Материал из Википедии - свободной энциклопедии

Последовательность - это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе - отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

  • временные ряды как числовой, так и не числовой природы;
  • последовательности элементов метрического пространства
  • последовательности элементов функционального пространства
  • последовательности состояний систем управления и автоматов .

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение

Пусть задано некоторое множество X элементов произвольной природы. | Всякое отображение f\colon\mathbb{N}\to X множества натуральных чисел \mathbb{N} в заданное множество X называется последовательностью (элементов множества X).

Образ натурального числа n, а именно, элемент x_n=f(n), называется n-ым членом или элементом последовательности , а порядковый номер члена последовательности - её индексом.

Связанные определения

  • Подмножество f\left[\mathbb{N}\right] множества X, которое образовано элементами последовательности, называется носителем последовательности : пока индекс пробегает множество натуральных чисел, точка, «изображающая» последовательность, «перемещается» по носителю.
  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии

  • Не следует смешивать носитель последовательности и саму последовательность! Например, точка a\in X как одноточечное подмножество \{a\}\subset X является носителем стационарной последовательности вида a,a,a,\dots.
  • Любое отображение множества \mathbb{N} в себя также является последовательностью.
  • В математическом анализе важным понятием является предел числовой последовательности .

Обозначения

Последовательности вида

x_1,\quad x_2,\quad x_3,\quad\dots

принято компактно записывать при помощи круглых скобок:

(x_n) или (x_n)_{n=1}^{\infty}

иногда используются фигурные скобки:

\{x_n\}_{n=1}^{\infty}

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

(x_n)_{n=1}^N,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также

Напишите отзыв о статье "Последовательность"

Примечания

Литература

  • Последовательность // Энциклопедический словарь юного математика / Сост. А. П. Савин. - М .: Педагогика , 1985. - С. 242-245. - 352 с.

Отрывок, характеризующий Последовательность

В числе перебираемых лиц для предмета разговора общество Жюли попало на Ростовых.
– Очень, говорят, плохи дела их, – сказала Жюли. – И он так бестолков – сам граф. Разумовские хотели купить его дом и подмосковную, и все это тянется. Он дорожится.
– Нет, кажется, на днях состоится продажа, – сказал кто то. – Хотя теперь и безумно покупать что нибудь в Москве.
– Отчего? – сказала Жюли. – Неужели вы думаете, что есть опасность для Москвы?
– Отчего же вы едете?
– Я? Вот странно. Я еду, потому… ну потому, что все едут, и потом я не Иоанна д"Арк и не амазонка.
– Ну, да, да, дайте мне еще тряпочек.
– Ежели он сумеет повести дела, он может заплатить все долги, – продолжал ополченец про Ростова.
– Добрый старик, но очень pauvre sire [плох]. И зачем они живут тут так долго? Они давно хотели ехать в деревню. Натали, кажется, здорова теперь? – хитро улыбаясь, спросила Жюли у Пьера.
– Они ждут меньшого сына, – сказал Пьер. – Он поступил в казаки Оболенского и поехал в Белую Церковь. Там формируется полк. А теперь они перевели его в мой полк и ждут каждый день. Граф давно хотел ехать, но графиня ни за что не согласна выехать из Москвы, пока не приедет сын.
– Я их третьего дня видела у Архаровых. Натали опять похорошела и повеселела. Она пела один романс. Как все легко проходит у некоторых людей!
– Что проходит? – недовольно спросил Пьер. Жюли улыбнулась.
– Вы знаете, граф, что такие рыцари, как вы, бывают только в романах madame Suza.
– Какой рыцарь? Отчего? – краснея, спросил Пьер.
– Ну, полноте, милый граф, c"est la fable de tout Moscou. Je vous admire, ma parole d"honneur. [это вся Москва знает. Право, я вам удивляюсь.]
– Штраф! Штраф! – сказал ополченец.
– Ну, хорошо. Нельзя говорить, как скучно!
– Qu"est ce qui est la fable de tout Moscou? [Что знает вся Москва?] – вставая, сказал сердито Пьер.
– Полноте, граф. Вы знаете!
– Ничего не знаю, – сказал Пьер.
– Я знаю, что вы дружны были с Натали, и потому… Нет, я всегда дружнее с Верой. Cette chere Vera! [Эта милая Вера!]
– Non, madame, [Нет, сударыня.] – продолжал Пьер недовольным тоном. – Я вовсе не взял на себя роль рыцаря Ростовой, и я уже почти месяц не был у них. Но я не понимаю жестокость…
– Qui s"excuse – s"accuse, [Кто извиняется, тот обвиняет себя.] – улыбаясь и махая корпией, говорила Жюли и, чтобы за ней осталось последнее слово, сейчас же переменила разговор. – Каково, я нынче узнала: бедная Мари Волконская приехала вчера в Москву. Вы слышали, она потеряла отца?
– Неужели! Где она? Я бы очень желал увидать ее, – сказал Пьер.
– Я вчера провела с ней вечер. Она нынче или завтра утром едет в подмосковную с племянником.
– Ну что она, как? – сказал Пьер.
– Ничего, грустна. Но знаете, кто ее спас? Это целый роман. Nicolas Ростов. Ее окружили, хотели убить, ранили ее людей. Он бросился и спас ее…
– Еще роман, – сказал ополченец. – Решительно это общее бегство сделано, чтобы все старые невесты шли замуж. Catiche – одна, княжна Болконская – другая.
– Вы знаете, что я в самом деле думаю, что она un petit peu amoureuse du jeune homme. [немножечко влюблена в молодого человека.]
– Штраф! Штраф! Штраф!
– Но как же это по русски сказать?..

Когда Пьер вернулся домой, ему подали две принесенные в этот день афиши Растопчина.
В первой говорилось о том, что слух, будто графом Растопчиным запрещен выезд из Москвы, – несправедлив и что, напротив, граф Растопчин рад, что из Москвы уезжают барыни и купеческие жены. «Меньше страху, меньше новостей, – говорилось в афише, – но я жизнью отвечаю, что злодей в Москве не будет». Эти слова в первый раз ясно ыоказали Пьеру, что французы будут в Москве. Во второй афише говорилось, что главная квартира наша в Вязьме, что граф Витгснштейн победил французов, но что так как многие жители желают вооружиться, то для них есть приготовленное в арсенале оружие: сабли, пистолеты, ружья, которые жители могут получать по дешевой цене. Тон афиш был уже не такой шутливый, как в прежних чигиринских разговорах. Пьер задумался над этими афишами. Очевидно, та страшная грозовая туча, которую он призывал всеми силами своей души и которая вместе с тем возбуждала в нем невольный ужас, – очевидно, туча эта приближалась.

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Последовательность

Последовательность - это набор элементов некоторого множества:

  • для каждого натурального числа можно указать элемент данного множества;
  • это число является номером элемента и обозначает позицию данного элемента в последовательности;
  • для любого элемента (члена) последовательности можно указать следующий за ним элемент последовательности.

Таким образом, последовательность оказывается результатом последовательного выбора элементов заданного множества. И, если любой набор элементов является конечным, и говорят о выборке конечного объёма, то последовательность оказывается выборкой бесконечного объёма.

Последовательность по своей природе - отображение, поэтому его не следует смешивать с множеством, которое «пробегает» последовательность.

В математике рассматривается множество различных последовательностей:

  • временные ряды как числовой, так и не числовой природы;
  • последовательности элементов метрического пространства
  • последовательности элементов функционального пространства
  • последовательности состояний систем управления и автоматов.

Целью изучения всевозможных последовательностей является поиск закономерностей, прогноз будущих состояний и генерация последовательностей.

Определение

Пусть задано некоторое множество элементов произвольной природы. | Всякое отображение множества натуральных чисел в заданное множество называется последовательностью (элементов множества ).

Образ натурального числа , а именно, элемент , называется -ым членом или элементом последовательности , а порядковый номер члена последовательности - её индексом.

Связанные определения

  • Если взять возрастающую последовательность натуральных чисел, то её можно рассматривать как последовательность индексов некоторой последовательности: если взять элементы исходной последовательности с соответствующими индексами (взятыми из возрастающей последовательности натуральных чисел), то можно снова получить последовательность, которая называется подпоследовательностью заданной последовательности.

Комментарии

  • В математическом анализе важным понятием является предел числовой последовательности .

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или

иногда используются фигурные скобки:

Допуская некоторую вольность речи, можно рассматривать и конечные последовательности вида

,

которые представляют собой образ начального отрезка последовательности натуральных чисел.

См. также


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Последовательность" в других словарях:

    ПОСЛЕДОВАТЕЛЬНОСТЬ. У И. В. Киреевского в статье «Девятнадцатый век» (1830) читаем: «От самого падения Римской империи до наших времен просвещение Европы представляется нам в постепенном развитии и в беспрерывной последовательности» (т. 1, с.… … История слов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, последовательности, мн. нет, жен. (книжн.). отвлеч. сущ. к последовательный. Последовательность каких нибудь явлений. Последовательность в смене приливов и отливов. Последовательность в рассуждениях. Толковый словарь Ушакова.… … Толковый словарь Ушакова

    Постоянство, преемственность, логичность; ряд, прогрессия, вывод, серия, вереница, череда, цепь, цепочка, каскад, эстафета; упорство, обоснованность, набор, методичность, расстановка, стройность, упорность, подпоследовательность, связь, очередь,… … Словарь синонимов

    ПОСЛЕДОВАТЕЛЬНОСТЬ, числа или элементы, расположенные в организованном порядке. Последовательности могут быть конечными (имеющие ограниченное число элементов) или бесконечными, как полная последовательность натуральных чисел 1, 2, 3, 4 ....… … Научно-технический энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2,..., xn,... или коротко {xi} … Современная энциклопедия

    Одно из основных понятий математики. Последовательность образуется элементами любой природы, занумерованными натуральными числами 1, 2, ..., n, ..., и записывается в виде x1, x2, ..., xn, ... или коротко {xn} … Большой Энциклопедический словарь

    Последовательность - ПОСЛЕДОВАТЕЛЬНОСТЬ, совокупность чисел (математических выражений и т.п.; говорят: элементов любой природы), занумерованных натуральными числами. Последовательность записывается в виде x1, x2, ..., xn, ... или коротко {xi}. … Иллюстрированный энциклопедический словарь

    ПОСЛЕДОВАТЕЛЬНОСТЬ, и, жен. 1. см. последовательный. 2. В математике: бесконечный упорядоченный набор чисел. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Англ. succession/sequence; нем. Konsequenz. 1. Порядок следования одного за другим. 2. Одно из основных понятий математики. 3. Качество правильного логического мышления, при к ром рассуждение свободно от внутренних противоречий по одному и тому… … Энциклопедия социологии

    Последовательность - «функция, определенная на множестве натуральных чисел, множество значений которой может состоять из элементов любой природы: чисел, точек, функций, векторов, множеств, случайных величин и др., занумерованных натуральными числами … Экономико-математический словарь

Книги

  • Выстраиваем последовательность. Котята. 2-3 года , . Игра "Котята" . Выстраиваем последовательность. 1 уровень. Серия" Дошкольное образование" . Весёлые котята решили позагорать на пляже! Но никак не могут поделить места. Помоги им…

Введение………………………………………………………………………………3

1.Теоретическая часть……………………………………………………………….4

Основные понятия и термины…………………………………………………....4

1.1 Виды последовательностей…………………………………………………...6

1.1.1.Ограниченные и неограниченные числовые последовательности…..6

1.1.2.Монотонность последовательностей…………………………………6

1.1.3.Бесконечно большие и бесконечно малые последовательности…….7

1.1.4.Свойства бесконечно малых последовательностей…………………8

1.1.5.Сходящиеся и расходящиеся последовательности и их свойства..…9

1.2Предел последовательности………………………………………………….11

1.2.1.Теоремы о пределах последовательностей……………………………15

1.3.Арифметическая прогрессия…………………………………………………17

1.3.1. Свойства арифметической прогрессии…………………………………..17

1.4Геометрическая прогрессия…………………………………………………..19

1.4.1. Свойства геометрической прогрессии…………………………………….19

1.5. Числа Фибоначчи……………………………………………………………..21

1.5.1 Связь чисел Фибоначчи с другими областями знаний…………………….22

1.5.2. Использование ряда чисел Фибоначчи для описания живой и неживой природы…………………………………………………………………………….23

2. Собственные исследования…………………………………………………….28

Заключение……………………………………………………………………….30

Список использованной литературы…………………………………………....31

Введение.

Числовые последовательности это очень интересная и познавательная тема. Эта тема встречается в заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ. Мне интересно узнать связь математических последовательностей с другими областями знаний.

Цель исследовательской работы: Расширить знания о числовой последовательности.

1. Рассмотреть последовательность;

2. Рассмотреть ее свойства;

3. Рассмотреть аналитическое задание последовательности;

4. Продемонстрировать ее роль в развитии других областей знаний.

5. Продемонстрировать использование ряда чисел Фибоначчи для описания живой и неживой природы.

1. Теоретическая часть.

Основные понятия и термины.

Определение. Числовая последовательность– функция вида y = f(x), x О N, где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f(n) или y1, y2,…, yn,…. Значения y1, y2, y3,… называют соответственно первым, вторым, третьим, … членами последовательности.

Число a называется пределом последовательности x = {x n }, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |x n - a| < ε.

Если число a есть предел последовательности x = {x n }, то говорят, что x n стремится к a, и пишут

.

Последовательность {yn} называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y1 < y2 < y3 < … < yn < yn+1 < ….

Последовательность {yn} называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y1 > y2 > y3 > … > yn > yn+1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

Арифметическая прогрессия- это последовательность {an}, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называют арифметической прогрессией, а число d – разностью арифметической прогрессии.

Таким образом, арифметическая прогрессия – это числовая последовательность {an}, заданная рекуррентно соотношениями

a1 = a, an = an–1 + d (n = 2, 3, 4, …)

Геометрическая прогрессия- это последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q.

Таким образом, геометрическая прогрессия – это числовая последовательность {bn}, заданная рекуррентно соотношениями

b1 = b, bn = bn–1 q (n = 2, 3, 4…).

1.1 Виды последовательностей.

1.1.1 Ограниченные и неограниченные последовательности.

Последовательность {bn} называют ограниченной сверху, если существует такое число М, что для любого номера n выполняется неравенство bn≤ M;

Последовательность {bn} называют ограниченной снизу, если существует такое число М, что для любого номера n выполняется неравенство bn≥ М;

Например:

1.1.2 Монотонность последовательностей.

Последовательность {bn} называют невозрастающие (неубывающей), если для любого номера n справедливо неравенство bn≥ bn+1 (bn ≤bn+1);

Последовательность {bn} называют убывающей (возрастающей), если для любого номера n справедливо неравенство bn> bn+1 (bn

Убывающие и возрастающие последовательности называют строго монотонными, невозрастающие- монотонными в широком смысле.

Последовательности, ограниченные одновременно сверху и снизу, называются ограниченными.

Последовательность всех этих типов носят общее название- монотонные.

1.1.3 Бесконечно большие и малые последовательности.

Бесконечно малая последовательность- это числовая функция или последовательность, которая стремится к нулю.

Последовательность an называется бесконечно малой, если

Функция называется бесконечно малой в окрестности точки x0, если ℓimx→x0 f(x)=0.

Функция называется бесконечно малой на бесконечности, если ℓimx→.+∞ f(x)=0 либо ℓimx→-∞ f(x)=0

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если ℓimx→.+∞ f(x)=а, то f(x) − a = α(x), ℓimx→.+∞ f((x)-a)=0.

Бесконечно большая последовательность- числовая функция или последовательность, которая стремится к бесконечности.

Последовательность an называется бесконечно большой, если

ℓimn→0 an=∞.

Функция называется бесконечно большой в окрестности точки x0, если ℓimx→x0 f(x)= ∞.

Функция называется бесконечно большой на бесконечности, если

ℓimx→.+∞ f(x)= ∞ либо ℓimx→-∞ f(x)= ∞ .

1.1.4 Свойства бесконечно малых последовательностей.

Сумма двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Разность двух бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Алгебраическая сумма любого конечного числа бесконечно малых последовательностей сама также является бесконечно малой последовательностью.

Произведение ограниченной последовательности на бесконечно малую последовательность есть бесконечно малая последовательность.

Произведение любого конечного числа бесконечно малых последовательностей есть бесконечно малая последовательность.

Любая бесконечно малая последовательность ограничена.

Если стационарная последовательность является бесконечно малой, то все её элементы, начиная с некоторого, равны нулю.

Если вся бесконечно малая последовательность состоит из одинаковых элементов, то эти элементы - нули.

Если {xn} - бесконечно большая последовательность, не содержащая нулевых членов, то существует последовательность {1/xn} , которая является бесконечно малой. Если же всё же {xn} содержит нулевые элементы, то последовательность {1/xn} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно малой.

Если {an} - бесконечно малая последовательность, не содержащая нулевых членов, то существует последовательность {1/an}, которая является бесконечно большой. Если же всё же {an}содержит нулевые элементы, то последовательность {1/an} всё равно может быть определена, начиная с некоторого номера n, и всё равно будет бесконечно большой.

1.1.5 Сходящиеся и расходящиеся последовательности и их свойства.

Сходящаяся последовательность- это последовательность элементов множества Х, имеющая предел в этом множестве.

Расходящаяся последовательность- это последовательность, не являющаяся сходящейся.

Всякая бесконечно малая последовательность является сходящейся. Её предел равен нулю.

Удаление любого конечного числа элементов из бесконечной последовательности не влияет ни на сходимость, ни на предел этой последовательности.

Любая сходящаяся последовательность ограничена. Однако не любая ограниченная последовательность сходится.

Если последовательность {xn} сходится, но не является бесконечно малой, то, начиная с некоторого номера, определена последовательность {1/xn}, которая является ограниченной.

Сумма сходящихся последовательностей также является сходящейся последовательностью.

Разность сходящихся последовательностей также является сходящейся последовательностью.

Произведение сходящихся последовательностей также является сходящейся последовательностью.

Частное двух сходящихся последовательностей определено, начиная с некоторого элемента, если только вторая последовательность не является бесконечно малой. Если частное двух сходящихся последовательностей определено, то оно представляет собой сходящуюся последовательность.

Если сходящаяся последовательность ограничена снизу, то никакая из её нижних граней не превышает её предела.

Если сходящаяся последовательность ограничена сверху, то её предел не превышает ни одной из её верхних граней.

Если для любого номера члены одной сходящейся последовательности не превышают членов другой сходящейся последовательности, то и предел первой последовательности также не превышает предела второй.

Функция a n =f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Числа a 1 ; a 2 ; a 3 ; a 4 ;…, образующие последовательность, называются членами числовой последовательности. Так a 1 =f (1); a 2 =f (2); a 3 =f (3); a 4 =f (4);…

Итак, члены последовательности обозначаются буквами с указанием индексов — порядковых номеров их членов: a 1 ; a 2 ; a 3 ; a 4 ;…, следовательно, a 1 — первый член последовательности;

a 2 - второй член последовательности;

a 3 - третий член последовательности;

a 4 - четвертый член последовательности и т.д.

Кратко числовую последовательность записывают так: a n =f (n) или {a n }.

Существуют следующие способы задания числовой последовательности:

1) Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

Пример 1 . Написать последовательность всех неотрицательных чисел, кратных числу 5.

Решение. Так как на 5 делятся все числа, оканчивающиеся на 0 или на 5, то последовательность запишется так:

0; 5; 10; 15; 20; 25; ...

Пример 2. Дана последовательность: 1; 4; 9; 16; 25; 36; ... . Задайте ее словесным способом.

Решение. Замечаем, что 1=1 2 ; 4=2 2 ; 9=3 2 ; 16=4 2 ; 25=5 2 ; 36=6 2 ; … Делаем вывод: дана последовательность, состоящая из квадратов чисел натурального ряда.

2) Аналитический способ. Последовательность задается формулой n-го члена: a n =f (n). По этой формуле можно найти любой член последовательности.

Пример 3. Известно выражение k-го члена числовой последовательности: a k = 3+2·(k+1). Вычислите первые четыре члена этой последовательности.

a 1 =3+2∙(1+1)=3+4=7;

a 2 =3+2∙(2+1)=3+6=9;

a 3 =3+2∙(3+1)=3+8=11;

a 4 =3+2∙(4+1)=3+10=13.

Пример 4. Определите правило составления числовой последовательности по нескольким ее первым членам и выразите более простой формулой общий член последовательности: 1; 3; 5; 7; 9; ... .

Решение. Замечаем, что дана последовательность нечетных чисел. Любое нечетное число можно записать в виде: 2k-1, где k — натуральное число, т.е. k=1; 2; 3; 4; ... . Ответ: a k =2k-1.

3) Рекуррентный способ. Последовательность также задается формулой, но не формулой общего члена, зависящей только от номера члена. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Пример 5. Выписать первые четыре члена последовательности {a n },

если a 1 =7; a n+1 = 5+a n .

a 2 =5+a 1 =5+7=12;

a 3 =5+a 2 =5+12=17;

a 4 =5+a 3 =5+17=22. Ответ: 7; 12; 17; 22; ... .

Пример 6. Выписать первые пять членов последовательности {b n },

если b 1 = -2, b 2 = 3; b n+2 = 2b n +b n+1 .

b 3 = 2∙b 1 + b 2 = 2∙(-2) + 3 = -4+3=-1;

b 4 = 2∙b 2 + b 3 = 2∙3 +(-1) = 6 -1 = 5;

b 5 = 2∙b 3 + b 4 = 2∙(-1) + 5 = -2 +5 = 3. Ответ: -2; 3; -1; 5; 3; ... .

4) Графический способ. Числовая последовательность задается графиком, который представляет собой изолированные точки. Абсциссы этих точек — натуральные числа: n=1; 2; 3; 4; ... . Ординаты — значения членов последовательности: a 1 ; a 2 ; a 3 ; a 4 ;… .

Пример 7. Запишите все пять членов числовой последовательности, заданной графическим способом.

Каждая точки в этой координатной плоскости имеет координаты (n; a n). Выпишем координаты отмеченных точек по возрастанию абсциссы n .

Получаем: (1 ; -3), (2 ; 1), (3 ; 4), (4 ; 6), (5 ; 7).

Следовательно, a 1 = -3; a 2 =1; a 3 =4; a 4 =6; a 5 =7.

Ответ: -3; 1; 4; 6; 7.

Рассмотренная числовая последовательность в качестве функции (в примере 7) задана на множестве первых пяти натуральных чисел (n=1; 2; 3; 4; 5), поэтому, является конечной числовой последовательностью (состоит из пяти членов).

Если числовая последовательность в качестве функции будет задана на всем множестве натуральных чисел, то такая последовательность будет бесконечной числовой последовательностью.

Числовую последовательность называют возрастающей , если ее члены возрастают (a n+1 >a n) и убывающей, если ее члены убывают (a n+1

Возрастающая или убывающая числовые последовательности называются монотонными .