятность a (обычно берут a =0.95).

4. По таблице 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (2) и сравнить ее с аппаратурной. Для дальнейших вычислений взять ту из них, которая больше.

6. По формуле (3) вычислить относительную ошибку e .

7. Записать окончательный результат

x= ±D x. с указанием относительной погрешности e и доверительной вероятности a .

Обработка результатов косвенных измерений

Пусть искомая физическая величина y связана с другими величинами x 1 , x 2 , ... x k некоторой функциональной зависимостью

Y=f(x 1 , x 2 , ... x k) (4)

Среди величин x 1 , x 2 , ... x k имеются величины, полученные при прямых измерениях, и табличные данные. Требуется определить абсолютную D y и относительную e погрешности величины y.

В большинстве случаев проще сначала вычислить относительную погрешность, а затем – абсолютную. Из теории вероятностей относительная погрешность косвенного измерения

. (5)

Здесь , где - частная производная функции по переменной x i, при вычислении которой все величины, кроме x i , считаются постоянными; D x i – абсолютная погрешность величины x i . Если x i получена в результате прямых измерений, то ее среднее значение и абсолютную погрешность D x вычисляют по формулам (1) и (2). Для всех измеренных величин x i задается одинаковая доверительная вероятность a . Если какие-либо из слагаемых, возводимых в квадрат, в выражении (5) меньше на порядок (в 10 раз) других слагаемых, то ими можно пренебречь. Это нужно учитывать при выборе табличных величин (p , g и др.), входящих в формулу относительной погрешности. Их значение надо выбрать такими, чтобы их относительная погрешность была на порядок меньше наибольшей относительной погрешности.

Запишем конечный результат:

y= ±D y.

Здесь – среднее значение косвенного измерения, полученное по формуле (4) при подстановке в нее средних величин x i ; D y= e .

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

.

Рассмотрим пример. Пусть необходимо вычислить объем цилиндра:

. (6)

Здесь D – диаметр цилиндра, H – его высота, измеренная штангенциркулем с ценой деления 0.1 мм. В результате многократных измерений найдем средние значения =10.0 мм и =40.0 мм. Относительную погрешность косвенного измерения объема цилиндра определяем по формуле

, (7)

где D D и D H – абсолютные ошибки прямых измерений диаметра и высоты. Их величины рассчитываем по формуле (2): D D=0.01 мм; D H=0.13 мм. Сравним вычисленные ошибки с аппаратурной, равной цене деления штангенциркуля. D D<0.1, поэтому в формуле (7) подставим вместо D D не 0.01 мм, а 0.1 мм.

Значение p нужно выбрать таким, чтобы относительной ошибкой Dp / p в формуле (7) можно было пренебречь. Из анализа измеренных величин и вычисленных абсолютных ошибок D D и D H видно, что наибольший вклад в относительную ошибку измерения объема вносит ошибка измерения высоты. Вычисление относительной ошибки высоты дает e H =0.01. Следовательно, значение p нужно взять 3.14. В этом случае Dp / p » 0.001 (Dp =3.142-3.14=0.002).

В абсолютной погрешности оставляют одну значащую цифру.

Примечания.

1. Если измерения производят один раз или результаты многократных измерений одинаковы, то за абсолютную погрешность измерений нужно взять аппаратурную погрешность, которая для большинства используемых приборов равна цене деления прибора (более подробно об аппаратурной погрешности см. в разделе “Измерительные приборы”).

2. Если табличные или экспериментальные данные приводятся без указания погрешности, то абсолютную погрешность таких чисел принимают равной половине порядка последней значащей цифры.

Действия с приближенными числами

Вопрос о различной точности вычисления очень важен, так как завышение точности вычисления приводит к большому объему ненужной работы. Студенты часто вычисляют искомую величину с точностью до пяти и более значащих цифр. Следует понимать, что эта точность излишняя. Нет никакого смысла вести вычисления дальше того предела точности, который обеспечивается точностью определения непосредственно измерявшихся величин. Проведя обработку измерений, часто не подсчитывают ошибки отдельных результатов и судят об ошибке приближенного значения величины, указывая количество верных значащих цифр в этом числе.

Значащими цифрами приближенного числа называются все цифры, кроме нуля, а также нуль в двух случаях:

1) когда он стоит между значащими цифрами (например, в числе 1071 – четыре значащих цифры);

2) когда он стоит в конце числа и когда известно, что единица соответствующего разряда в данном числе не имеется. Пример. В числе 5,20 три значащих цифры, и это означает, что при измерении мы учитывали не только единицы, но и десятые, и сотые, а в числе 5,2 – только две значащих цифры, и это значит, что мы учитывали только целые и десятые.

Приближенные вычисления следует производить с соблюдением следующих правил.

1. При сложении и вычитании в результате сохраняют столько десятичных знаков, сколько их содержится в числе с наименьшим количеством десятичных знаков. Например: 0,8934+3,24+1,188=5,3214 » 5,32. Сумму следует округлить до сотых долей, т.е. принять равной 5,32.

2. При умножении и делении в результате сохраняют столько значащих цифр, сколько их имеет приближенное число с наименьшим количеством значащих цифр. Например, необходимо перемножить 8,632 ´ 2,8 ´ 3,53. Вместо этого выражения следует вычислять

8,6 ´ 2,8 ´ 3,5 » 81.

При вычислении промежуточных результатов сохраняют на одну цифру больше, чем рекомендуют правила (так называемая запасная цифра). В окончательном результате запасная цифра отбрасывается. Для уточнения значения последней значащей цифры результата нужно вычислить за ней цифру. Если она окажется меньше пяти, ее следует просто отбросить, а если пять или больше пяти, то, отбросив ее, следует предыдущую цифру увеличить на единицу. Обычно в абсолютной ошибке оставляют одну значащую цифру, а измеренную величину округляют до того разряда, в котором находится значащая цифра абсолютной ошибки.

3. Результат расчета значений функций x n , , lg(x ) некоторого приближенного числа x должен содержать столько значащих цифр, сколько их имеется в числе x . Например: .

Построение графиков

Результаты, полученные в ходе выполнения лабораторной работы, часто важно и необходимо представить графической зависимостью. Для того, чтобы построить график, нужно на основании проделанных измерений составить таблицу, в которой каждому значению одной из величин соответствует определенное значение другой.

Графики выполняют на миллиметровой бумаге. При построении графика значения независимой переменной следует откладывать на оси абсцисс, а значения функции – на оси ординат. Около каждой оси нужно написать обозначение изображаемой величины и указать, в каких единицах она измеряется (рис. 2).

Рис.2

Для правильного построения графика важным является выбор масштаба: кривая занимает весь лист, и размеры графика по длине и высоте получаются приблизительно одинаковыми. Масштаб должен быть простым. Проще всего, если единица измеренной величины (0,1;10;100 и т.д.) соответствует 1, 2 или 5 см. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями откладываемых величин (рис. 2).

Каждое полученное экспериментальное значение наносится на график достаточно заметным образом: точкой, крестиком и т.д.

Погрешности указывают для измеряемых величин в виде отрезков длиной в доверительный интервал, в центре которых расположены экспериментальные точки. Так как указание погрешностей загромождает график, то делается это лишь тогда, когда информация о погрешностях действительно нужна: при построении кривой по экспериментальным точкам, при определении ошибок с помощью графика, при сравнении экспериментальных данных с теоретической кривой (рисунок 2). Часто достаточно указать погрешность для одной или нескольких точек.

Через экспериментальные точки необходимо проводить плавную кривую. Нередко экспериментальные точки соединяют простой ломаной линией. Тем самым как бы указывается, что величины каким-то скачкообразным образом зависят друг от друга. А это является маловероятным. Кривая должна быть плавной и может проходить не через отмеченные точки, а близко к ним так, чтобы эти точки находились по обе стороны кривой на одинаковом от нее расстоянии. Если какая-либо точка сильно выпадает из графика, то это измерение следует повторить. Поэтому желательно строить график непосредственно во время опыта. Тогда график может служить для контроля и улучшения наблюдений.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И УЧЕТ ИХ ПОГРЕШНОСТЕЙ

Для прямых измерений физических величин применяют измерительные приборы. Любые измерительные приборы не дают истинного значения измеряемой величины. Это связано, во-первых, с тем, что невозможно точно отсчитать по шкале прибора измеряемую величину, во-вторых, с неточностью изготовления измерительных приборов. Для учета первого фактора вводится погрешность отсчета Δx o , для второго - допускаемая погрешность Δx д . Сумма этих погрешностей образует аппаратурную или абсолютную погрешность прибора Δx :

.

Допускаемую погрешность нормируют государственными стандартами и указывают в паспорте или описании прибора.

Погрешность отсчета обычно берут равной половине цены деления прибора, но для некоторых приборов (секундомер, барометр-анероид) - равной цене деления прибора (так как положение стрелки этих приборов изменяется скачками на одно деление) и даже нескольким делениям шкалы, если условия опыта не позволяют уверенно отсчитать до одного деления (например, при толстом указателе или плохом освещении). Таким образом, погрешность отсчета устанавливает сам экспериментатор, реально отражая условия конкретного опыта.

Если допускаемая погрешность значительно меньше ошибки отсчета, то ее можно не учитывать. Обычно абсолютная погрешность прибора берется равной цене деления шкалы прибора.

Измерительные линейки обычно имеют миллиметровые деления. Для измерения рекомендуется применять стальные или чертежные линейки со скосом. Допускаемая погрешность таких линеек составляет 0,1 мм и ее можно не учитывать, так как она значительно меньше погрешности отсчета, равной ± 0,5 мм. Допускаемая погрешность деревянных и пластмассовых линеек ± 1 мм.

Допускаемая погрешность измерения микрометра зависит от верхнего предела измерения и может составлять ± (3–4) мкм (для микрометров с диапазоном измерения 0–25 мм). За погрешность отсчета принимают половину цены деления. Таким образом, абсолютную погрешность микрометра можно брать равно цене деления, т.е. 0,01 мм.

При взвешивании допускаемая погрешность технических весов зависит от нагрузки и составляет при нагрузке от 20 до 200 г – 50 мг, при нагрузке меньше 20 г – 25 мг.

Погрешность цифровых приборов определяется по классу точности.