11 февраля представители международного проекта Лазерно-интерферометрической гравитационно-волновой обсерватории LIGO объявили о первой в истории .

Считается, что тёмная энергия является движущей силой, которая обеспечивает постоянное расширение Вселенной. В таком случае наблюдение нескольких слияний чёрных дыр может подсказать её природу. Такие параметры сигнала, как частота и амплитуда волн многое говорят об их источнике. А сравнивая мощность столкновения, определённую с помощью обычных телескопов, с силой гравитационных колебаний, измеренных детекторами, можно определить, как далеко произошло событие и насколько расширилось пространство за то время, пока волны летели к Земле.

"Эта мера эффекта, который оказывает тёмная энергия, должна быть сильнее и надёжнее всего, что мы используем в настоящее время, - говорит астрофизик Ави Лёб (Avi Loeb) из Гарвардского университета. - Наблюдения всего за несколькими слияниями чёрных дыр могут изменить всё, а если их будут десятки, это станет новым направлением в космологии".

Открытие гравитационных волн может стать серьёзной проверкой для общей теории относительности Альберта Эйнштейна. Ведь с их помощью можно подтвердить или опровергнуть основной принцип теории эквивалентности сил гравитации и инерции , из которого следует, что силы гравитационного взаимодействия пропорциональны массе тела и воздействуют на все массы (тела разных масс) одинаково.

Теперь учёные могут определить, как снижается сила гравитационных волн по мере их движения на большие расстояния. И если сила уменьшается не так, как это предсказывают модели, это станет серьёзным вызовом одной из базовых физических теорий.

Ещё одним направлением, в котором наука может продвинуться благодаря последнему открытию, является поиск следов так называемой космической инфляции . Согласно инфляционной космологической модели вскоре после Большого взрыва Вселенная расширялась гораздо быстрее, чем в стандартной модели горячей Вселенной .

Если после успеха проекта LIGO по всему миру появятся новые, ещё более чувствительные , они, возможно, смогут зарегистрировать более короткие волны, возникшие в период усиленного расширения молодой Вселенной. Согласно теории, в то время пространство было непроницаемо для света и электромагнитного излучения, поэтому гравитационные колебания могут быть единственными "свидетелями" этого периода.

"Потенциально мы можем проследить почти весь путь до Большого взрыва, - говорит Деян Стойкович (Dejan Stojkovic) из Нью-Йоркского университета. - LIGO не сможет ощутить такие колебания, но теперь, когда мы знаем, что волны существуют, будет намного легче убедить людей вкладывать деньги в создание других видов детекторов".

Наконец, гравитационные волны могут стать долгожданным ключом к Теории Великого объединения , которая предполагает, что на раннем этапе развития Вселенной все четыре фундаментальные силы - гравитационное, электромагнитное, сильное и слабое взаимодействия, были объединены в одну силу. По мере расширения и остывания Вселенной силы разделились по неясным пока причинам. И снова следы этих событий в будущем могут быть найдены с помощью особо чувствительных детекторов.

В любом случае, ближайшее будущее обещает быть интересным. Ведь новые исследования гравитационных волн могут окончательно доказать правильность многих базовых моделей или, наоборот, полностью перевернуть наши представления о Вселенной.

На сегодняшний день загадка о том, откуда появилось темное вещество так и не разгадана. Есть теории, которые предполагают, что оно состоит из межзвездного газа низкой температуры. При этом вещество не может давать какое-либо излучение. Однако существуют теории, направленные против этой идеи. Они говорят о том, что газ способен разогреваться, что приводит к тому, что они становятся обычными «барионными» веществами. В пользу этой теории свидетельствует то, что масса газа в холодном состоянии не может устранить дефицит, который возникает при этом.

В теориях о темном веществе столько вопросов, что стоит разобраться в этом чуть подробнее.

Чем является темное вещество?

Вопрос о том, что же такое темное вещество, появился примерно 80 лет назад. Еще в начале 20 века. В то время астроному из Швейцарии Ф. Цвикки пришла в голову идея о том, что масса всех галактик в реальности больше, чем масса всех тех объектов, которые можно увидеть собственными газами в телескоп. Все многочисленные подсказки намекали на то, что в космосе существует нечто неведомое, что обладает внушительной массой. Этой необъяснимой субстанции было решено дать название «темное вещество».

Это невидимое вещество занимает не менее четверти от всей Вселенной. Особенность этого вещества в том, что его частицы плохо вступают во взаимодействие между собой и с обычным другим веществом. Это взаимодействие настолько слабое, что ученые не могут даже зафиксировать это. По факту есть только признаки влияния от частиц.

Изучение этого вопроса ведется самыми большими умами по всему миру, поэтому даже самые большие скептики в мире считают, что получится уловить частицы вещества. Самая желаемая цель – сделать это в условиях лаборатории. В шахтах на большой глубине ведутся работы, такие условия для экспериментов необходимы, чтобы исключить помехи, которые оказывают частицы лучей из космоса.

Есть вероятность, что много новой информации удастся получить благодаря современным ускорителям, в частности, с помощью Большого адронного коллайдера.

Частицы темного вещества имеют одну странную особенность - взаимоуничтожение. В результате таких процессов появляется гамма-излучение, античастицы и частицы (такие как электрон и позитрон). Поэтому астрофизики делают попытки найти следы гамма-излучения или античастиц. Для этого используются различные наземные и космические установки.

Доказательства существования темного вещества

Самыми первыми сомнениями в правильности расчетов массы Вселенной, как уже говорилось, поделился астроном из Швейцарии Ф. Цвикки. Для начала он решил измерить скорость галактик из скопления Волос Вероники двигавшихся вокруг центра. И результат его работ несколько озадачил его, потому что скорость движения этих галактик оказалась выше, чем он предполагал. Кроме того, он предварительно рассчитал это значение. Но результаты не совпали.

Вывод был очевиден: реальная масса скопления была гораздо больше, чем видимая. Это могло объясниться тем, что большая часть вещества, которое есть в этой части Вселенной, не может быть видима, а также за ней невозможно понаблюдать. Это вещество проявляет свои свойство только в виде массы.

Ряд гравитационных экспериментов подтвердил присутствие невидимой массы в галактических скоплениях. В теории относительности есть некоторое толкование этого явления. Если ей следовать, то каждая масса способна к деформированию пространства, кроме того, словно линза она искривляет прямой поток световых лучей. Галактическое скопление вызывает искажение, его влияние настолько сильно, что становится заметным. Сильнее всего искажается вид галактики, которая располагается непосредственно за скоплением. По этому искажению и рассчитывается то, как распределилось вещество в этом скоплении. Так и измеряют реальную массу. Она неизменно оказывается больше в несколько раз, чем масса видимой материи.

Спустя четыре десятилетия после работ первопроходца в этой сфере Ф. Цвикки этим вопросом занялась астроном из Америки В. Рубин. Она изучала скорость, с которой вращается вокруг центра галактики вещество, которое располагается по краям галактик. Если следовать законам Кеплера, касающимся законов тяготения, то существует определенная зависимость между скоростью вращения галактик и расстоянием до центра.

Но в реальности измерения показывали, что скорость вращения не менялась с увеличением расстояния до центра. Такие данные можно было объяснить только одним путем – вещество галактики имеет одинаковую плотность как в центре, так и по краям. Но видимое вещество имело гораздо большую плотность в центре и характеризовалось разреженностью по краям, а недостаток плотности мог быть объяснен только наличием какого-то вещества, которое не видно глазу.

Чтобы дать объяснение явлению, нужно, чтобы этого самого невидимого вещества в галактиках было почти в 10 раз больше, нежели того вещества, которое мы можем увидеть. Вот это неведомое вещество и получило название «темное вещество», или «темная материя». На сегодняшний день для астрофизиков это явление так и остается самой интересной загадкой.

Есть еще один довод в пользу доказательств существования темного вещества. Он следует из расчетов, которые описывают процесс того, как формировались галактики. Считается, что началось это примерно через 300.000 лет после того, как произошел Большой взрыв . Результаты расчетов говорят, что притяжение между осколками материи, которая появилась при взрыве, не могло бы компенсировать кинетическую энергию от разлета. То есть вещество не могло сконцентрироваться в галактиках, однако мы можем видеть это сегодня.

Этот необъяснимый факт называют парадоксом галактики, его приводили как довод, разрушающий теорию Большого взрыва. Но можно посмотреть на это с другой стороны. Ведь частицы самого обычного вещества могли быть смешаны с частицами темного вещества. Тогда расчеты становятся верными, а то, как сформировались галактики, в которых скопилось много темного вещества, а к ним уже присоединились частицы обычного вещества за счет гравитации. Ведь обычное вещество составляет малую долю от всей массы Вселенной.

Видимое вещество имеет плотность относительно низкую по сравнению с темным веществом, потому что оно плотнее в 20 раз. Поэтому те 95% массы Вселенной, которых не достает по расчетам ученых – это и есть темное вещество.

Однако это приводило к выводу, что весь видимый мир, который был изучен вдоль и поперек, такой привычный и понятный, лишь небольшое приложение к тому, из чего реально складывается .

Все галактики, планеты и звезды – это просто маленький кусочек того, о чем мы не имеем понятия. Это то, что выставлено напоказ, а реальное от нас скрыто.

paul goeltz / flickr.com

Итальянские физики-теоретики показали, что модель цветной темной материи, то есть темной материи, состоящей из связанных состояний частиц с ненулевым цветным зарядом (куорнов), вполне может оказаться жизнеспособной. Вопреки общепринятому мнению, существование таких частиц не приводит к образованию большого числа смешанных состояний обычных и «темных» кварков, а измеренное на данный момент сечение взаимодействия куорнов с частицами обычной материи согласуется с предсказаниями модели. Статья опубликована в Physical Review D и находится в свободном доступе.

Тем не менее, группа ученых под руководством Алессандро Струмиа (Alessandro Strumia) поставила под сомнение этот аргумент и показала, что частицы темной материи вполне могут обладать цветным зарядом. Для этого они добавили в Стандартную модель стабильную массивную частицу Q с ненулевым цветным зарядом, для простоты считая ее электрически нейтральной (так что единственным свободным параметром модели была масса M Q ). Эта частица, получившая название куорн, может лежать как в фундаментальном, так и в присоединенном представлении группы хромодинамики SU (3) c ; в первом случае частица Q является «темным кварком» и образует связанные бесцветные состояния вида QQQ , а во втором случае - «темным глюоном», связанные состояния которых имеют вид QQ («темные глюболы »). Прочитать о представлениях группы SU (3) c и их связи с хромодинамикой можно, например, в книге Валерия Рубакова. Такие адронные состояния, состоящие только из частиц темной материи, ученые назвали «чисто-куорнами» (quorn-onlyum hadrons). Разумеется, наряду с «чистыми» состояниями в предложенной теории возникают и смешанные состояния вроде Q qq, QQ q и Q q̄ (если Q - кварк) или Q g, Q qq̄’ (если Q - глюон).

Затем ученые проверили, при каких условиях предложенная модель воспроизводит наблюдаемую массу темной материи. Для этого они вычислили сечение образования стабильного QQ -адрона при столкновении двух смешанных глюболов Q g + Q g → QQ + gg. Сечение такой реакции обратно пропорционально температуре фазового перехода КХД : σ ~π/Λ QCD 2 , которая равна Λ QCD ≈ 0,31 гигаэлектронвольт, а потому для образования связанного состояния QQ реакция должна иметь сравнительно большой прицельный параметр b ~ 1/Λ QCD (напомним, что в системе ℏ = c = 1 размерность длины совпадает с размерностью обратной массы, а масса измеряется в электронвольтах). В результате образующийся «чисто-куорн» будет иметь большой угловой момент , а значит, будет нестабилен. Тем не менее, выполненные учеными расчеты показали, что при температуре менее T ~ 0,3Λ QCD и массе куорна около 12,5 тераэлектронвольт QQ -состояние не распадаются, как можно было ожидать, но переходит в стабильное состояние с нулевым угловым моментом, параллельно испуская мягкие низкоэнергетические глюоны Стандартной модели. Важно заметить, что при такой массе полное число куорнов, согласующееся с наблюдаемой массой темной материи, составляет всего 10 −14 от числа частиц обычной материи.


Зависимость сечения перехода в устойчивое состояние от температуры при массе куорнов около 12,5 тераэлектронвольт и различных эффективных константах связи

Это значит, что в результате космологических процессов на жизни Вселенной все свободные куорны могли перейти в связанные бесцветные состояния, если скорость реакций слияния на этих этапах превышала скорость расширения Вселенной, заставляющей уменьшаться концентрацию свободных частиц. В самом деле, физики показали, что во времена фазового перехода КХД (температура вещества T ~ Λ QCD ) за характерное время расширения Вселенной успевало произойти порядка ~10 19 реакций слияния куорнов. Поскольку число таких реакций много больше, чем отношение числа обычных кварков к числу куорнов (~10 14), практически все куорны перешли в стабильные «чисто темные» состояния, а концентрация смешанных состояний оказалась исчезающе мала. По сути своей этот процесс аналогичен первичному нуклеосинтезу , в ходе которого образовались атомы легчайших химических элементов. Кроме того, предсказания модели хорошо согласуются с экспериментально наблюдаемой картиной мира.


Отношение массы связанных устойчивых куорнов к наблюдаемой в данный момент массе темной материи в зависимости от времени (или от энергии, которая однозначно связана со временем, прошедшим после Большого Взрыва)

Valerio De Luca et al. / Phys. Rev. D

Наконец, физики оценили сечение взаимодействия стабильных адронов QQ с частицами Стандартной модели, которое можно измерить в прямых экспериментах (устроенных аналогично

  • 1314 7
  • источник: www.vesti.ru
  • 11 февраля представители международного проекта Лазерно-интерферометрической гравитационно-волновой обсерватории LIGO объявили о первой в истории регистрации гравитационных волн .

    Считается, что тёмная энергия является движущей силой, которая обеспечивает постоянное расширение Вселенной. В таком случае наблюдение нескольких слияний чёрных дыр может подсказать её природу. Такие параметры сигнала, как частота и амплитуда волн многое говорят об их источнике. А сравнивая мощность столкновения, определённую с помощью обычных телескопов, с силой гравитационных колебаний, измеренных детекторами, можно определить, как далеко произошло событие и насколько расширилось пространство за то время, пока волны летели к Земле.

    "Эта мера эффекта, который оказывает тёмная энергия, должна быть сильнее и надёжнее всего, что мы используем в настоящее время, - говорит астрофизик Ави Лёб (Avi Loeb) из Гарвардского университета. - Наблюдения всего за несколькими слияниями чёрных дыр могут изменить всё, а если их будут десятки, это станет новым направлением в космологии".

    Открытие гравитационных волн может стать серьёзной проверкой для общей теории относительности Альберта Эйнштейна. Ведь с их помощью можно подтвердить или опровергнуть основной принцип теории эквивалентности сил гравитации и инерции , из которого следует, что силы гравитационного взаимодействия пропорциональны массе тела и воздействуют на все массы (тела разных масс) одинаково.

    Теперь учёные могут определить, как снижается сила гравитационных волн по мере их движения на большие расстояния. И если сила уменьшается не так, как это предсказывают модели, это станет серьёзным вызовом одной из базовых физических теорий.

    Ещё одним направлением, в котором наука может продвинуться благодаря последнему открытию, является поиск следов так называемой космической инфляции . Согласно инфляционной космологической модели вскоре после Большого взрыва Вселенная расширялась гораздо быстрее, чем в стандартноймодели горячей Вселенной .

    Если после успеха проекта LIGO по всему миру появятся новые, ещё более чувствительные гравитационные детекторы , они, возможно, смогут зарегистрировать более короткие волны, возникшие в период усиленного расширения молодой Вселенной. Согласно теории, в то время пространство было непроницаемо для света и электромагнитного излучения, поэтому гравитационные колебания могут быть единственными "свидетелями" этого периода.

    "Потенциально мы можем проследить почти весь путь до Большого взрыва, - говорит Деян Стойкович (Dejan Stojkovic) из Нью-Йоркского университета. - LIGO не сможет ощутить такие колебания, но теперь, когда мы знаем, что волны существуют, будет намного легче убедить людей вкладывать деньги в создание других видов детекторов".

    Наконец, гравитационные волны могут стать долгожданным ключом к Теории Великого объединения , которая предполагает, что на раннем этапе развития Вселенной все четыре фундаментальные силы - гравитационное, электромагнитное, сильное и слабое взаимодействия, были объединены в одну силу. По мере расширения и остывания Вселенной силы разделились по неясным пока причинам. И снова следы этих событий в будущем могут быть найдены с помощью особо чувствительных детекторов.

    В любом случае, ближайшее будущее обещает быть интересным. Ведь новые исследования гравитационных волн могут окончательно доказать правильность многих базовых моделей или, наоборот, полностью перевернуть наши представления о Вселенной.

    Интересна статья?