1. Ферменты имеют более высокую каталитическую активность (выше в млн.раз);

2. Каталитическая активность проявляется в очень мягких условиях (умеренные температуры 37-40ºС, нормальное давление, близкие к нейтральным значения рН среды 6,0÷8,0). Например, гидролиз белка в присутствии неорганических кислот и щелочей протекает при 100ºС и выше в течение нескольких десятков часов. При участии ферментов этот процесс протекает за десятки минут при 30÷40ºС;

3. Ферменты обладают высокой специфичностью действия, т.е. каждый фермент катализирует в основном только строго определенную химическую реакцию (например, платина катализирует несколько десятков химических реакций);

4. Активность ферментов в клетках строго контролируется и регулируется;

5. Не вызывают каких-либо побочных реакций;

6. Различия связанные с белковой природой ферментов (термолабильность, зависимость от рН среды, наличие активаторов и ингибиторов и др.).

Строение ферментов

До последнего времени считалось, что абсолютно все ферменты являются веществами белковой природы. Но в 80-е годы была обнаружена каталитическая активность у некоторых низкомолекулярных РНК. Эти ферменты назвали рибозимами . Остальные, свыше 2000 известных в настоящее время ферментов, имеют белковую природу и характеризуются всеми свойствами белков.

По строению ферменты делятся на:

Простые или однокомпонентные;

Сложные или двухкомпонентные (холоферменты).

Простые ферменты представляют собой простые белки и при гидролизе распадаются только на аминокислоты. К числу простых ферментов относятся гидролитические ферменты (пепсин, трипсин, уреаза и др.).

Сложные белки являются сложными белками и, помимо, полипептидных цепей содержат небелковый компонент (кофактор ). К сложным белкам относится большинство ферментов.

Белковая часть двухкомпонентного фермента называется апоферментом.

Кофакторы могут иметь различную прочность связи с апоферментом.

Если кофактор прочно связан с полипептидной цепью, он называется простетической группой . Между простетической группой и апоферментом – ковалентная связь.

Если кофактор легко отделяется от апофермента и способен к самостоятельному существованию, то такой кофактор называется коферментом.

Между апоферментом и коферментом связи слабые – водородные, электростатические и др.

Химическая природа кофакторов крайне разнообразна. Роль кофакторов в двухкомпонентных ферментах играют:

1 – большинство витаминов (Е, К, Q, С, Н, В 1 , В 2 , В 6 , В 12 и др.);

2- соединения нуклеотидной природы (НАД,НАДФ, АТФ, КоА, ФАД, ФМН), а также целый ряд др. соединений;

3 – липолевая кислота;

4 – многие двухвалентные металлы (Мg 2+ , Mn 2+ ,Ca 2+ и др.).

Активный центр ферментов.

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый “активный центр” фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность !

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр . Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора ), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами ), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.

Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрат. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).

Механизм действия ферментов

Механизм действия ферментов заключается в следующем. При соединении субстрат с ферментом образуется нестойкий фермент субстратный комплекс. В нем происходит активация молекулы субстрата за счет:

1. поляризации химических связей в молекуле субстрат и перераспределение электронной плотности;

2. деформации связей, вовлекаемых в реакцию;

3. сближения и необходимой взаимной ориентации молекул субстрата (S).

Молекула субстрат фиксируется в активном центре фермента в напряженной конфигурации, в деформированном состоянии, что приводит к ослаблению прочности химических связей и снижает уровень энергетического барьера, т.е. субстрат активизируется.

В процессе ферментативной реакции различают 4 этапа:

1 – присоединение молекулы субстрат к ферменту и образование фермент-субстратного комплекса;

2 – изменение субстрата под действием фермента, делающее его доступным для химической реакции, т.е. активизация субстрата;

3 – химическая реакция;

4 – отделение продуктов реакции от фермента.

Это можно записать в виде схемы:

E + S ES ES* EP E + P

где: Е – фермент, S – субстрат, S* - активизированный субстрат, Р – продукт реакции.

На 1-ом этапе к субстратному центру присоединяется с помощью слабых взаимодействий та часть молекулы субстрата, которая не подвергается химическим превращениям.

Для образования фермент-субстратного комплекса (ES) необходимо соблюдение трех условий, которые и определяют высокую специфичность действия фермента.

Условия образования фермент-субстратного комплекса:

1 - структурное соответствие между субстратом и активным центром фермента. По выражению Фишера они должны подходить друг к другу, «как ключ к замку». Это подобие обеспечивается на уровне третичной структуры фермента, т.е. пространственного расположения функциональных групп активного центра.

2 Электростатическое соответствие активного центра фермента и субстрата, которое обусловлено взаимодействием противоположно заряженных групп.

3 Гибкость третичной структуры фермента – «индуцированное соответствие». Согласно теории вынужденного или индуцированного соответствия каталитически активная конфигурация молекулы фермента может возникать лишь в момент присоединения субстрата в результате его деформирующего воздействия по принципу «рука-перчатка».

Механизм действия однокомпонентных и двухкомпонентных ферментов аналогичен.

В образовании фермент-субстратного комплекса у сложных ферментов принимают участие и апофермент и кофермент. При этом субстратный центр располагается обычно на апоферменте, а кофермент принимает участие непосредственно в акте химического превращения субстрата. На последнем этапе реакции апофермент и кофермент выделяются в неизменном виде.

На 2 и 3 этапе превращение молекулы субстрата связано с разрывом и замыканием ковалентных связей.

После осуществления химических реакций фермент переходит в исходное состояние и происходит отделение продуктов реакции.

Специфичность

Способность фермента катализировать определенный тип реакции называют специфичностью.

Специфичность бывает трех видов:

1. - относительная или групповая специфичность – фермент действует на определенный вид химической связи (например, фермент пепсин расщепляет пептидную связь);

2. – абсолютная специфичность - фермент действует только на один строго определенный субстрат (например, фермент уреаза расщепляет амидную связь только в мочевине);

3. – стехиометрическая специфичность – фермент действует только на один из стереоизомеров (например, фермент глюкозидаза сбраживает только D-глюкозу, но не действует на L-глюкозу).

Специфичность фермента обеспечивает упорядоченность протекания реакций обмена веществ.

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Что такое ферменты и неорганические катализаторы

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.
Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение ферментов и неорганических катализаторов

В чем разница между ферментами и неорганическими катализаторами? Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.
Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.
Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.
Ферменты способны работать в ограниченном диапазоне температур (как правило, 370 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.
Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

TheDifference.ru определил, что отличие ферментов и неорганических катализаторов заключается в следующем:

Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
Ферментативные реакции обладают высокой скоростью.

Сходство

1. Катализируют только энергетически возможные реакции. 2. Не изменяют направления реакции. 3. Ускоряют наступление равновесия реакции, но не сдвигают его. 4. Не расходуются в процессе реакции.

1. Скорость ферментативной реакции намного выше. 2. Высокая специфичность. 3. Мягкие условия работы (внутриклеточные). 4. Возможность регулирования скорости реакции. 5. Скорость ферментативной реакции пропорциональна количеству фермента.

Ферментативный катализ имеет свои особенности

Этапы катализа

В ферментативной реакции можно выделить следующие этапы:

1. Присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S).

2. Преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий.

3. Превращение переходного комплекса в комплекс фермент-продукт (E-P).

4. Отделение конечных продуктов от фермента.

Механизмы катализа

Доноры

Акцепторы

СООН -NH 3 + -SH

СОО- -NH 2 -S-

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.

Типы ферментативных реакций

1. Тип "пинг-понг" – фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы. Примером являются реакции переноса аминогрупп от аминокислот на кетокислоты - трансаминирование.

Ферментативная реакция по типу "пинг-понг"

2. Тип последовательных реакций – к ферменту последовательно присоединяются субстраты А и В, образуя "тройной комплекс", после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.

Ферментативная реакция по типу "последовательных реакций"

3. Тип случайных взаимодействий – субстраты А и В присоединяются к ферменту в любом порядке, неупорядоченно, и после катализа так же отщепляются.

Ферментативная реакция по типу "случайных взаимодействий"

Ферменты имеют белковую природу

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот –апофермент , и небелковую часть – кофактор . Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

Как многие белки, ферменты могут быть мономерами , т.е. состоят из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Дата создания: 2015/04/30

Материальную основу всех жизненных процессов организма составляют тысячи химических реакций, катализируемых ферментами. Значение ферментов очень правильно и образно определил И. П. Павлов, назвав их «возбудителями жизни». Нарушение синтеза какого-либо фермента в стройной системе обменных реакций в организме приводит к развитию заболеваний, которые часто оканчиваются смертью. Например, недостаток у детей фермента, который превращает галактозу в глюкозу, является причиной галактоземии. При этом заболевании дети отравляются избытком галактозы и погибают в первые месяцы жизни. Повышение активности ксантин-оксидазы является причиной подагры. Таких примеров можно привести очень много. Вот почему ферменты представляют собой движущую силу всего того бесконечного разнообразия химических превращений, которые в своей совокупности составляют лежащий в основе жизни обмен веществ. Поэтому изучению ферментов придается такое большое значение. Наука о ферментах составляет важный раздел биохимии, а в медицине отчетливо выявляется направление – медицинская ферментология.

Ферментология или, иначе, энзимология является учением о ферментах (энзимах) – биологических катализаторов белковой природы, образуемых любой живой клеткой и обладающих способностью активировать различные химические реакции, происходящие в организме.

Ферменты нашли широкое применение во многих областях науки и промышленности. За последние годы с помощью высокоочищенных препаратов ферментов удалось расшифровать структуру сложных соединений, входящих в состав организма, в том числе некоторых белков и нуклеиновых кислот.

Ферменты имеют большое практическое значение, так как многие области промышленности – виноделие, хлебопечение, производство спирта, чая, аминокислот, витаминов, антибиотиков – основаны на использовании различных ферментативных процессов. Поэтому изучение свойств и механизма действия ферментов позволяет химикам создать новые, более совершенные катализаторы для химической промышленности. Действие различных физиологически активных соединений, применяемых в медицине и сельском хозяйстве, - лекарственных веществ, стимуляторов роста растений и др., в конечном счете сводится к тому, что эти вещества активируют или подавляют в организме то или иное звено в обмене веществ, тот или иной ферментативный процесс. Несомненно, изучение закономерностей действия ферментов и влияния на них различных стимуляторов или парализаторов имеет первостепенное значение для медицины и сельского хозяйства.

Круг вопросов, изучаемых ферментологией, весьма широк. Разработка методов выделения и очистки ферментов с целью установления их структуры, исследование процессов образования ферментов в живой клетке, регулирование из действия, роль ферментов в осуществлении различных физиологических функций – вот далеко не полный перечень важнейших биологических проблем, интенсивно изучаемых в настоящее время.

Об истории изучения ферментов

История ферментов уходит в далекое прошлое. Еще на развитии человеческого общества люди сталкивались с различными ферментативными процессами и использовали их в жизни. Спиртовое и молочнокислое брожение, применение заквасок при приготовлении хлеба, использование сычуга для изготовления сыров и др. – все эти ферментативные процессы хорошо известны с незапамятных времен.

Одним из первых последователей, занимавшихся изучением ферментативных процессов, были Реомюр и Спалланцани. В своих опытах, по перевариванию мяса в желудке птиц они впервые поставили вопрос о необходимости изучения химического состава пищеварительного сока. Русский ученый К. С. Кирхгоф (1814)

Показал, что в вытяжке из проросшего ячменя содержится вещество, которое вызывает превращение крахмала в сахар. Таким образом, Кирхгофом впервые был получен ферментный препарат амилазы (фермент, расщепляющий крахмал) и эту дату мы с полным правом можем считать датой возникновения ферментологии. Изучая процессы брожения, голландский ученый Ван Гельмонт впервые ввел в науку термин « ферменты» (fermentum – закваска). Слово «энзим» происходит от древнегреческого слова « эн зюме», что означает в «дрожжах».

К середине 50-хгодов ХIХ века понятие о ферментах как о биологических катализаторах прочно утвердилось в науке. К этому времени и относится большой спор двух крупнейших ученых мира Луи Пастера и Либиха Ю о месте локализации ферментов в клетке - спор, который по своему существу явился борьбой двух мировоззрений в науке-идеализма и материализма и затормозил развитие учения о ферментах без малого на 50 лет. Луи Пастер, доказывая, что деятельность ферментов неотделима от структуры клетки и с ее разрушением прекращается, прочно стоял на позициях вирховианства- одной из разновидностей идеализма в биологии. Либих утверждал, что действие ферментов не связано со структурой клетки. Этот спор практически продолжался более 100 лет и снова, и который раз, утвердил необходимость материалистического подхода к изучению биологических закономерностей. Первой подтвердила правильность точки зрения Ю.Либиха русский исследователь М.М.Манассеина в 1871 г. Растирая дрожжевые клетки с кварцевым песком, т.е. полностью разрушая структуру клетки, она доказала, что клеточный сок обладает способностью сбраживать крахмал. Однако, как это очень часто бывало в царской России, исследования М.М.Манассеиной остались без внимания и пальма первенства, в этом вопросе была отдана немецким ученым братьям Бухнер, которые через 26 лет проделали аналогичный опыт (они разрушали клетки путем высокого давления) и получили такие же результаты. В последующем работами А.Н.Лебедева, И.П.Павлова, М.Дюкло, Э.Фишера, Л.Михаэлиса и многих других ученых окончательно была опровергнута точка зрения идеалистов. Именно материалистический подход в научных исследованиях дал возможность Дж. Самнеру в 1927г. впервые получить фермент уреазу, а Дж.Нортропу в 1931г.- кристаллические трипсин и пепсин.

В настоящее время работами большой армии ученых, как в нашей стране, так и за рубежом учение о ферментах успешно развивается. В настоящее время известно около 1000 ферментов. Работы академика А.Е.Браунштейна, В.А.Энгельгарда, А.И.Опарина, С.Е.Северина, В.Н.Ореховича, А.А.Покровского и многих других отечественных ученых в области изучения ферментов в человеческом организме имеют большое значение в медицине. Постановка диагноза, выбор правильного лечения и профилактики, разработка и применение различных лекарственных препаратов и т. д.основываются на изучении ферментов.

Что нам известно о катализе

Катализ – это процесс изменения скорости химической реакции под влиянием различных веществ – катализаторов, участвующих в этом процессе и к концу реакции остающихся химически неизмененными. Если от добавления катализатора происходит ускорение химического процесса, то такое явление называют положительным катализом, а замедление реакции – отрицательным. Чаще всего приходится встречаться с положительным катализом. В зависимости от химической природы катализаторы разделяются на неорганические и органические. К последним относятся и биологические катализаторы – ферменты.

Для понимания действия катализаторов необходимо кратко остановиться на рассмотрении сущности катализа. Скорость любой химической реакции зависит от столкновений активных молекул реагирующих веществ. Активированной называется молекула, которая имеет определенный запас потенциальной энергии. Взаимодействие двух таких молекул произойдет только в том случае, если запас энергии этих молекул будет достаточным для преодоления сил сталкивания между ними – так называемого «энергетического барьера» реакции. Если реагирующие молекулы будут обладать большей величиной энергии, чем энергетический барьер, то реакция произойдет. Если же запаса энергии реагирующих тел недостаточно для преодоления энергобарьера, то они не будут взаимодействовать. В этом случае для протекания реакции необходимо активировать молекулы, т. е. сообщить им дополнительное количество энергии, которое в сумме с имеющейся потенциальной энергией в молекулах будет достаточным для преодоления энергетического барьера. Это дополнительное энергии называется «энергией активации!». Активировать молекулы можно путем нагревания, повышения давления, облучения др.

Сущность действия катализаторов заключается в том, что во-первых, они обладают способностью активировать молекулы реагирующих веществ, и, во-вторых, взаимодействие молекул (или веществ) происходит не в один, а в несколько этапов.

Таким образом, оказывается, что катализатор не только снижает энергические затраты на течение реакций, но и значительно повышает их скорость.

К основным характеристикам катализаторов относятся следующие: а) катализаторы могут ускорять только те химические реакции, которые вообще могут идти по своим термодинамическим законам, б) катализаторы не изменяют направление хода химической реакции, а только ускоряют достижение состояния равновесия.

Отличие ферментов от других видов катализаторов

При изучении свойств ферментов было установлено, что по своему действию они являются катализаторами, в основном обеспечивающими положительный катализ. Поэтому для них характерны все особенности процесса катализа.

Наряду с этим ферменты имеют свои определенные отличия, к которым относятся «космические» скорости катализируемых ими реакций, очень сложная химическая структура, которая в ряде случаев может изменяться в ходе реакции и восстанавливаться в исходную после ее окончания, и, наконец, высокая специфичность действия.

Для подтверждения высокой скорости реакций, катализируемых ферментами, снова обратимся к нашему примеру с перекисью водорода. В организме разложение Н2О2 катализируется ферментом каталазой со скоростью, в 2х1011раз превышающей скорость некатализируемой реакции и в 107 раз в случае с платиновой чернью. Энергия активации при ферментативной реакции снижается соответственно в 9 и 6 раз. Из других примеров можно указать на следующие. В желудке человека вырабатывается фермент пепсин, который расщепляет белки. Один грамм пепсина за час способен гидролизовать 50 кг яичного белка, а 1,6г амилазы, синтезируемой в поджелудочной и слюнной железах, за час может расщепить 175 кг крахмала.

Сложность структуры ферментов обусловлена тем, что все они являются белками, т. е. высокомолекулярными соединениями с большим молекулярным весом.

При изучении ферментов было установлено, что все они являются белками и поэтому обладают всеми свойствами белков. Ферменты имеют, аналогичную белкам сложную структуру, подвергается расщеплению под действием протеолитических ферментов, при растворении в воде образуются и т.д. Молекулярный вес ферментов колеблются в пределах сотен тысяч и миллионов единиц молекулярного веса.

Молекулярный вес рибонуклеазы составляет 12700, пепсина – 35500, катализы крови – 248 000, глютаматдегидрогиназы – 1000000.

По структуре все ферменты делятся на простые и сложные.

Простые ферменты ферменты-протеины – состоят только из аминокислот, а сложные ферменты – ферменты-протеиды – в своем составе имеют белковую часть апофермент, состоящую из одних аминокислот, и небелковую часть – кофермент, или простетическую группу. Небелковая часть может быть представлена минеральными веществами и витаминами.

К ферментам-протеинам относятся, например, гидролитические ферменты желудочно-кишечного тракта, которые расщепляют пищевые продукты с учетом воды, к ферментам-протеидам принадлежит большая часть окислительно-восстановительных ферментов.

Неорганические катализаторы и ферменты (биокатализаторы), не расходуясь сами, ускоряют течение химических реакций и их энергетические возможности. В присутствии любых катализаторов энергия в химической системе сохраняет постоянство. В процессе катализа направление химической реакции остается неизменным.

Определение

Ферменты являются биологическими катализаторами. Их основа – белок. Активная часть ферментов содержит неорганическое вещество, к примеру, атомы металлов. При этом каталитическая эффективность металлов, включенных в молекулу фермента, увеличивается в миллионы раз. Примечательно то, что органический и неорганический фрагменты фермента не способны по отдельности проявлять свойства катализатора, тогда как в тандеме являются мощными катализаторами.

Неорганические катализаторы ускоряют всевозможные химические реакции.

Сравнение

Неорганические катализаторы по своей природе – неорганические вещества, а ферменты – белки. В составе неорганических катализаторов нет белка.

Ферменты по сравнению с неорганическими катализаторами обладают специфичностью действия к субстрату и наиболее высокой эффективностью. Благодаря ферментам реакция протекает быстрее в миллионы раз.

Например, перекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью.

Ферменты способны работать в ограниченном диапазоне температур (как правило, 37 0 С). Скорость действия неорганических катализаторов с каждым увеличением температуры на 10 градусов повышается в 2-4 раза. Ферменты подвергаются регуляции (существуют ингибиторы и активаторы ферментов). Неорганическим катализаторам свойственна нерегулируемая работа.

Для ферментов характерна конформационная лабильность (их структура подвергается незначительным изменениям, образующимся в процессе разрыва старых связей и образования новых связей, прочность которых слабее). Реакции с участием ферментов протекают лишь в физиологических условиях. Ферменты способны работать внутри организма, его тканей и клеток, где создаются необходимый температурный режим, давление и рН.

Выводы сайт

  1. Ферменты – высокомолекулярные белковые тела, они довольно специфичны. Ферменты способны катализировать всего лишь один-единственный тип реакции. Они являются катализаторами биохимических реакций. Неорганические катализаторы ускоряют разные реакции.
  2. Ферменты могут действовать в конкретном узком температурном интервале, определенном давлении и кислотности среды.
  3. Ферментативные реакции обладают высокой скоростью.