Экология жизни. Познавательно: Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности...

Числа Фибоначчи - числовая последовательность, где каждый последующий член ряда равен сумме двух предыдущих, то есть: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368,.. 75025,.. 3478759200, 5628750625,.. 260993908980000,.. 422297015649625,.. 19581068021641812000,.. Изучением сложных и удивительных свойств чисел ряда Фибоначчи занимались самые различные профессиональные ученые и любители математики.

В 1997 году несколько странных особенностей ряда описал исследователь Владимир Михайлов, который был убежден, что Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности .

Замечательным свойством числового ряда Фибоначчи является то, что по мере увеличения чисел ряда отношение двух соседних членов этого ряда асимптотически приближается к точной пропорции Золотого сечения (1:1,618) - основе красоты и гармонии в окружающей нас природе, в том числе и в человеческих отношениях.

Отметим, что сам Фибоначчи открыл свой знаменитый ряд, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Поэтому не случайно, что и сам человек устроен по ряду Фибоначчи. Каждый орган устроен в соответствии с внутренней, или внешней двойственностью.

Числа Фибоначчи привлекли математиков своей особенностью возникать в самых неожиданных местах. Замечено, например, что отношения чисел Фибоначчи, взятых через одно, соответствуют углу между соседними листьями на стебле растений, точнее, они говорят, какую долю оборота составляет этот угол: 1/2 - для вяза и липы, 1/3 - для бука, 2/5 - для дуба и яблони, 3/8 - для тополя и розы, 5/13 - для ивы и миндаля и т. д. Эти же числа вы найдете при подсчете семян в спиралях подсолнуха, в количестве лучей, отражающихся от двух зеркал, в количестве вариантов маршрутов переползания пчелы от одной соты к другой, во многих математических играх и фокусах.



В чем разница между спиралями золотого сечения и спиралью Фибоначчи? Спираль золотого сечения идеальна. Она соответствует Первоисточнику гармонии. Эта спираль не имеет ни начала, ни конца. Она бесконечна. Спираль Фибоначчи имеет начало, от которого она начинает “раскрутку”. Это очень важное свойство. Оно позволяет Природе после очередного замкнутого цикла осуществлять строительство новой спирали с “нуля”.

Следует сказать, что спираль Фибоначчи может быть двойной. Существуют многочисленные примеры этих двойных спиралей, встречающихся повсюду. Так, спирали подсолнухов всегда соотносятся с рядом Фибоначчи. Даже в обычной сосновой шишке можно увидеть эту двойную спираль Фибоначчи. Первая спираль идет в одну сторону, вторая - в другую. Если посчитать число чешуек в спирали, вращающейся в одном направлении, и число чешуек в другой спирали, можно увидеть, что это всегда два последовательных числа ряда Фибоначчи. Число этих спиралей 8 и 13. В подсолнухах встречаются пары спиралей: 13 и 21, 21 и 34, 34 и 55, 55 и 89. И отклонений от этих пар не бывает!..

У Человека в наборе хромосом соматической клетки (их 23 пары) источником наследственных болезней являются 8, 13 и 21 пары хромосом...

Но почему в Природе именно этот ряд играет решающую роль? На этот вопрос может дать исчерпывающий ответ концепция тройственности, определяющая условия ее самосохранения. При нарушении «баланса интересов» триады одним из ее «партнеров», «мнения» двух других «партнеров» должны быть скорректированы. Особенно наглядно концепция тройственности проявляется в физике, где из кварков построили «почти» все элементарные частицы. Если вспомнить, что отношения дробных зарядов кварковых частиц составляют ряд, а это и есть первые члены ряда Фибоначчи, которые необходимы для формирования других элементарных частиц.

Возможно, что спираль Фибоначчи может играть решающую роль и в формировании закономерности ограниченности и замкнутости иерархических пространств. Действительно, представим, что на каком-то этапе эволюции спираль Фибоначчи достигла совершенства (она стала неотличима от спирали золотого сечения) и по этой причине частица должна трансформироваться в следующую «категорию».

Эти факты еще раз подтверждают, что закон о двойственности дает не только качественные, но и количественные результаты. Они заставляют задуматься о том, что окружающий нас Макромир и Микромир эволюцирует по одним и тем же законам - законам иерархии, и что эти законы едины для живой и для неживой материи.



Все это свидетельствует о том, что ряд чисел Фибоначчи представляет собой некий зашифрованный закон природы .

Цифровой код развития цивилизации можно определить с помощью различных методов в нумерологии. Например, с помощью приведения сложных чисел к однозначным (например, 15 есть 1+5=6 и т.д.). Проводя подобную процедуру сложения со всеми сложными числами ряда Фибоначчи, Михайлов получил следующий ряд этих чисел: 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 8, 1, 9, затем все повторяется 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 4, 8, 8,.. и повторяется вновь и вновь... Этот ряд также обладает свойствами ряда Фибоначчи, каждый бесконечно последующий член равен сумме предыдущих. Например, сумма 13-го и 14-го членов равна 15, т.е. 8 и 8=16, 16=1+6=7. Оказывается, что этот ряд периодичный, с периодом в 24 члена, после чего, весь порядок цифр повторяется. Получив этот период, Михайлов выдвинул интересное предположение - не является ли набор из 24 цифр своеобразным цифровым кодом развития цивилизации? опубликовано

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций - важный фактор оздоровления - сайт

Министерство образования и науки Украины

Одесский государственный экономический университет

кафедра________________________

Реферат по курсу "Экономический анализ"

на тему:

"Числа Фибоначчи: технический анализ".

Выполнил: студент 33 группы ФМЭ

Кушниренко Сергей

Научный руководитель:

Коптельцева Лидия Васильевна

Одесса

Введение. 3

История и свойства последовательности. 3

Использование чисел Фибоначчи в изменении тренда. 5

Множественные ценовые цели по Фибоначчи. 8

Заключение. 11

Список литературы.. 12

Введение.

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.
Жизнь и научная карьера Леонарда теснейшим образом связана с развитием европейской культуры и науки.
В век Фибоначчи возраждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих 2, император (с 1220 года) "Священной Римской империи Германской Нации". Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства. Поэтому к преподаванию в основанном им Неаполитанском университете, наряду с христианскими учеными, он привлек арабов и евреев.
Столь любимые его дедом рыцарские турниры, на которых сражающиеся калечили друг друга на потеху публике, Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.
На таких турнирах и заблистал талант Леонарда Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.
Впоследствии Фибоначчи пользовался неизменным покровительством Фридриха II.
Это покровительство стимулировало выпуск научных трактатов Фибоначчи:
обширнейшей "Книге абака", написанной в 1202 году, но дошедшей до нас во втором своем варианте, который относится к 1228 г.; "Практики геометрии"(1220г.); "Книги квадратов"(1225г.). По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику чуть ли не до времен Декарта (17 в.).

Наибольший интерес представляет сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими ("арабскими") цыфрами.

Основной целью ланного реферата является изучение основных свойствчисел Фибоначчи и их применение в практике трендового анализа.

История и свойства последовательности.

Леонард Фибоначчи – один из величайших математиков Средневековья. В одном и своих трудов “Книга вычислений” Фибоначчи описал индо-арабскую систему исчисления и преимущества ее использования перед римской.

Числовая последовательность Фибоначчи имеет много интересных свойств. Например, сумма двух соседних чисел последовательности дает значение следующего за ними (например, 1+1=2; 2+3=5 и т.д.), что подтверждает существование так называемых коэффициентов Фибоначчи, т.е. постоянных соотношений.

Одно из самых главных следствий этих свойств различных членов последовательности определяются следующим образом:

1.Отношение каждого числа к последующему более и более стремится к 0.618 по увеличении порядкового номера. Отношение же каждого числе к предыдущему стремится к 1.618 (обратному к 0.618). Число 0.618 называют (ФИ), и мы поговорим о нем подробнее немного позже.

2.При делении каждого числа на следующее за ним через одно получаем число 0.382; наоборот – соответственно 2.618.

3.Подбирая таким образом соотношения, получаем основной набор фибоначчиевских коэффициентов: … 4.235, 2.618, 1.618, 0.618, 0.382, 0.236. упомянем также 0.5 (1/2). Все они играют особую роль в природе, и в частности – в техническом анализе.

Важно отметить, что Фибоначчи как бы напомнил свою последовательность человечеству. Она была известна еще древним грекам и египтянам. И действительно, с тех пор в природе, архитектуре, изобразительном искусстве, математике, физике, астрономии, биологии и многих других областях были найдены закономерности, описываемые коэффициентами Фибоначчи.

Например, число 0.618 представляет собой постоянный коэффициент в так называемом золотом сечении (рис.1), где любой отрезок делится таким образом, что соотношение между его меньшей и большей частью равно соотношению между большей частью и всем отрезком. Таким образом, число 0.618 известно еще как золотой коэффициент или золотая середина. Такого типа пропорцию можно встретить абсолютно везде (рис.2).

Рисунок 1. Золотое сечение


Рисунок 2. Примеры соотношений Фибоначчи



Золотой коэффициент используется природой для построения ее частей, начиная от больших и заканчивая малыми. Современная наука считает, что Вселенная развивается по так называемой золотой спирали (рис.3), которая строится именно с помощью золотого коэффициента. Эта спираль в буквальном смысле не имеет конца и начала. Меньшие витки никогда не сходятся в одну и ту же точку, а большие неограниченно развиваются в пространстве.

Рисунок 3. Золотая спираль

Некоторые из соблюдающихся соотношений:

Самое важное заключается в том, что с помощью всех этих, в каком-то роде мистических, чисел, описываются разнородные процессы во Вселенной.

Использование чисел Фибоначчи в изменении тренда.

Изучив вышеизложенную последовательность, можно предположить использование последовательность Фибоначчи при прогнозировании цены, то есть. в техническом анализе.

Эту мысль высказал еще в 30-е годы один из самых известных людей, внесших вклад в теорию технического анализа – Ральф Нельсон Эллиотт. С тех пор конкретная польза применения этой идеи практически во всех методах технического анализа не вызывает сомнения.

Ральф Hельсон Эллиотт был инженером. После серьезной болезни в начале 1930х гг. он занялся анализом биржевых цен, особенно индекса Доу-Джонса. После ряда весьма успешных предсказаний Эллиотт опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам. Согласно Эллиотту, все эти движения следуют тому же закону, что и приливы - за приливом следует отлив, за действием (акцией) следует противодействие (реакция). Эта схема не зависит от времени, поскольку структура рынка, взятого как единое целое, остается неизменной.

Эллиотт писал: "Закон природы включает в рассмотрение важнейший элемент- ритмичность. Закон природы - это не некая система, не метод игры на рынке, а явление, характерное, видимо, для хода любой человеческой деятельности. Его применение в прогнозировании революционно."

Этот шанс предсказать движения цен побуждает легионы аналитиков трудиться денно и нощно. Вводя свой подход, Эллиотт был очень конкретен. Он писал: "любой человеческой деятельности присущи три отличительных особенности: форма, время и отношение, -и все они подчиняются суммационной последовательности Фибоначчи".

Один из простейших способов применения чисел Фибоначчи на практике – определение отрезков времени, через которое произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21, 34, 55 и т.д.) от предыдущего сходного события.

Числа Фибоначчи имеют широкое применение при определении длительности периода в Теории Циклов. За основу каждого доминантного цикла берется определенное количество дней, недель, месяцев, связанное с числами Фибоначчи. Например, длина Цикла (Волны) Кондратьева равна 54 годам. Отметим близость этой величины к фибоначчиевскому числу 55.

Один из способов применения числа Фибоначчи – построение дуг (рис.4).

Рисунок 4. Дуги.


Центр для такой дуги выбирается в точке важного потолка (top) или дна (bottom). Радиус дуг вычисляется с помощью умножения коэффициентов Фибоначчи на величину предыдущего значительного спада или подъема цен.

Выбираемые при этой коэффициенты имеют значения 38.2%, 50%, 61.8%. В соответствии со своим расположением дуги будут играть роль сопротивления или поддержки.

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«КРИВЛЯНСКАЯ СРЕДНЯЯ ШКОЛА»

ЖАБИНКОВСКОГО РАЙОНА

ЧИСЛА ФИБОНАЧЧИ И ЗОЛОТОЕ СЕЧЕНИЕ

Исследовательская работа

Работу выполнила:

учащаяся 10 класса

Садовничик Валерия Алексеевна

Руководитель:

Лавренюк Лариса Николаевна,

учитель информатики и

математики 1 квалификационной

Числа Фибоначчи и природа

Характерной чертой строения растений и их развития является спиральность. Еще Гёте, который был не только великим поэтом, но и естествоиспытателем, считал спиральность одним из характерных признаков всех организмов, проявлением самой сокровенной сущности жизни. Спирально закручиваются усики растений, по спирали происходит рост тканей в стволах деревьев, по спирали расположены семечки в подсолнечнике, спиральные движения (нутации) наблюдаются при росте корней и побегов.

На первый взгляд может показаться, что число листьев, цветков может изменяться в очень широких пределах и принимать любые значения. Но такой вывод оказывается несостоятельным. Исследования показали, что число одноименных органов в растениях не является произвольным, существуют значения, часто встречающиеся и значения, которые встречаются очень редко.

В живой природе широко распространены формы, основанные на пентагональной симметрии – морские звезды, морские ежи, цветы.

Фот.13 . Лютик

В ромашке число лепестков 55 или 89.

Фот.14 . Ромашка

Пиретрум имеет 34 лепестка.

Фот. 15. Пиретрум

Посмотрим на сосновую шишку. Чешуйки на ее поверхности расположены строго закономерно - по двум спиралям, которые пересекаются приблизительно под прямым углом. Число таких спиралей у сосновых шишек равно 8 и 13 или 13 и 21.

Фот.16 . Шишка

В корзинках подсолнечника семена также расположены по двум спиралям, их число составляет обычно 34/55, 55/89.

Фот.17 . Подсолнух

Присмотримся к ракушкам. Если пересчитать число «ребер жесткости» у первой, взятой наугад ракушки - получилось 21. Возьмем вторую, третью, пятую, десятую ракушку - у всех будет 21 ребро на поверхности. Видно, моллюски были не только хорошими инженерами, они «знали» числа Фибоначчи.

Фот.18 . Ракушка

Здесь вновь мы видим закономерное сочетание чисел Фибоначчи, расположенных рядом: 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89. Их отношение в пределе стремится к золотой пропорции, выраженной числом 0,61803…

Числа Фибоначчи и животные

Число лучей у морских звезд отвечает ряду чисел Фибоначчи или очень близко к ним и равно 5,8, 13,21,34,55.

Фот.19 . Морская звезда

Современные членистоногие очень разнообразны. У лангуста также пять пар ног, на хвосте пять перьев, брюшко делится на пять сегментов, а каждая нога состоит из пяти частей.

Фот. 20. Лангуст

У некоторых насекомых брюшко состоит из восьми сегментов, имеется три пары конечностей, состоящих из восьми частей, а из ротового отверстия выходят восемь различных усикоподобных органов. У нашего хорошо знакомого комара - три пары ног, брюшко делится на восемь сегментов, на голове пять усиков - антенн. Личинка комара членится на 12 сегментов.

Фот. 21. Комар

У мухи капустной брюшко членится на пять частей, имеется три пары ног, а личинка разделена на восемь сегментов. Каждое из двух крыльев разделено тонкими прожилками на восемь частей.

Гусеницы многих насекомых членятся на 13 сегментов, например, у шкуроеда, мукоеда, козявки мавританской. У большинства жуков-вредителей гусеница членится на 13 сегментов. Очень характерно строение ног у жуков. Каждая нога состоит из трех частей, как и у высших животных, - из плечевой, предплечья и лапы. Тонкие, ажурные лапы жуков членятся на пять частей.

Ажурные, прозрачные, невесомые крылья стрекозы - это шедевр «инженерного» мастерства природы. Какие же пропорции положены в основу конструкции этого крохотного летательного мускулолета? Отношение размаха крыльев к длине тела у многих стрекоз равно 4/3. Тело стрекозы делится на две основные части: массивный корпус и длинный тонкий хвост. В корпусе выделяется три части: голова, грудь, брюшко. Брюшко разбито на пять сегментов, а хвост состоит из восьми частей. Сюда еще необходимо добавить три пары ног с их членением на три части.

Фот. 22. Стрекоза

Нетрудно увидеть в этой последовательности членения целого на части развертывание ряда чисел Фибоначчи. Длина хвоста, корпуса и общая длина стрекозы связаны между собой золотой пропорцией: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Неудивительно, что стрекоза выглядит столь совершенной, ведь она создана по законам золотой пропорции.

Вид черепахи на фоне покрытого трещинами такыра - явление удивительное. В центре панциря большое овальное поле с крупными сросшимися роговыми пластинами, а по краям - кайма из более мелких пластинок.

Фот. 23. Черепаха

Возьмите любую черепаху - от близкой нам болотной до гигантской морской, суповой черепахи - и вы убедитесь, что рисунок на панцире у них аналогичный: на овальном поле расположено 13 сросшихся роговых пластин - 5 пластин в центре и 8 - по краям, а на периферийной кайме около 21 пластинки (у чилийской черепахи по периферии панциря точно 21 пластина). На лапах у черепах по 5 пальцев, а позвоночный столб состоит из 34 позвонков. Нетрудно заметить, что все указанные величины отвечают числам Фибоначчи. Следовательно, развитие черепахи, формирование ее тела, членение целого на части осуществлялось по закону ряда чисел Фибоначчи.

Высшим типом животных на планете являются млекопитающие. Число ребер у многих видов животных равно или близко к тринадцати. У совершенно разных млекопитающих - кита, верблюда, оленя, тура - число ребер составляет 13 ± 1. Число позвонков меняется очень сильно, особенно за счет хвостов, которые могут быть различной длины даже у одного и того же вида животного. Но у многих из них число позвонков равно или близко к 34 и 55. Так, 34 позвонка у гигантского оленя, 55 - у кита.

Скелет конечностей домашних животных состоит из трех тождественных костных звеньев: плечевой (тазовой) кости, кости предплечья (голени) и кости лапы (стопы). Стопа, в свою очередь, состоит из трех костных звеньев.

Число зубов у многих домашних животных тяготеет к числам Фибоначчи: у кролика 14 пар, у собаки, свиньи, лошади - 21 ± 1 пара зубов. У диких животных число зубов изменяется более широко: у одного сумчатого хищника оно равно 54, у гиены - 34, у одного из видов дельфинов достигает 233. Общее число костей в скелете домашних животных (с учетом зубов) у одной группы близко к 230, а у другой - к 300. Следует учесть, что в число костей скелета не включены маленькие слуховые косточки и непостоянные косточки. С их учетом общее число костей скелета у многих животных станет близким к 233, а у других - превысит 300. Как видим, членение тела, сопровождавшееся развитием скелета, характеризуется дискретным изменением числа костей в различных органах животных, и эти числа отвечают числам Фибоначчи или очень близки к ним, образуя ряд 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Отношение размеров у большинства куриных яиц равно 4:3 (у некоторых 3/2), семечек тыквы - 3:2, арбузных семечек - 3/2. Отношение длины сосновых шишек к их диаметру оказалось равным 2:1. Размеры березовых листьев в среднем очень близки к, а желудей - 5:2.

Считается, что если необходимо разбить на две части цветочный газон (трава и цветы), то не следует делать эти полосы равными по ширине, красивее будет, если взять их в отношении 5: 8 или 8: 13, т.е. воспользоваться такой пропорцией, которые называется «золотым сечением».

Числа Фибоначчи и фотография

Применительно к фотографическому искусству правило золотого сечения делит кадр двумя горизонтальными и двумя вертикальными линиями на 9 неравных прямоугольников. Чтобы облегчить себе задачу съемки сбалансированных изображений, фотографы немного упростили задачу и стали делить кадр на 9 равных прямоугольников в соответствии с числами Фибоначчи. Так правило золотого сечения трансформировалось в правило третей, которое относится к одному из принципов построения композиции.

Фот. 24. Кадр и золотое сечение

В видоискателях современных цифровых камер точки фокусировки расположены на позициях 2/8 или на воображаемых линиях, делящих кадр по правилу золотого сечения.

Фот.25. Цифровая фотокамера и точки фокусировки

Фот.26.

Фот.27. Фотография и точки фокусировки

Правило третей применимо ко всем сюжетным композициям: снимаете вы пейзаж или портрет, натюрморт или репортаж. Пока ваше чувство гармонии не стало приобретенным и бессознательным, соблюдение нехитрого правила третей позволит вам делать снимки выразительные, гармоничные, сбалансированные.

Фот.28. Фотография и отношение неба и земли 1 к 2.

Наиболее удачным примером для демонстрации является пейзаж. Принцип композиции заключается в том, что небо и суша (либо водная гладь) должны иметь соотношение 1:2. Одну треть кадра следует отвести под небо, а две трети под сушу или наоборот.

Фот.29. Фотография цветка закручивается по спирали

Фибоначчи и космос

Соотношение воды и суши на планете Земля составляет 62% и 38%.

Размеры Земли и Луны находятся в золотой пропорции.

Фот.30. Размеры Земли и Луны

На рисунке показаны относительные размеры Земли и Луны в масштабе.

Нарисуем радиус Земли. Проведем отрезок от центральной точки Земли до центральной точки Луны, длина которого будет равна). Нарисуем отрезок для соединения двух данных отрезков, чтобы сформировать треугольник. Получаем золотой треугольник.

Сатурн показывает золотую пропорцию в нескольких ее измерениях

Фот.31. Сатурн и его кольца

Диаметр Сатурна очень близко находится в отношении золотой пропорции с диаметром колец, как показано зелеными линиями. Радиус в нутренней части колец находится в отношении, очень близком к с внешним диаметром колец, как показано синей линией.

Расстояние планет от Солнца также подчиняется золотой пропорции.

Фот.32. Расстояние планет от Солнца

Золотое сечение в быту

Золотое сечение также используется, чтобы придать стиль и привлекательность в области маркетинга и дизайна повседневных потребительских товаров. Примеров множество, но проиллюстрируем лишь некоторые.

Фот.33. Эмблема Toyota

Фот.34. Золотое сечение и одежда

Фот.34. Золотое сечение и автомобильный дизайн

Фот.35. Эмблема Apple

Фот.36. Эмблема Google

Практические исследования

Теперь применим полученные знания на практике. Проведем сначала измерения среди учащихся 8 класса.

В эксперименте приняли участие 7 учащихся 8 класса, 5 девочек и 2 мальчика. Измерялся рост и расстояние от пупка до пола. Результаты отражены в таблицы. Одна учащаяся идеального телосложения, для неё отношение роста к расстоянию от пупка до пола равно 1,6185. Ещё одна учащаяся очень близка к золотому сечению, . В результате проведенных измерений 29% участников имеют идеальные параметры. Эти результаты в процентах тоже близки к золотому сечению 68% и 32%. Для первой испытуемой мы видим, что 3 отношения из 5 близки к золотому сечению, в процентном соотношении это 60% к 40%. А для второй – 4 из 5, то есть 80% к 20%.

Если внимательно посмотреть на телевизионную картинку, то ее размеры будут 16 к 9 или 16 к 10, что тоже близко к золотому сечению.

Проводя измерения и построения в CorelDRAW X4 и используя кадр новостного канала Россия 24, можно обнаружить следующее:

а) отношение длины к ширине кадра равно 1,7.

б) человек в кадре расположен ровно в точках фокусировки, расположенных на расстоянии 3/8.

Далее обратимся к официальному микроблогу газеты «Известия», другими словами, к твиттер-страничке. Для экрана монитора со сторонами 4:3видим, что «шапка» странички составляет 3/8 от всей высоты странички.

Внимательно посмотрев на фуражки военных, можно обнаружить следующее:

а) фуражка министра обороны РФ имеет отношение указанных частей 21,73 к 15,52, равное 1,4.

б) фуражка пограничника РБ имеет размеры указанных частей 44,42 к 21,33 , что равно 2,1.

в) фуражка времен СССР имеет размеры указанных частей 49,67 к 31,04, что равно 1,6.

Для данной модели подойдет длина платья 113,13 мм.

Если «дорисовать» платье до «идеальной» длины, то получим вот такую картинку.

Все измерения имеют некоторую погрешность, так как проводились по фотографии, что не мешает увидеть тенденцию – всё, что идеально, содержит золотое сечение в той или иной степени.

Заключение

Мир живой природы предстает перед нами совсем иным - подвижным, изменчивым и удивительно разнообразным. Жизнь демонстрирует нам фантастический карнавал разнообразия и неповторимости творческих комбинаций! Мир неживой природы - это прежде всего мир симметрии, придающий его творениям устойчивость и красоту. Мир природы - это прежде всего мир гармонии, в которой действует "закон золотого сечения".

Золотое сечение” представляется тем моментом истины, без выполнения которого не возможно, вообще, что-либо сущее. Что бы мы ни взяли элементом исследования, “золотое сечение” будет везде; если даже нет видимого его соблюдения, то оно обязательно имеет место на энергетическом, молекулярном или клеточном уровнях.

Воистину природа оказывается однообразной (и потому единой!) в проявлении своих фундаментальных закономерностей. Найденные ею «наиболее удачные» решения распространяются на самые различные объекты, на самые разнообразные формы организации. Непрерывность и дискретность организации исходит из двуединства материи - ее корпускулярной и волновой природы, проникает в химию, где дает законы целочисленной стехиометрии, химические соединения постоянного и переменного состава. В ботанике непрерывность и дискретность находят свое специфическое выражение в филлотаксисе, квантах дискретности, квантах роста, единстве дискретности и непрерывности пространственно-временной организации. И вот уже в числовых соотношениях органов растений появляется «принцип кратных отношений», введенный А. Гурским, - полное повторение основного закона химии.

Конечно, заявление, что все эти явления построены на последовательности Фибоначчи, звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (). Часть ряда выглядит примерно так: ... ; ; ; ; ; ; ; ; ; ; ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим =1,618 , тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618 , но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Список используемых источников

    Васютинский, Н. Золотая пропорция/ Васютинский Н, Москва, Молодая гвардия, 1990, - 238 с. - (Эврика).

    Воробьев, Н.Н. Числа Фибоначчи,

    Режим доступа: . Дата доступа: 17. 11. 2015.

    Режим доступа: . Дата доступа: 16. 11. 2015.

    Режим доступа: . Дата доступа: 13. 11. 2015.

Последовательность Фибоначчи, известная всем по фильму "Код Да Винчи" - ряд цифр, описанный в виде загадки Итальянским математиком Леонардо Пизанским, более известным под прозвищем Фибоначчи, в XIII веке. Вкратце суть загадки:

Кто-то поместил пару кроликов в некоем замкнутом пространстве, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что каждый месяц пара кроликов производит на свет другую пару, а способность к производству потомства у них появляется по достижению двухмесячного возраста.

Последовательность Фибоначчи и Кролики
В итоге получается такой ряд цифр: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, где через запятую показано количество пар кроликов в каждом из двенадцати месяцев. Его можно продолжать бесконечно долго. Его суть в том, что каждое следующее число является суммой двух предыдущих.

У этого ряда есть несколько математических особенностей, которых обязательно нужно коснуться. Он асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.

Так отношение какого-либо члена ряда к предшествующему ему колеблется около числа 1,618, через pаз то превосходя, то не достигая его. Отношение к следующему аналогично приближается к числу 0,618, что обратно пропорционально 1,618. Если мы будем делить элементы через одно, то получим числа 2,618 и 0,382, которые так же являются обратно пропорциональными. Это так называемые коэффициенты Фибоначчи.

К чему всё это?

Так мы приближаемся к одному из самых загадочных явлений природы. Смекалистый Леонардо по сути не открыл ничего нового, он просто напомнил миру о таком явлении, как Золотое Сечение, которое не уступает по значимости теореме Пифагора.

Все окружающие нас предметы мы различаем в том числе и по форме. Какие-то нам нравятся больше, какие-то меньше, некоторые вовсе отталкивают взгляд. Иногда интерес может быть продиктован жизненной ситуацией, а порой красотой наблюдаемого объекта. Симметричная и пропорциональная форма, способствует наилучшему зрительному восприятию и вызывает ощущение красоты и гармонии. Целостный образ всегда состоит из частей разного размера, находящихся в определённом соотношении друг с другом и целым. Золотое сечение - высшее проявление совершенства целого и его частей в науке, искусстве и природе.

Если на простом примере, то Золотое Сечение - это деление отрезка на две части в таком соотношении, при котором большая часть относится к меньшей, как их сумма (весь отрезок) к большей.

Золотое Сечение - Отрезок
Если мы примем весь отрезок c за 1, то отрезок a будет равен 0,618, отрезок b - 0,382, только так будет соблюдено условие Золотого Сечения (0,618/0,382=1,618; 1/0,618=1,618). Отношение c к a равно 1,618, а с к b 2,618. Это всё те же, уже знакомые нам, коэффициенты Фибоначчи.

Разумеется есть золотой прямоугольник, золотой треугольник и даже золотой кубоид. Пропорции человеческого тела во многих соотношениях близки к Золотому Сечению.

Золотое сечение и Человеческое тело


Изображение: marcus-frings.de

Последовательность Фибоначчи - Анимация

Но самое интересное начинается, когда мы объединим полученные знания. На рисунке наглядно показана связь между последовательностью Фибоначчи и Золотым сечением. Мы начинаем с двух квадратов первого размера. Сверху добавляем квадрат второго размера. Подрисовываем рядом квадрат со стороной, равной сумме сторон двух предыдущих, третьего размера. По аналогии появляется квадрат пятого размера. И так далее пока не надоест, главное, чтобы длина стороны каждого следующего квадрата равнялась сумме длин сторон двух предыдущих. Мы видим серию прямоугольников, длины сторон, которых являются числами Фибоначчи, и, как не странно, они называются прямоугольниками Фибоначчи.

Если мы проведём плавную линий через углы наших квадратов, то получим ни что иное, как спираль Архимеда, увеличение шага которой всегда равномерно.

Спираль Фибоначчи

Ничего не напоминает?


Фото: ethanhein on Flickr

И не только в раковине моллюска можно найти спирали Архимеда, а во многих цветах и растениях, просто они не такие явные.

Алое многолистный:


Фото: brewbooks on Flickr

Броколи романеско:


Фото: beart.org.uk

Подсолнечник:


Фото: esdrascalderan on Flickr

Сосновая шишка:


Фото: mandj98 on Flickr

И тут самое время вспомнить о Золотом Сечении! Ни одни ли из самых прекрасных и гармоничных творений природы изображены на этих фотографиях? И это далеко не все. Присмотревшись, можно найти похожие закономерности во многих формах.

Конечно заявление, что все эти явление построены на последовательности Фибоначчи звучит слишком громко, но тенденция на лицо. Да и к тому же сама она далека от совершенства, как и всё в этом мире.

Есть предположение, что ряд Фибоначчи - это попытка природы адаптироваться к более фундаментальной и совершенной золотосечённой логарифмической последовательности, которая практически такая же, только начинается из ниоткуда и уходит в никуда. Природе же обязательно нужно какое-то целое начало, от которого можно оттолкнуться, она не может создать что-то из ничего. Отношения первых членов последовательности Фибоначчи далеки от Золотого Сечения. Но чем дальше мы продвигаемся по ней, тем больше эти отклонения сглаживаются. Для определения любого ряда достаточно знать три его члена, идущие друг за другом. Но только не для золотой последовательности, ей достаточно двух, она является геометрической и арифметической прогрессией одновременно. Можно подумать, будто она основа для всех остальных последовательностей.

Каждый член золотой логарифмической последовательности является степенью Золотой Пропорции (z). Часть ряда выглядит примерно так: ... z-5; z-4; z-3; z-2; z-1; z0; z1; z2; z3; z4; z5 ... Если мы округлим значение Золотой пропорции до трёх знаков, то получим z=1,618, тогда ряд выглядит так: ... 0,090 0,146; 0,236; 0,382; 0,618; 1; 1,618; 2,618; 4,236; 6,854; 11,090 ... Каждый следующий член может быть получен не только умножением предыдущего на 1,618, но и сложением двух предыдущих. Таким образом экспоненциальный рост обеспечивается путем простого сложения двух соседних элементов. Это ряд без начала и конца, и именно на него пытается быть похожей последовательность Фибоначчи. Имея вполне определённое начало, она стремится к идеалу, никогда его не достигая. Такова жизнь.

И всё-таки, в связи со всем увиденным и прочитанным, возникают вполне закономерные вопросы:
От куда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Было ли когда-то всё так, как он хотел? И если да, то почему сбилось? Мутации? Свободный выбор? Что же будет дальше? Спираль скручивается или раскручивается?

Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появится ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, потом тринадцатью, 21, 34, 55...

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

ВЫСШЕЕ НАЗНАЧЕНИЕ МАТЕМАТИКИ СОСТОИТ В ТОМ, ЧТОБЫ НАХОДИТЬ СКРЫТЫЙ ПОРЯДОК В ХАОСЕ, КОТОРЫЙ НАС ОКРУЖАЕТ.

Винер Н.

Человек всю жизнь стремится к знаниям, пытается изучить окружающий его мир. И в процессе наблюдений у него возникают вопросы, на которые требуется найти ответы. Ответы находятся, но появляются новые вопросы. В археологических находках, в следах цивилизации, отдаленных друг от друга во времени и в пространстве, встречается один и тот же элемент - узор в виде спирали. Некоторые считают его символом солнца и связывают с легендарной Атлантидой, но истинное его значение неизвестно. Что общего между формами галактики и атмосферного циклона, расположением листьев на стебле и семян в подсолнухе? Эти закономерности сводятся к так называемой «золотой» спирали, удивительной последовательности Фибоначчи, открытой великим итальянским математиком XIII века.

История возникновения чисел Фибоначчи

Впервые о том, что такое числа Фибоначчи, я услышал от учителя математики. Но, кроме того, каким образом складывается последовательность этих чисел, я не знал. Вот чем на самом деле знаменита эта последовательность, каким образом она влияет на человека, я и хочу вам рассказать. О Леонардо Фибоначчи известно немного. Нет даже точной даты его рождения. Известно, что он родился в 1170 году в семье купца, в городе Пизе в Италии. Отец Фибоначчи часто бывал в Алжире по торговым делам, и Леонардо изучал там математику у арабских учителей. Впоследствии он написал несколько математических трудов, наиболее известным из которых является «Книга об абаке», которая содержит почти все арифметические и алгебраические сведения того времени. 2

Числа Фибоначчи - это последовательность чисел, обладающая рядом свойств. Эту числовую последовательность Фибоначчи открыл случайно, когда пытался в 1202 году решить практическую задачу о кроликах. «Некто поместил пару кроликов в некоем месте, огороженном со всех сторон со всех сторон стеной, чтобы узнать, сколько пар кроликов родится в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения». При решении задачи он учел, что каждая пара кроликов порождает на протяжении жизни еще две пары, а затем погибает. Так появилась последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, … В этой последовательности каждое следующее число равно сумме двух предыдущих. Её назвали последовательностью Фибоначчи. Математические свойства последовательности

Мне захотелось исследовать эту последовательность, и я выявил некоторые её свойства. Эта закономерность имеет большое значение. Последовательность все медленнее приближается к некоему постоянному отношению, равному примерно 1, 618, а отношение любого числа к последующему примерно равно 0, 618.

Можно заметить ряд любопытных свойств чисел Фибоначчи: два соседних числа взаимно просты; каждое третье число четно; каждое пятнадцатое оканчивается нулем; каждое четвертое кратно трем. Если выбрать любые 10 соседних чисел из последовательности Фибоначчи и сложить их вместе, всегда получится число, кратное 11. Но это еще не все. Каждая сумма равна числу 11, умноженному на седьмой член взятой последовательности. А вот еще одна любопытная особенность. Для любого n сумма первыхn членов последовательности всегда будет равна разности (n+ 2) - го и первого члена последовательности. Этот факт можно выразить формулой: 1+1+2+3+5+…+an=a n+2 - 1. Теперь в нашем распоряжении имеется следующий трюк: чтобы найти сумму всех членов

последовательности между двумя данными членами, достаточно найти разность соответствующих (n+2)-x членов. Например, a 26 +…+a 40 =a 42 - a 27 . Теперь поищем связь между Фибоначчи, Пифагором и «золотым сечением». Самым известным свидетельством математического гения человечества является теорема Пифагора: в любом прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов: c 2 =b 2 +a 2 . С геометрической точки зрения мы можем рассматривать все стороны прямоугольного треугольника, как стороны трех построенных на них квадратов. Теорема Пифагора говорит о том, что общая площадь квадратов, построенных на катетах прямоугольного треугольника, равна площади квадрата, построенного на гипотенузе. Если длины сторон прямоугольного треугольника являются целыми числами, то они образуют группу из трех чисел, называемых пифагоровыми тройками. С помощью последовательности Фибоначчи можно отыскать такие тройки. Возьмем любые четыре последовательные числа из последовательности, например, 2, 3, 5 и 8, и построим еще три числа следующим образом:1) произведение двух крайних чисел: 2*8=16;2) удвоенное произведение двух чисел в середине: 2*(3*5)=30;3) сумма квадратов двух средних чисел: 3 2 +5 2 =34; 34 2 =30 2 +16 2 . Этот метод работает для любых четырех последовательных чисел Фибоначчи. Предсказуемым образом ведут себя любые три последовательных числа ряда Фибоначчи. Если перемножить из них два крайних и результат сравнить с квадратом среднего числа, то результат всегда будет отличаться на единицу. Например, для чисел 5, 8 и 13 получим: 5*13=8 2 +1. Если рассмотреть это свойство с точки зрения геометрии, можно заметить нечто странное. Разделим квадрат

размером 8х8 (всего 64 маленьких квадратика) на четыре части, длины сторон которых равны числам Фибоначчи. Теперь из этих частей построим прямоугольник размером 5х13. Его площадь составляют 65 маленьких квадратиков. Откуда же берется дополнительный квадрат? Все дело в том, что идеальный прямоугольник не образуется, а остаются крошечные зазоры, которые в сумме и дают эту дополнительную единицу площади. Треугольник Паскаля также имеет связь с последовательностью Фибоначчи. Надо только написать строки треугольника Паскаля одну под другой, а затем складывать элементы по диагонали. Получится последовательность Фибоначчи.

Теперь рассмотрим «золотой» прямоугольник, одна сторона которого в 1,618 раз длиннее другой. На первый взгляд он может показаться нам обычным прямоугольником. Тем не менее, давайте проделаем простой эксперимент с двумя обыкновенными банковскими картами. Положим одну из них горизонтально, а другую вертикально так, чтобы их нижние стороны находились на одной линии. Если в горизонтальной карте провести диагональную линию и продлить ее, то увидим, что она пройдет в точности через правый верхний угол вертикальной карты - приятная неожиданность. Может быть, это случайность, а может, такие прямоугольники и другие геометрические формы, использующие «золотое сечение», особенно приятны глазу. Думал ли Леонардо да Винчи о золотом сечении, работая над своим шедевром? Это кажется маловероятным. Однако можно утверждать, что он придавал большое значение связи между эстетикой и математикой.

Числа Фибоначчи в природе

Связь золотого сечения с красотой - вопрос не только человеческого восприятия. Похоже, сама природа выделила Ф особую роль. Если в «золотой» прямоугольник последовательно вписать квадраты, затем в каждом квадрате провести дугу, то получится элегантная кривая, которая называется логарифмической спиралью. Она вовсе не является математическим курьезом. 5

Наоборот, эта замечательная линия часто встречается в физическом мире: от раковины наутилуса до рукавов галактик, и в элегантной спирали лепестков распустившейся розы. Связи между золотым сечением и числами Фибоначчи многочисленны и неожиданны. Рассмотрим цветок, внешне сильно отличающийся от розы, - подсолнечник с семенами. Первое, что мы видим, - семена расположены по спиралям двух видов: по часовой стрелке и против часовой стрелки. Если посчитаем спирали почасовой стрелки, то получим два, казалось бы, обычных числа: 21 и 34. Это не единственный пример, когда можно встретить числа Фибоначчи в структуре растений.

Природа даёт нам многочисленные примеры расположения однородных предметов, описываемых числами Фибоначчи. В разнообразных спиралевидных расположениях мелких частей растений обычно можно усмотреть два семейства спиралей. В одном из этих семейств спирали завиваются по часовой стрелке, а в другом - против. Числа спиралей одного и другого типов часто оказываются соседними числами Фибоначчи. Так, взяв молодую сосновую веточку, легко заметить, что хвоинки образуют две спирали, идущие слева снизу вправо вверх. На многих шишках семена расположены в трёх спиралях, полого навивающихся на стержень шишки. Они же расположены в пяти спиралях, круто навивающихся в противоположном направлении. В крупных шишках удаётся наблюдать 5 и 8, и даже 8 и 13 спиралей. Хорошо заметны спирали Фибоначчи и на ананасе: обычно их бывает 8 и 13.

Отросток цикория делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок ещё меньшего размера и снова выброс. Импульсы его роста постепенно уменьшаются в пропорции «золотого» сечения. Чтобы оценить огромную роль чисел Фибоначчи, достаточно лишь взглянуть на красоту окружающей нас природы. Числа Фибоначчи можно найти в количестве

ответвлений на стебле каждого растущего растения и в числе лепестков.

Пересчитаем лепестки некоторых цветов —ириса с его 3 лепестками, примулы с 5 лепестками, амброзии с 13 лепестками, нивяника с 34 лепестками, астры с 55 лепестками и т.д. Случайно ли это, или это закон природы? Посмотрите на стебли и цветы тысячелистника. Таким образом, суммарной последовательностью Фибоначчи можно легко трактовать закономерность проявлений «Золотых» чисел, встречаемых в природе. Эти законы действуют независимо от нашего сознания и желания принимать их или нет. Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов, в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Числа Фибоначчи в архитектуре

«Золотое сечение» проявляется и во многих замечательных архитектурных творениях на протяжении всей истории человечества. Оказывается, еще древнегреческие и древнеегипетские математики знали эти коэффициенты задолго до Фибоначчи и называли их «золотым сечением». Принцип «золотого сечения» греки использовали при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Достижения в области строительной техники и разработки новых материалов открыли новые возможности для архитекторов ХХ века. Американец Фрэнк Ллойд Райт был одним из главных сторонников органической архитектуры. Незадолго до смерти он спроектировал музей Соломона Гуггенхайма в Нью-Йорке, представляющий собой опрокинутую спираль, а интерьер музея напоминает раковину наутилуса. Польско-израильский архитектор Цви Хекер также использовал спиральные конструкции в проекте школы имени Хайнца Галински в Берлине, построенной в 1995 году. Хекер начал с идеи подсолнечника с центральным кругом, откуда

расходятся все архитектурные элементы. Здание представляет собой сочетание

ортогональных и концентрических спиралей, символизируя взаимодействие ограниченных человеческих знаний и управляемого хаоса природы. Его архитектура имитирует растение, которое следует за движением Солнца, поэтому классные комнаты освещены в течение всего дня.

В Куинси-парке, расположенном в Кембридже, штат Массачусетс (США), «золотую» спираль можно встретить часто. Парк был спроектирован в 1997 году художником Дэвидом Филлипсом и находится недалеко от Математического института Клэя. Это заведение является известным центром математических исследований. В Куинси-парке можно прогуливаться среди «золотых» спиралей и металлических кривых, рельефов из двух раковин и скалы с символом квадратного корня. На табличке написана информация о «золотой» пропорции. Даже парковка для велосипедов использует символ Ф.

Числа Фибоначчи в психологии

В психологии отмечены переломные моменты, кризисы, перевороты, знаменующие на жизненном пути человека преобразования структуры и функций души. Если человек успешно преодолел эти кризисы, то становится способным решать задачи нового класса, о которых раньше даже не задумывался.

Наличие коренных изменений дает основание рассматривать время жизни в качестве решающего фактора развития духовных качеств. Ведь природа отмеряет нам время не щедро, «ни сколько будет, столько и будет», а ровно столько, чтобы процесс развития материализовался:

    в структурах тела;

    в чувствах, мышлении и психомоторике — пока они не приобретут гармонию , необходимую для возникновения и запуска механизма

    творчества;

    в структуре энергопотенциала человека.

Развитие тела нельзя остановить: ребенок становится взрослым человеком. С механизмом же творчества не так все просто. Его развитие можно остановить и изменить его направление.

Существует ли шанс догнать время? Безусловно. Но для этого нужно выполнить огромную работу над собой. То, что развивается свободно, естественным путем, не требует специальных усилий: ребенок свободно развивается и не замечает этой огромной работы, потому что процесс свободного развития создается без насилия над собой.

Как понимается смысл жизненного пути в обыденном сознании? Обыватель видит его так: у подножия — рождение, на вершине — расцвет сил, а потом — все идет под горку.

Мудрец же скажет: все намного сложнее. Восхождение он разделяет на этапы: детство, отрочество, юность… Почему так? Мало, кто способен ответить, хотя каждый уверен, что это замкнутые, целостные этапы жизни.

Чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека.

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет: 0 — начало отсчета — ребенок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

    1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

    2 — понимает речь и действует, пользуясь словесными указаниями;

    3 — действует посредством слова, задает вопросы;

    5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребенку охватить мир во всей его целостности;

    8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии жизни;

    13 — начинает работать механизм таланта, направленный на превращение приобретенного в процессе наследования материала, развивая свой собственный талант;

    21 — механизм творчества приблизился к состоянию гармонии и делаются попытки выполнять талантливую работу;

    34— гармония мышления, чувств, воображения и психомоторики: рождается способность к гениальной работе;

    55 — в этом возрасте, при условии сохраненной гармонии души и тела, человек готов стать творцом. И так далее…

Что же такое засечки «Чисел Фибоначчи»? Они могут быть сравнимы с плотинами на жизненном пути. Эти плотины ожидают каждого из нас. Прежде всего необходимо преодолеть каждую их них, а потом терпеливо поднимать свой уровень развития, пока в один прекрасный день она не развалится, открывая свободному течению путь к следующей.

Теперь, когда нам понятен смысл этих узловых точек возрастного развития, попробуем расшифровать, как все это происходит.

В1 год ребенок овладевает ходьбой. До этого он познавал мир передней частью головы. Теперь же он познает мир руками — исключительная привилегия человека. Животное передвигается в пространстве, а он, познавая, овладевает пространством и осваивает территорию, на которой живет.

2 года — понимает слово и действует в соответствии с ним. Это значит, что:

ребенок усваивает минимальное количество слов — смыслов и образов действий;

    пока что не отделяет себя от окружающей среды и слит в целостность с окружающим,

    поэтому действует по чужому указанию. В этом возрасте он самый послушный и приятный для родителей. Из человека чувственного ребенок превращается в человека познающего.

3 года — действие при помощи собственного слова. Уже произошло отделение этого человека от окружающей среды — и он учится быть самостоятельно действующей личностью. Отсюда он:

    сознательно противостоит среде и родителям, воспитателям в детском саду и т.д.;

    осознает свой суверенитет и борется за самостоятельность;

    старается подчинить своей воле близких и хорошо знакомых людей.

Теперь для ребенка слово — это действие. С этого начинается действующий человек.

5 лет — «возраст грации». Он — олицетворение гармонии. Игры, танцы, ловкие движения — все насыщено гармонией, которой человек старается овладеть собственными силами. Гармоничная психомоторика содействует приведению к новому состоянию. Поэтому ребенок направлен на психомоторную активность и стремится к максимально активным действиям.

Материализация продуктов работы чувствительности осуществляется посредством:

    способности к отображению окружающей среды и себя как части этого мира (мы слышим, видим, прикасаемся, нюхаем и т.д. — все органы чувств работают на этот процесс);

    способности к проектированию внешнего мира, в том числе и себя

    (создание второй природы, гипотез — сделать завтра то и другое, построить новую машину, решить проблему), силами критичности мышления, чувств и воображения;

    способности к созиданию второй, рукотворной природы, продуктов деятельности (реализация задуманного, конкретные умственные или психомоторные действия с конкретными предметами и процессами).

После 5 лет механизм воображения выходит вперед и начинает доминировать над остальными. Ребенок выполняет гигантскую работу, создавая фантастические образы, и живет в мире сказок и мифов. Гипертрофированность воображения ребенка вызывает у взрослых удивление, потому что воображение никак не соответствует действительности.

8 лет — на передний план выходят чувства и возникают собственные мерки чувств (познавательных, нравственных, эстетических), когда ребенок безошибочно:

    оценивает известное и неизвестное;

    отличает моральное от аморального, нравственное от безнравственного;

    прекрасное от того, что угрожает жизни, гармонию от хаоса.

13 лет — начинает работать механизм творчества. Но это не значит, что он работает на полную мощность. На первый план выходит один из элементов механизма, а все остальные содействуют его работе. Если и в этом возрастном периоде развития сохраняется гармония, которая почти все время перестраивает свою структуру, то отрок безболезненно доберется до следующей плотины, незаметно для себя преодолеет ее и будет жить в возрасте революционера. В возрасте революционера отрок должен сделать новый шаг вперед: отделиться от ближайшего социума и жить в нем гармоничной жизнью и деятельностью. Не каждый может решить эту задачу, возникающую перед каждым из нас.

21 год. Если революционер успешно преодолел первую гармоничную вершину жизни, то его механизм таланта способен выполнять талантливую

работу. Чувства (познавательные, моральные или эстетические) иногда затмевают мышление, но в общем все элементы работают слаженно: чувства открыты миру, а логическое мышление способно с этой вершины называть и находить меры вещей.

Механизм творчества, развиваясь нормально, достигает состояния, позволяющего получать определенные плоды. Он начинает работать. В этом возрасте вперед выходит механизм чувств. По мере того, как воображение и его продукты оцениваются чувствами и мышлением, между ними возникает антагонизм. Побеждают чувства. Эта способность постепенно набирает мощность, и отрок начинает ею пользоваться.

34 года — уравновешенность и гармоничность, продуктивная действенность таланта. Гармония мышления, чувств и воображения, психомоторики, которая пополняется оптимальным энергопотенциалом, и механизм в целом — рождается возможность исполнять гениальную работу.

55 лет — человек может стать творцом. Третья гармоничная вершина жизни: мышление подчиняет себе силу чувств.

Числа Фибоначчи называют этапы развития человека. Пройдет ли человек этот путь без остановок, зависит от родителей и учителей, образовательной системы, а дальше — от него самого и от того, как человек будет познавать и преодолевать самого себя.

На жизненном пути человек открывает 7 предметов отношений:

    От дня рождения до 2-х лет — открытие физического и предметного мира ближайшего окружения.

    От 2-х до 3-х лет — открытие себя: «Я — Сам».

    От 3-х до 5-ти лет — речь, действенный мир слов, гармонии и системы «Я — Ты».

    От 5-ти до 8-ми лет — открытие мира чужих мыслей, чувств и образов — системы «Я — Мы».

    От 8 до 13 лет — открытие мира задач и проблем, решенных гениями и талантами человечества — системы «Я — Духовность».

    От 13 до 21 года — открытие способностей самостоятельно решать всем известные задачи, когда мысли, чувства и воображение начинают активно работать, возникает система «Я — Ноосфера».

    От 21 до 34 лет — открытие способности создавать новый мир или его фрагменты — осознание самоконцепции «Я — Творец».

Жизненный путь имеет пространственно-временную структуру. Он состоит из возрастных и индивидуальных фаз, определяемых по многим параметрам жизни. Человек овладевает в определенной мере обстоятельствами своей жизни, становится творцом своей истории и творцом истории общества. Подлинно творческое отношение к жизни, однако, появляется далеко не сразу и даже не у всякого человека. Между фазами жизненного пути существуют генетические связи, и это обусловливает закономерный его характер. Отсюда следует, что в принципе можно предсказывать будущее развитие на основе знания о ранних его фазах.

Числа Фибоначчи в астрономии

Из истории астрономии известно, что И.Тициус, немецкий астроном XVIII в., с помощью ряда Фибоначчи нашёл закономерность и порядок в расстояниях между планетами солнечной системы. Но один случай, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Но после смерти Тициуса в начале XIX в. сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов.

Заключение

В процессе исследования я выяснил, что числа Фибоначчи нашли широкое применение в техническом анализе цен на бирже. Один из простейших способов применения чисел Фибоначчи на практике - определение отрезков времени, через которое произойдёт то или иное событие, например, изменение цены. Аналитик отсчитывает определённое количество фибоначчиевских дней или недель (13,21,34,55 и т.д.) от предыдущего сходного события и делает прогноз. Но в этом мне ещё слишком сложно разобраться. Хотя Фибоначчи и был величайшим математиком средних веков, единственные памятники Фибоначчи - это статуя напротив Пизанской башни и две улицы, которые носят его имя: одна - в Пизе, а другая - во Флоренции. И всё-таки, в связи со всем увиденным и прочитанным мною возникают вполне закономерные вопросы. Откуда взялись эти числа? Кто этот архитектор вселенной, попытавшийся сделать её идеальной? Что же будет дальше? Найдя ответ на один вопрос, получишь следующий. Разгадаешь его, получишь два новых. Разберёшься с ними, появятся ещё три. Решив и их, обзаведёшься пятью нерешёнными. Потом восьмью, тринадцатью и т.д. Не забывайте, что на двух руках по пять пальцев, два из которых состоят из двух фаланг, а восемь - из трёх.

Литература:

    Волошинов А.В. «Математика и искусство», М., Просвещение, 1992г.

    Воробьёв Н.Н. «Числа Фибоначчи», М., Наука, 1984г.

    Стахов А.П. «Код да Винчи и ряд Фибоначчи», Питер формат, 2006 г.

    Ф. Корвалан «Золотое сечение. Математический язык красоты», М., Де Агостини, 2014 г.

    Максименко С.Д. «Сенситивные периоды жизни и их коды».

    «Числа Фибоначчи». Википедия