Золотое сечение и числа Фибоначчи в фотографии

Создано 24.08.2012 09:49

Эта статья посвящена основным правилам и понятиям, связанным как непосредственно с процессом съемки, так и с последующей обработкой получившегося снимка в графических редакторах. Речь пойдет о правилах "Золотого Сечения", геометрических пропорциях, которые при правильном и грамотном их использовании позволяют создавать удивительные и гармоничные работы.

Золотое сечение - воистину первое, о чем следует знать начинающему фотографу! Оно же иногда называется - правилом третей. О эстетической ценности этого правила - было известно еще в древнейшие времена. Сознательно использовать правило третей начал - великий да Винчи, за ним это правило начали использовать и другие художники, а вслед за ними и фотографы, и кинооператоры, и архитекторы, дизайнеры. Начнём с математики.

Математическая интерпретация

Математически «Золотое сечение» определяется следующим образом - отношение целого к большей части должно равняться отношению большей части к меньшей. Если разделить отрезок прямой на две неравные части, чтобы его длина (а+в) относилась к большей части (а) так, как эта большая часть к меньшей (в), получим результат, который и называют «Золотое Сечение». Это число равняется 1.618 или 0.618. Части же целого отрезка (а+в), взятого за 1, выражают в относительных величинах: а=0.62..., в=0.38 или в процентах 62% и 38%.

Эти числа и получили название "золотых".

Примером же использования правила «Золотого сечения» в фотографии может являться расположение основных компонентов кадра в особых точках - «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

Рис.2 Практическое использование правила «Золотого сечения» при компоновке кадра.

Разумеется, в момент съемки мы не в состоянии просчитать и зрительно отложить в уме необходимые пропорции. Поэтому на момент съемки используется упрощенный вариант построения «Золотого сечения» или правило «Трети». Заключается оно в следующем: мы мысленно делим кадр на три части по горизонтали и вертикали и, в точках пересечения воображаемых линий, размещаем ключевые детали снимаемой сцены. Простейшая сетка «Третей» выглядит следующим образом: (рис 3).

Таким образом, кадр, сформированный по правилу золотого сечения, может выглядеть, к примеру, так: (рис 4,5)

Разумеется, мы можем комбинировать размещение объекта в зависимости от замысла фотографа и объекта съемки. На рис. 6 - 9 показаны различные варианты использования правила.

При использовании правила «Золотого сечения» нельзя забывать про линию горизонта.

Правильная постановка горизонта должна соответствовать, в зависимости от композиции, одной из линий горизонтальных третей, верхней или нижней. На рис.10 показано позиционирование горизонта по нижней линии трети.

По поводу «золотого сечения» можно говорить бесконечно. Ниже я хочу привести различные варианты сеток, созданных по правилу «Золотого сечения», для различных композиционных вариантов. Для того, чтобы понять эти принципы, необходимо самостоятельно экспериментально попробовать совместить сетки с вашими фотографиями. Базовые сетки выглядят так (рис.11-17):

Правило «Равновесия».

Композиционно кадр необходимо строить так, чтобы объекты на нем были уравновешены. Что это значит? А значит это, что гармонично будут смотреться снимки, на которых либо соблюдена симметрия (рис.18 - в данном случае уравновешивающими элементами являются столбы справа и слева), либо основной объект экспозиции компенсирован дополнительным или второстепенным (рис.19 - журавль слева уравновешивает композицию справа).

Как пел В. Цой: «Нужно место для шага вперед»!

Любой снимок, даже построенный по правилу «Золотого сечения», может быть неправильно воспринят и не понят, только лишь потому, что не учтено направление движение (взгляда, действия) объекта съемки. На рис.20 у девушки совершенно не остается места для продолжения движения (она уходит из кадра), хотя кадр и построен в соотношениях «Золотого сечения». На рис.21 такое пространство у нее есть. Повторюсь, данное правило касается не только движения (людей, животных машин), но и взгляда (портрет), динамики поворота тела, лица, или сюжетного действия.

Текст: Д.И. Жамков

Числа Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени итальянского математика средневековой Европы Леонардо Пизанского по прозвищу Фибоначчи, что обозначает «хороший сын родился».

Числа Фибоначчи так же называют золотым сечением. Не вдаваясь в математику, можно сказать лишь одно - изображения, которые согласуются с золотым сечением и числами Фибоначчи особенно благоприятны для человеческого глаза.

Многие фотографы и дизайнеры придерживаются пропорций 1:1.618 для построения более удачной композиции.

Эта последовательность была хорошо известна в Индии, где применялась в метрических науках. Позже многие исследователи начали замечать эту последовательность в природе и космосе.

Следующие два видео и последующие за ним изображения помогут вам лучше понять как это работает на практике.

Ниже представлены фотографии, которые сделаны с применением пропорций Фибоначчи.

Золотое сечение и числа последовательности Фибоначчи. June 14th, 2011

Некоторое время назад я обещала прокомментировать утверждение Толкачева о том, что Питер построен по принципу Золотого Сечения, а Москва – по принципу симметрии, и что именно поэтому столь ощутимы различия в восприятии этих двух городов, и именно поэтому петербуржец, приезжая в Москву «заболевает головой», а москвич «заболевает головой», приезжая в Питер. Требуется некоторое время для сонастройки с городом (как при перелете в штаты – требуется сонастройка со временем).

Дело в том, что наш глаз смотрит - ощупывая пространство с помощью определенных движений глаз – саккад (в переводе – хлопок паруса). Глаз совершает «хлопок» и посылает сигнал в мозг «сцепление с поверхностью произошло. Все в порядке. Информация такая-то». И в течение жизни глаз привыкает к определенной ритмике этих саккад. И когда эта ритмика кардинально меняется (с городского пейзажа на лес, с Золотого Сечения на симметрию) – тут то и требуется некоторая работа мозга по перенастройке.

Теперь подробности:
Определение ЗС - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

То есть, если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382. Таким образом, если взять строение, например, храм, построенный по принципу ЗС, то при его высоте скажем 10 метров, высота барабана с куполом будут равны 3,82 см, а высота основания строения будет 6, 18 см. (понятно, что цифры я взяла ровными для наглядности)

А какова связь между ЗС и числами Фибоначчи?

Числа последовательности Фибоначчи это:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597…

Закономерность чисел в том, что каждое последующее число равно сумме двух предыдущих чисел.
0 + 1 = 1;
1 + 1 = 2;
2 + 3 = 5;
3 + 5 = 8;
5 + 8 = 13;
8 + 13 = 21 и т.д.,

а отношение смежных чисел приближается к отношению ЗС.
Так, 21: 34 = 0,617, а 34: 55 = 0,618.

То есть в основе ЗС лежат числа последовательности Фибоначчи.
Вот этот ролик ещё раз наглядно демонстрирует эту связь ЗС и чисел Фибоначчи

Где ещё встречаются принцип ЗС и числа последовательности Фибоначчи?

Листья у растений описывается последовательностью Фибоначчи. Зерна подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса также располагаются согласно последовательности Фибоначчи.

Яйцо птицы

Длины фаланг пальцев человека относятся примерно как числа Фибоначчи. Золотое сечение просматривается в пропорциях лица.

Эмиль Розенов исследовал ЗС в музыке эпохи Барокко и классицизма на примере произведений Баха, Моцарта, Бетховена.

Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам ЗС. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних - в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения. Да и в каждой части есть свой перелом, происходящий по закону золотого сечения. В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета, настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения, он воспринимается как наиболее закономерный и естественный.

Многие элементы декора, а так же шрифты, созданы с использованием ЗС. Например шрифт А.Дюрера (в рисунке буква «А»)

Считается, что термин «Золотое сечение» ввел Леонардо Да Винчи, который говорил, «пусть никто, не будучи математиком, не дерзнет читать мои труды” и показывал пропорции человеческого тела на своём знаменитом рисунке «Витрувианский человек». “Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.

Знаменитый портрет Моны Лизы или Джоконды (1503) создан по принципу золотых треугольников.

Собственно говоря сама звезда или пентакль представляет собой построение ЗС.

Ряд чисел Фибоначчи наглядно моделируется (материализуется) в форме спирали

А в природе спираль ЗС выглядит вот так:

При этом, спираль наблюдается повсеместно (в природе и не только):
- Семена в большинстве растений расположены по спирали
- Паук плетет паутину по спирали
- Спиралью закручивается ураган
- Испуганное стадо северных оленей разбегается по спирали.
- Молекула ДНK закручена двойной спиралью. Молекулу ДНК составляют две вертикально переплетенные спирали длиной 34 ангстрема и шириной 21 ангстрема. Числа 21 и 34 следуют друг за другом в последовательности Фибоначчи.
- Эмбрион развивается в форме спирали
- Спираль «улитки во внутреннем ухе»
- Вода уходит в слив по спирали
- Спиральная динамика показывает развитие личности человека и его ценностей по спирали.
- Ну и конечно, сама Галактика имеет форму спирали

Таким образом можно утверждать, что сама природа построена по принципу Золотого Сечения, оттого эта пропорция гармоничнее воспринимается человеческим глазом. Она не требует «исправления» или дополнения получаемой картинки мира.

Теперь о Золотом сечении в архитектуре

Пирамида Хеопса представляет собой пропорции ЗС. (Фотография нравится – с заваленным песком Сфинксом).

Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению. В фасаде древнегреческого храма Парфенона также присутствуют золотые пропорции.

Собор "Нотредам де Пари" в Париже, Франция.

Одно из выдающихся строений, выполненных по принципу ЗС – Смольный Собор в Питере. К собору ведут по краям две дорожки и если приближаться по ним к собору, то тот будто приподнимается в воздухе.

В Москве также есть строения выполненные с использованием ЗС. Например, Храм Василия Блаженного

Однако застройка, использующая принципы симметрии преобладает.
Например, Кремль и Спасская башня.

Высота стен Кремля также нигде не отражает принципа ЗС относительно высоты башен, например. Или взять гостиницу Россия, или гостиницу Космос.

При этом здания, построенные по принципу ЗС представляют больший процент в Питере, при этом это здания уличной застройки. Литейный проспект.

Таким образом, Золотое Сечение использует коэффицент 1,68, а симметрия 50/50.
То есть симметричные здания построены по принципу равенства сторон.

Ещё одной важной характеристикой ЗС является её динамичность и стремление к разворачиванию, за счет последовательности чисел Фибоначчи. Тогда как симметрия – наоборот представляет собой стабильность, устойчивость и неподвижность.

Кроме этого, дополнительное ЗС вносит в план Питера обилие водных пространств, расплескавшихся по городу и диктующих подчиненность города их изгибам. Да и сама схема Питера напоминает спираль или зародыш одновременно.

Папа, правда, высказал другую версию, отчего у москвичей и питерцев «голова болит» при посещении столиц. Папа относит это к энергиям городов:
Санкт-Петербург – имеет мужской род и соответственно мужские энергии,
Ну а Москва – соответственно – женского рода и обладает женскими энергиями.

Так жителям столиц, настроившимся на свой определенный баланс женского и мужского в своих организмах – сложно перестраиваться при посещении города-соседа, а у кого-то может и сложности какие-то имеются с восприятием одной или другой энергий и оттого город сосед могут и вовсе не любить!

В подтверждение этой версии говорит и то, что все российские императрицы правили именно в Питере, тогда как Москва видела лишь царей мужского пола!

Использованные ресурсы.

ГОУ Гимназия №1505

«Московская городская педагогическая гимназия-лаборатория»

Реферат

Числа Фибоначчи и Золотое сечение

Азов Никита

Руководитель: Шалимова М.Н.

Введение ………………………………………………….……………2

Глава 1

История Чисел Фибоначчи.………………………………..……..5

Глава 2

Числа Фибоначчи как возвратная прогрессия………...…...……………………………………..….....12

Глава 3

Числа Фибоначчи и Золотое сечение………………………

Заключение …………………………………………………...…...16

Список литературы ………………………………………………………………….……..20


Введение.

Актуальность исследования. На мой взгляд в настоящие дни уделяется мало внимания математическим теоремам и фактам, известным из истории развития науки. На примере чисел Фибоначчи я хотел бы показать насколько они могут глобальны и широко применимы не только в математике, но и в повседневной жизни.

Целью моей работы является изучение истории, свойств, применения и связей чисел Фибоначчи с золотым сечением.

Глава 1. Числа Фибоначчи и их история.

Леонардо (1170-1250гг.) был рожден в Пизе. В последствии получил прозвище Фибоначчи, что означает «хорошо рожденный сын». Его отец торговал в арабских странах Северной Африки. Там Леонардо изучал математику с арабскими учителями, а также знакомился с достижениями индийских и древнегреческих ученых по трактатам в арабском переводе. Усвоив весь изучаемый им материал, он создал собственную книгу – «Книгу абака» (первое издание было написано в 1202 году, но до нас сохранилось только переиздание 1228 года). Таким образом, он стал первым средневековым выдающимся математиком, а также ознакомил Европу с арабскими цифрами и десятичной системой вычисления, которой мы пользуемся каждый день с ранних лет и до самой старости.

«Книгу абака» можно разделить на пять частей по содержанию. Первые пять глав книги посвящены арифметике целых числе на основе десятичной нумерации. В 6-7 главе описаны действия над обыкновенными дробями. В 8-10 главе описаны приемы решения задач с помощью пропорций. В 11 главе рассматриваются задачи на смешение, в 12 главе речь идет о так называемых числах Фибоначчи. Далее описаны еще некоторые приемы с числами и приведены задачи на разные темы.

Основная задача поясняющая возникновение ряда чисел Фибоначчи – задача о кроликах. Вопрос задачи звучит так: «Сколько пар кроликов в один год рождается от одной пары?». К задаче дано пояснение, что пара кроликов через месяц рождает еще одну пару, а по природе кролики начинают рожать потомство на второй месяц после своего рождения. Автор дает нам решение задачи. Получается, что в первый месяц первая пара родит еще одну. Во второй первая пара родит еще одну – будет три пары. В 3-ий месяц родят две пары – изначально данная и рожденная в первый месяц. Получается 5 пар. И так далее, используя такую же логику в рассуждении мы получим, что в четвертый месяц будет 8 пар, в пятый 13, в шестой 21, в седьмлй 34, в в восьмой 55, в девятый 89, в дестый 144, в одиннадцатый 233, в двенадцатый 377.


Мы можем обозначить кол-во кроликов в любой из двенадцати месяцев как u n. Мы получаем ряд чисел:

В ряде этих чисел каждый член равен сумме двух предыдущих. Получается, что любой член уравнения можно определить по уравнению:

Рассмотрим важный частный случай для этого уравнения, когда u 1 и u 2 =1. Мы получим последовательность чисел 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377… Эту же последовательность чисел мы получали в задачу про кроликов. Эти числа названы числами Фибоначчи в честь автора.

Эти числа а также уравнение (2) обладает многими свойствами, который будут рассматриваться в моей работе.

Глава 2. Связь между рядом Чисел Фибоначчи и прогрессиями. Основные свойства ряда.

Для того, чтобы вывести основные свойства ряда возьмем как пример первые пять чисел: 1, 1, 2, 3, 5, 8. Мы видим, что каждое новое число равно сумме двух предыдущих. Отсюда мы можем вывести формулу получения любого числа ряда, а также формулу суммы любого кол-ва чисел из ряда.

Мы видим, что формулы кардинально отличаются от формул свойственных арифметической и геометрической прогрессий. А также мы можем сказать что только первые два числа из ряда могут относится к каким либо прогрессиям.

У арифметической и геометрических прогрессий имеются только две ранее упомянутые формулы, и чтобы посчитать например сумму четных, нечетных или сумму квадратов чисел каждый раз приходится решать задачу для отдельно взятого ряда. Но так как ряд чисел Фибоначчи является неизменным (не имеет шагов, знаменателей и различных первых членов прогрессии), то это значит, что для него можно вывести формулу получения сумм отдельных элементов ряда. Вот например формула для получения суммы чисел ряда под четными номерами:

Существует аналогичная формула для чисел из ряда под нечетными номерами:

Также есть формула для получения суммы чисел из ряда возведенных в квадрат:

У чисел Фибоначчи есть еще одно уникальное свойство, которое нехарактерно для для арифметической и геометрической прогрессий. Отношение ряда чисел (предыдущего к последующему) постоянно стремится к значению 0.618, аналогичная ситуация происходит при делении F n на F n +2 (отношение стремится к 0.382), при делении F n на F n +3 (отношение стремится к 0.236) и так далее. В итоге мы получили набор отношений. Набор их значений и значений обратных им называются фибоначчиевы коэффициенты. А значение обратное 0.618 – 1.618, является числом

(«фи»). Он также является одним из пары корней характерического для ряда многочлена x 2 -x-1.

Глава 3. Золотое сечение и числа Фибоначчи.

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении) - деление непрерывной величины на две части в таком отношении, при котором меньшая часть так относится к большей, как большая ко всей величине.

Попробуем объяснить это на примере бесконечной прямой. Примем всю прямую с за единицу. Разделим ее на две части a и b, которые делят прямую на отрезки равный по отношению к 1, как 0.618 и 0.382 соответственно. А эти числа являются одними из коэффициентов ряда чисел Фибоначчи. Мы получаем, что отношение больших частей этой прямой к меньшим асимптотически приближается к числу

.

Существует две основные фигуры, в которых отражается принцип золотого сечения.

Золотое сечение было известно еще древним грекам. Архимед считается открывателем Архимедовой спирали. Её смысл состоит в том, что каждый новый завиток увеличивается в определенное число, и отношение этих завитков равно числу

.

Вторая фигура – золотой треугольник. Это равнобедренный треугольник, в котором отношение боковых сторон к основанию равно

Во вселенной еще много неразгаданных тайн, некоторые из которых ученые уже смогли определить и описать. Числа Фибоначчи и золотое сечение составляют основу разгадки окружающего мира, построения его формы и оптимального зрительного восприятия человеком, с помощью которых он может ощущать красоту и гармонию.

Золотое сечение

Принцип определения размеров золотого сечения лежит в основе совершенства целого мира и его частей в своей структуре и функциях, его проявление можно видеть в природе, искусстве и технике. Учение о золотой пропорции было заложено в результате исследований древними учеными природы чисел.

В основе его лежит теория о пропорциях и соотношениях делений отрезков, которое было сделано еще древним философом и математиком Пифагором. Он доказал, что при разделении отрезка на две части: X (меньшую) и Y (большую), отношение большего к меньшему будет равно отношению их суммы (всего отрезка):

В результате получается уравнение: х 2 - х - 1=0, которое решается как х=(1±√5)/2.

Если рассмотреть соотношение 1/х, то оно равно 1,618…

Свидетельства использования древними мыслителями золотой пропорции приведены в книге Эвклида «Начала», написанной еще в 3 в. до н.э., который применял это правило для построения правильных 5-угольников. У пифагорейцев эта фигура считается священной, поскольку является одновременно симметричной и асимметричной. Пентаграмма символизировала жизнь и здоровье.

Числа Фибоначчи

Знаменитая книга Liber abaci математика из Италии Леонардо Пизанского, который в последующем стал известен, как Фибоначчи, увидела свет в 1202 г. В ней ученый впервые приводит закономерность чисел, в ряду которых каждое число является суммой 2-х предыдущих цифр. Последовательность чисел Фибоначчи заключается в следующем:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 и т.д.

Также ученый привел ряд закономерностей:

  • Любое число из ряда, разделенное на последующее, будет равно значению, которое стремится к 0,618. Причем первые числа Фибоначчи не дают такого числа, но по мере продвижения от начала последовательности это соотношение будет все более точным.
  • Если же поделить число из ряда на предыдущее, то результат устремится к 1,618.
  • Одно число, поделенное на следующее через одно, покажет значение, стремящееся к 0,382.

Применение связи и закономерностей золотого сечения, числа Фибоначчи (0,618) можно найти не только в математике, но и в природе, в истории, в архитектуре и строительстве и во многих других науках.

Спираль Архимеда и золотой прямоугольник

Спирали, очень распространенные в природе, были исследованы Архимедом, который даже вывел ее уравнение. Форма спирали основана на законах о золотом сечении. При ее раскручивании получается длина, к которой можно применить пропорции и числа Фибоначчи, увеличение шага происходит равномерно.

Параллель между числами Фибоначчи и золотым сечением можно увидеть и построив «золотой прямоугольник», у которого стороны пропорциональны, как 1,618:1. Он строится, переходя от большего прямоугольника к малым так, что длины сторон будут равны числам из ряда. Построение его можно сделать и в обратном порядке, начиная с квадратика «1». При соединении линиями углов этого прямоугольника в центре их пересечения получается спираль Фибоначчи или логарифмическая.

История применения золотых пропорций

Многие древние памятники архитектуры Египта возведены с использованием золотых пропорций: знаменитые пирамиды Хеопса и др. Архитекторы Древней Греции широко использовалиих их при возведении архитектурных объектов, таких как храмы, амфитеатры, стадионы. Например, были применены такие пропорции при строительстве античного храма Парфенон, (Афины) и других объектов, которые стали шедеврами древнего зодчества, демонстрирующими гармонию, основанную на математической закономерности.

В более поздние века интерес к золотому сечению поутих, и закономерности были забыты, однако опять возобновился в эпоху Ренессанса вместе с книгой францисканского монаха Л. Пачоли ди Борго «Божественная пропорция» (1509 г.). В ней были приведены иллюстрации Леонардо да Винчи, который и закрепил новое название «золотое сечение». Также были научно доказаны 12 свойств золотой пропорции, причем автор рассказывал о том, как проявляется она в природе, в искусстве и называл ее «принципом построения мира и природы».

Витрувианский человек Леонардо

Рисунок, которым Леонардо да Винчи в 1492 г. проиллюстрировал книгу Витрувия, изображает фигуру человека в 2-х позициях с руками, разведенными в стороны. Фигура вписана в круг и квадрат. Этот рисунок принято считать каноническими пропорциями человеческого тела (мужского), описанными Леонардо на основе изучения их в трактатах римского архитектора Витрувия.

Центром тела как равноудаленной точкой от конца рук и ног считается пупок, длина рук приравнивается к росту человека, максимальная ширина плеч = 1/8 роста, расстояние от верха груди до волос = 1/7, от верха груди до верха головы =1/6 и т.д.

С тех пор рисунок используется в виде символа, показывающего внутреннюю симметрию тела человека.

Термин «Золотое сечение» Леонардо использовал для обозначения пропорциональных отношений в фигуре человека. Например, расстояние от пояса до ступней ног соотносится к аналогичному расстоянию от пупка до макушки так же, как рост к первой длине (от пояса вниз). Эти вычисление делается аналогично соотношению отрезков при вычислении золотой пропорции и стремится к 1,618.

Все эти гармоничные пропорции часто используются деятелями искусства для создания красивых и впечатляющих произведений.

Исследования золотого сечения в 16-19 веках

Используя золотое сечение и числа Фибоначчи, исследовательскую работу по вопросу о пропорциях продолжают уже не одно столетие. Параллельно с Леонардо да Винчи немецкий художник Альбрехт Дюрер также занимался разработкой теории правильных пропорций тела человека. Для этого им даже был создан специальный циркуль.

В 16 в. вопросу о связи числа Фибоначчи и золотого сечения были посвящены работы астронома И. Кеплера, который впервые применил эти правила для ботаники.

Новое «открытие» ожидало золотое сечение в 19 в. с опубликованием «Эстетического исследования» немецкого ученого профессора Цейзига. Он возвел эти пропорции в абсолют и объявил о том, что они универсальны для всех природных явлений. Им были проведены исследования огромного количества людей, вернее их телесных пропорций (около 2 тыс.), по итогам которых сделаны выводы о статистических подтвержденных закономерностях в соотношениях различных частей тела: длины плеч, предплечий, кистей, пальцев и т.д.

Были исследованы также предметы искусства (вазы, архитектурные сооружения), музыкальные тона, размеры при написании стихотворений — все это Цейзиг отобразил через длины отрезков и цифры, он же ввел термин «математическая эстетика». После получения результатов выяснилось, что получается ряд Фибоначчи.

Число Фибоначчи и золотое сечение в природе

В растительном и животном мире существует тенденция к формообразованию в виде симметрии, которая наблюдается в направлении роста и движения. Деление на симметричные части, в которых соблюдаются золотые пропорции, — такая закономерность присуща многим растениям и животным.

Природа вокруг нас может быть описана с помощью чисел Фибоначчи, например:

  • расположение листьев или веток любых растений, а также расстояния соотносятся с рядом приведенных чисел 1, 1, 2, 3, 5, 8, 13 и далее;
  • семена подсолнуха (чешуя на шишках, ячейки ананаса), располагаясь двумя рядами по закрученным спиралям в разные стороны;
  • соотношение длины хвоста и всего тела ящерицы;
  • форма яйца, если провести линию условно через широкую его часть;
  • соотношение размеров пальцев на руке человека.

И, конечно, самые интересные формы представляют закручивающиеся по спирали раковины улиток, узоры на паутине, движение ветра внутри урагана, двойная спираль в ДНК и структура галактик — все они включают в себя последовательность чисел Фибоначчи.

Использование золотого сечения в искусстве

Исследователи, занимающиеся поиском в искусстве примеров использования золотого сечения, подробно исследуют различные архитектурные объекты и произведения живописи. Известны знаменитые скульптурные работы, создатели которых придерживались золотых пропорций, — статуи Зевса Олимпийского, Аполлона Бельведерского и

Одно из творений Леонардо да Винчи — «Портрет Моны Лизы» — уже многие годы является предметом исследований ученых. Ими было обнаружено, что композиция работы целиком состоит из «золотых треугольников», объединенных вместе в правильный пятиугольник-звезду. Все работы да Винчи являются свидетельством того, насколько глубоки были его познания в строении и пропорциях тела человека, благодаря чему он и смог уловить невероятно загадочную улыбку Джоконды.

Золотое сечение в архитектуре

В качестве примера ученые исследовали шедевры архитектуры, созданные по правилам «золотого сечения»: египетские пирамиды, Пантеон, Парфенон, Собор Нотр-Дам де Пари, храм Василия Блаженного и др.

Парфенон — одно из красивейших зданий в Древней Греции (5 в. до н.э.) — имеет 8 колонн и 17 по разным сторонам, отношение его высоты к длине сторон равно 0,618. Выступы на его фасадах сделаны по «золотому сечению» (фото ниже).

Одним из ученых, который придумал и успешно применял усовершенствование модульной системы пропорций для архитектурных объектов (так называемый «модулор»), — был французский архитектор Ле Корбюзье. В основу модулора положена измерительная система, связанная с условным делением на части человеческого тела.

Русский архитектор М. Казаков, построивший несколько жилых домов в Москве, а также здания сената в Кремле и Голицынской больницы (сейчас 1-я Клиническая им. Н. И. Пирогова), — был одним из архитекторов, которые использовали при проектировании и строительстве законы о золотом сечении.

Применение пропорций в дизайне

В дизайне одежды все модельеры делают новые образы и модели с учетом пропорций человеческого тела и правил золотого сечения, хотя от природы не все люди имеют идеальные пропорции.

При планировании ландшафтного дизайна и создании объемных парковых композиций с помощью растений (деревьев и кустарников), фонтанов и малых архитектурных объектов также могут применяться закономерности «божественных пропорций». Ведь композиция парка должна быть ориентирована на создание впечатления на посетителя, который свободно сможет ориентироваться в нем и находить композиционный центр.

Все элементы парка находятся в таких соотношениях, чтобы с помощью геометрического строения, взаиморасположения, освещения и света, произвести на человека впечатление гармонии и совершенства.

Применение золотого сечения в кибернетике и технике

Закономерности золотого сечения и чисел Фибоначчи проявляются также в переходах энергии, в процессах, происходящих с элементарными частицами, составляющих химические соединения, в космических системах, в генной структуре ДНК.

Аналогичные процессы происходят и в организме человека, проявляясь в биоритмах его жизни, в действии органов, например, головного мозга или зрения.

Алгоритмы и закономерности золотых пропорций широко используются в современной кибернетике и информатике. Одна из несложных задач, которую дают решать начинающим программистам, — написать формулу и определить, сумму чисел Фибоначчи до определенного числа, используя языки программирования.

Современные исследования теории о золотой пропорции

Начиная с середины 20 века, интерес к проблемам и влиянию закономерностей золотых пропорций на жизнь человека, резко возрастает, причем со стороны многих ученых различных профессий: математиков, исследователей этноса, биологов, философов, медицинских работников, экономистов, музыкантов и др.

В США с 1970-хгодов начинает выпускаться журнал The Fibonacci Quarterly, где публикуются работы на эту тему. В прессе появляются работы, в которых обобщенные правила золотого сечения и ряда Фибоначчи используют в различных отраслях знаний. Например, для кодирования информации, химических исследований, биологических и т.д.

Все это подтверждает выводы древних и современных ученых о том, что золотая пропорция многосторонне связана с фундаментальными вопросами науки и проявляется в симметрии многих творений и явлений окружающего нас мира.

– это всеобъемлющее проявление структурной гармонии. Оно встречается во всех сферах вселенной в природе, науке, искусстве во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

Наверняка вам не раз приходилось задумываться, почему Природа способна создавать такие удивительные гармоничные структуры, которые восхищают и радуют глаз. Почему художники, поэты, композиторы, архитекторы создают восхитительные произведения искусства из столетия в столетие. В чем же секрет и какие законы лежат в основе этих гармоничных созданий? Никто не сможет однозначно ответить на этот вопрос, но в нашей книге мы постараемся приоткрыть завесу и рассказать вам об одной из тайн мироздания – Золотом Сечении или, как его еще называют, Золотой или Божественной Пропорцией. Золотое Сечение называется числом PHI (Фи) в честь великого древнегреческого скульптора Фидия (Phidius), который использовал это число в своих скульптурах.

Не одно столетие ученые применяют уникальные математические свойства числа PHI и эти исследования продолжаются и в наши дни. Это число нашло широкое применение во всех областях современной науки, о чем мы так же попытаемся популярно рассказать на страницах . Также существует ряд и что это Вы узнаете далее…

Определение золотого сечения

Наиболее простое и ёмкое определение золотого сечения – малая часть относится к большей, как большая – ко всему целому. Приблизительная его величина 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Древние видели в золотом сечении отражение космического порядка, а Иоганн называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как ассиметричную симметрию, называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства.

Числа фибоначчи в истории

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге Божественная пропорция, иллюстрации к которой предположительно сделал Леонардо . Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой Отца, а целое Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского Леонардо . В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд : 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. Отношение соседних чисел ряда в пределе стремится к Золотому сечению. На отношение этой последовательности к золотой пропорции обратил внимание : Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член. Сейчас ряд – это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Формула золотого сечения

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек это универсальная форма может означать: Форма предмета - взаимное расположение границ (контуров) предмета, объекта, а также взаимное расположение точек линии для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя Витрувианского человека Леонардо, создал собственную шкалу гармонических пропорций, повлиявшую на эстетику архитектуры XX века.

Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке живое разумное социальное, субъект общественно-исторической деятельности и культуры ему подчинены практически все части тела, но главный показатель золотого нечто, изготовленное из золота сечения это деление тела В математике: Тело (алгебра) - множество с двумя операциями (сложение и умножение), обладающее определёнными свойствами точкой пупа.
В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению многозначный термин, означающий: Сечение в черчении - в отличие от разреза, изображение только фигуры, образованной рассечением тела плоскостью (плоскостями) без изображения частей за этой , чем пропорции женского тела 8:5.

Искусство пространственных форм

Художник Василий Суриков говорил, что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая . Долгое время художники следовали этому закону интуитивно, но после Леонардо ди сер Пьеро (итал процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек может означать: Точка - абстрактный объект в пространстве, не имеющий никаких измеримых характеристик, кроме координат золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф. В. Ковалев, подробно исследовав картину Николая Ге Александр Сергеевич Пушкин в селе Михайловском, отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.
И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

Слово, звук и кинолента

Формы временно?го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом Пиковой дамы является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) это и есть точка золотого сечения.

Советский музыковед Э. К. Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.
Кинорежиссер Сергей Эйзенштейн сценарий своего фильма Броненосец Потёмкин сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Гармония Золотого сечения

Научно-технический прогресс имеет длительную историю и прошел в своем историческом развитии несколько этапов (вавилонская и древнеегипетская культура, культура Древнего Китая и Древней Индии, древнегреческая культура, эпоха Средневековья, эпоха Возрождения, промышленная революция 18 в., великие научные открытия 19 в., научно-техническая революция 20 в.) и вошел в 21-й век, который открывает новую эпоху в истории человечества – эпоху Гармонии. Именно в античный период было сделано ряд выдающихся математических открытий, оказавших определяющее влияние на развитие материальной и духовной культуры, среди которых Вавилонская 60-ричная система счисления и позиционный принцип представления чисел, тригонометрия и геометрия Евклида, несоизмеримые отрезки, Золотое Сечение и Платоновы тела, начала теории чисел и теории измерения. И, хотя каждый из этих этапов имеет свою специфику, вместе с тем он обязательно включает содержание предшествующих этапов. В этом и состоит преемственность в развитии науки. Преемственность может осуществляться в различных формах. Одной из сущностных форм ее выражения являются фундаментальные научные идеи, которые пронизывают все этапы научно-технического прогресса и оказывают влияние на различные области науки, искусства, философии и техники.

К разряду таких фундаментальных идей относится идея Гармонии, связанная с Золотым Сечением. По словам Б.Г. Кузнецова, исследователя творчества Альберта Эйнштейна, великий физик свято верил в то, что наука, физика в частности, всегда имела своей извечной фундаментальной целью “найти в лабиринте наблюдаемых фактов объективную гармонию”. О глубокой вере выдающегося физика в существование универсальных законов гармонии мироздания свидетельствует и еще одно широко известное высказывание Эйнштейна: «Религиозность ученого состоит в восторженном преклонении перед законами гармонии».

В древнегреческой философии Гармония противостояла Хаосу и означала организованность Вселенной, Космоса. Гениальный русский философ Алексей Лосев так оценивает основные достижения древних греков в этой области:

“С точки зрения Платона, да и вообще с точки зрения всей античной космологии мир представляет собой некое пропорциональное целое, подчиняющееся закону гармонического деления – Золотого Сечения… Их (древних греков) систему космических пропорций нередко в литературе изображают как курьезный результат безудержной и дикой фантазии. В такого рода объяснениях сквозит антинаучная беспомощность тех, кто это заявляет. Однако понять данный историко-эстетический феномен можно только в связи с целостным пониманием истории, то есть, используя диалектико-материалистическое представление о культуре и ища ответа в особенностях античного общественного бытия».

«Закон золотого деления должен быть диалектической необходимостью. Это – та мысль, которую, насколько мне известно, я провожу впервые» , – убежденно высказывался Лосев более полувека назад в связи с анализом культурного наследия древних греков.

А вот еще одно высказывание, касающееся Золотого Сечения. Оно было сделано в 17 веке и принадлежит гениальному астроному Иоганну Кеплеру, автору трех знаменитых «Законов Кеплера». Свое восхищение Золотым Сечением выразил в следующих словах:

«В геометрии существует два сокровища – и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем».

Напомним, что старинная задача о делении отрезка в крайнем и среднем отношении, которая упоминается в этом высказывании, – это и есть Золотое Сечение!

Числа в науке

В современной науке существует много научных групп, профессионально изучающих Золотое Сечение, числа и их многочисленные приложения в математике, физике, философии, ботанике, биологии, медицине, компьютерной науке. Множество художников, поэтов, музыкантов используют в своем творчестве «Принцип Золотого Сечения». В современной науке сделано ряд выдающихся открытий, основанных на числах и Золотом Сечении. Открытие “квази-кристаллов”, сделанное в 1982 г. израильским ученым Даном Шехтманом, основанное на Золотом Сечении и “пентагональной” симметрии, имеет революционное значение для современной физики. Прорыв в современных представлениях о природе формообразования биологических объектов, в начале 90-х годов сделан украинским ученым Олегом Боднаром, создавшим новую геометрическую теорию филлотаксиса. Белорусский философ Эдуард Сороко сформулировал «Закон структурной гармонии систем», основанный на Золотом Сечении и играющий важную роль в процессах самоорганизации. Благодаря исследованиям американских ученых Эллиотта, Пректера и Фишера числа активно вошли в сферу бизнеса и стали основой из оптимальных стратегий в сфере бизнеса и торговли. Эти открытия подтверждают гипотезу американского ученого Д. Винтера, руководителя группы “Планетарные сердцебиения”, согласно которой не только энергетический каркас Земли, но и строение всего живого основаны на свойствах додекаэдра и икосаэдра – двух “Платоновых тел”, связанных с Золотым Сечением. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни, представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции Золотого Сечения!

Украинский профессор и доктор наук Стахов А.П. смог создать некую . Суть этого обобщения предельно проста. Если задаться не­отрицательным целым числом р = 0, 1, 2, 3, … и разделить отрезок “AB” точкой С в такой пропорции, чтобы было.