Буферы представляют собой химические вещества, такие как фосфор, калий, магний, селен, цинк которые помогают жидкости сопротивляться изменению ее кислотных свойств при добавлении других химических веществ, которые обычно вызывают изменение этих свойств. Буферы необходимы для живых клеток. Это связано с тем, что буферы поддерживают правильный рН жидкости.

Что такое рН

Это показатель того, насколько кислая жидкость. Например, лимонный сок имеет низкий рН от 2 до 3 и очень кислый - так же, как сок в вашем желудке, который переваривает пищу. Поскольку кислотные жидкости могут разрушать белки, а клетки заполнены белками, клеткам необходимо иметь буферы внутри и снаружи, чтобы защитить свои белковые свойства.

  • Противоположностью химического вещества, которое является кислотой, является химическое вещество, которое является основанием, и оба могут существовать в жидкости. Кислота высвобождает ион водорода в жидкость, а основание выталкивает из него ион водорода. Чем больше свободно плавающих ионов водорода присутствует в жидкости, тем более кислой становится жидкость.
  • Буферы представляют собой химические вещества, которые могут легко выделять или поглощать ионы водорода в жидкости, то есть они способны противостоять изменению рН, контролируя количество свободных ионов водорода. Шкала рН находится в диапазоне от 0 до 14. Значение pH от 0 до 7 считается кислотным, а рН от 7 до 14 считается основным. PH 7, посередине, нейтрален и представляет собой чистую воду.
  • Опасность изменения рН внутри клетки заключается в том, что рН резко влияет на структуру белков.

Клетка состоит из различных типов белков, и каждый белок работает только тогда, когда у него есть правильная трехмерная форма. Форма белка удерживается на месте силами притяжения внутри белка, как и многие мини-магниты здесь и там, которые соединяются, чтобы удерживать весь протеин на месте. Поэтому, если внутри клетки становится слишком кислым или слишком основным, тогда белки начинают терять форму и больше не работают. Клетка становится как фабрика без рабочих и без ремонтников. Поэтому буферы внутри ячейки предотвращают это.

Буферность и осмос.
Соли в живых организмах находятся в растворенном состоянии в виде ионов – положительно заряженных катионов и отрицательно заряженных анионов.

Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много калия и очень мало натрия. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражительность клетки зависит от соотношения концентраций ионов Na+, K+, Ca 2+, Mg 2+. Разность концентраций ионов по разные стороны мембраны обеспечивает активный перенос веществ через мембрану.

В тканях многоклеточных животных Са 2+ входит в состав межклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей зависят осмотическое давление в клетке и ее буферные свойства.

Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне.

Существует две буферные системы:

1)фосфатная буферная система – анионы фосфорной кислоты поддерживают рН внутриклеточной среды на уровне 6,9

2)бикарбонатная буферная система – анионы угольной кислоты поддерживают рН внеклеточной среды на уровне 7,4.

Рассмотрим уравнения реакций, протекающих в буферных растворах.

Если в клетке увеличивается концентрация Н + , то происходит присоединение катиона водорода к карбонат-аниону:

При увеличении концентрации гидроксид-анионов происходит их связывание:

Н + ОН – + Н 2 О.

Так карбонат-анион может поддерживать постоянную среду.

Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют пограничные слои цитоплазмы: плазмалемма и тонопласт.

Плазмалемма - наружная мембрана цитоплазмы, прилегающая к клеточной оболочке. Тонопласт - внутренняя мембрана цитоплазмы, окружающая вакуоль. Вакуоли представляют собой полости в цитоплазме, заполненные клеточным соком - водным раствором углеводов, органических кислот, солей, белков с низким молекулярным весом, пигментов.

Концентрация веществ в клеточном соке и во внешней среде (в почве, водоемах) обычно не одинаковы. Если внутриклеточная концентрация веществ выше, чем во внешней среде, вода из среды будет поступать в клетку, точнее в вакуоль, с большей скоростью, чем в обратном направлении. При увеличении объема клеточного сока, вследствие поступления в клетку воды, увеличивается его давление на цитоплазму, плотно прилегающую к оболочке. При полном насыщении клетки водой она имеет максимальный объем. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора Тургор обеспечивает сохранение органами формы (например, листьями, неодревесневшими стеблями) и положения в пространстве, а также сопротивление их действию механических факторов. С потерей воды связано уменьшение тургора и увядание.

Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз .

В ходе плазмолиза форма плазмолизированного протопласта меняется. Вначале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым

Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого

Если плазмолизированную клетку поместить в гипотонический раствор, концентрация которого меньше концентрации клеточного сока, вода из окружающего раствора будет поступать внутрь вакуоли. В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая начинает приближаться к стенкам клетки, пока не примет первоначальное положение - произойдет деплазмолиз

Задание №3
Прочитав предложенный текст, ответьте на следующие вопросы.
1)определение буферности

2)от концентрации каких анионов зависят буферные свойства клетки

3)роль буферности в клетке

4)уравнение реакций, протекающих в бикарбонатной буферной системе (на магнитной доске)

5)определение осмоса (привести примеры)

6)определение плазмолиза и деплазмолиза слайды

Цитология. Изучением клетки занимается цитология (от греч. цитос – клетка и логос – наука). Изучается строение клеток, строение и функции клеточных органоидов, процессы жизнедеятельности, протекающие в клетке. Каждая клетка проявляет все свойства живого – обмен веществ, раздражимость, развитие и размножение, является элементарной (наименьшей) единицей строения. Изучение клетки логично начать с изучения химического состава клетки.

Химический состав клеток.

Все клетки, независимо от уровня организации, сходны по химическому составу. В живых организмах обнаружено 86 химических элементов периодической системы Д.И.Менделеева. Для 25 элементов известны функции, которые они выполняют в клетке. Эти элементы называются биогенными . По количественному содержанию в живом веществе элементы делятся на три категории:

Макроэлементы , элементы, концентрация которых превышает 0,001%. Они составляют основную массу живого вещества клетки (около 99%). Макроэлементы делят на элементы 1 и 2 группы. Элементы 1-ой группы – C, N, H, O (на их долю приходится 98% от всех элементов). Элементы 2-ой группы – K , Na , Ca , Mg , S , P , Cl , Fe (1,9%).

Микроэлементы (Zn, Mn, Cu, Co, Mo, и многие другие), доля которых составляет от 0,001% до 0,000001%. Микроэлементы входят в состав биологически активных веществ – ферментов, витаминов и гормонов.

Ультрамикроэлементы (Hg, Au, U, Ra и др.), концентрация которых не превышает 0,000001%. Роль большинства элементов этой группы до сих пор не выяснена.

Макро- и микроэлементы присутствуют в живой материи в виде разнообразных химических соединений, которые подразделяются на неорганические и органические вещества.

К неорганическим веществам относятся: вода и минеральные вещества. К органическим веществам относятся: белки, жиры, углеводы, нуклеиновые кислоты, АТФ и другие низкомолекулярные органические вещества. Процентное соотношение указано в таблице 1.


Неорганические вещества клетки . Вода .

Вода – самое распространенное в живых организмах неорганическое соединение. Ее содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша – более 90%.

Без воды жизнь невозможна. Она не только обязательный компонент живых клеток, но и среда обитания организмов. Биологическое значение воды основано на ее химических и физических свойствах. Химические и физические свойства воды необычны. Они объясняются, прежде всего, малыми размерами молекул воды, их полярностью и способностью соединяться друг с другом водородными связями.

В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула полярна: кислородный атом несет частичный отрицательный заряд, а два водородных – частично положительные заряды. Это делает молекулу воды диполем. Поэтому при взаимодействии молекул воды друг с другом между ними устанавливаются водородные связи. Они слабее ковалентной, но, поскольку каждая молекула воды способна образовывать 4 водородные связи, они существенно влияют на физические свойства воды. Большая теплоемкость, теплота плавления и теплота парообразования объясняются тем, что большая часть поглощаемого водой тепла расходуется на разрыв водородных связей между ее молекулами. Вода обладает высокой теплопроводностью, благодаря чему в различных участках клетки поддерживается одинаковая температура. Вода практически не сжимается, прозрачна в видимом участке спектра. Наконец, вода – единственное вещество, плотность которого в жидком состоянии больше, чем в твердом.

Рис. . Вода. Значение воды.

Вода – хороший растворитель ионных (полярных) соединений, а также некоторых не ионных, в молекуле которых присутствуют заряженные (полярные) группы. Если энергия притяжения молекул воды к молекулам какого-либо вещества больше, чем энергия притяжения между молекулами вещества, то молекулы гидратируются и вещество растворяется. По отношению к воде различают гидрофильные вещества – вещества, хорошо растворимые в воде и гидрофобные вещества – вещества, практически нерастворимые в воде. Есть органические молекулы, у которых один участок – гидрофилен, другой – гидрофобен. Такие молекулы называют амфипатическими , к ним относятся, например, фосфолипиды, образующие основу биологических мембран.

Вода является непосредственным участником многих химических реакций (гиролитическое расщепление белков, углеводов, жиров и др.), необходима как метаболит для реакций фотосинтеза.

Большинство биохимических реакций может идти только в водном растворе; многие вещества поступают в клетку и выводятся из нее в водном растворе. Благодаря большой теплоте испарения воды, происходит охлаждение организма.

Максимальная плотность воды при +4°С, при понижении температуры вода поднимается вверх, а так как плотность льда меньше плотности воды, то лед образуется на поверхности, поэтому при замерзании водоемов подо льдом остается жизненное пространство для водных организмов.

Благодаря силам когезии (электростатическому взаимодействию молекул воды, водородным связям) и адгезии (взаимодействию с окружающими ее стенками) вода обладает свойством подниматься по капиллярам – один из факторов, обеспечивающих движение воды в сосудах растений.

Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор ), а также выполняет опорную функцию (гидростатический скелет, например, у круглых червей).

Итак, значение воды для организма заключается в следующем:

  1. Является средой обитания для многих организмов;
  2. Является основой внутренней и внутриклеточной среды;
  3. Обеспечивает транспорт веществ;
  4. Обеспечивает поддержание пространственной структуры растворенных в ней молекул (гидратирует полярные молекулы, окружает неполярные молекулы, способствуя их слипанию);
  5. Служит растворителем и средой для диффузии;
  6. Участвует в реакциях фотосинтеза и гидролиза;
  7. При испарении участвует в терморегуляции организма;
  8. Обеспечивает равномерное распределение тепла в организме;
  9. Максимальная плотность воды при +4°С, поэтому лед образуется на поверхности воды.

Минеральные вещества .

Минеральные вещества клетки в основном представлены солями, которые диссоциируют на анионы и катионы, некоторые используются в неионизированной форме (Fe, Mg, Cu, Co, Ni и др.)

Для процессов жизнедеятельности клетки наиболее важны катионы Na + , Ca 2+ , Mg 2+ , анионы HPO 4 2- , Cl - , HCO 3 - . Концентрации ионов в клетке и среде ее обитания, как правило, различны. В нервных и мышечных клетках концентрация К + внутри клетки в 30-40 раз больше, чем вне клетки; концентрация Na + вне клетки в 10-12 раз больше, нежели в клетке. Ионов Сl - вне клетки в 30-50 раз больше, чем внутри клетки. Существует ряд механизмов, позволяющих клетке поддерживать определенное соотношение ионов в протопласте и внешней среде.

Табл. 1. Важнейшие химические элементы

Химический элемент

Вещества, в которых химический элемент содержится

Процессы, в которых химический элемент участвует

Углерод, водород, кислород, азот

Белки, нуклеиновые кислоты, липиды, углеводы и др. органические вещества

Синтез органических веществ и весь комплекс функций, осуществляемых этими органическими веществами

Калий, натрий

Обеспечивают функции мембран, в частности, поддерживают электрический потенциал клеточной мембраны, работу Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Фосфат кальция, карбонат кальция

Пектат кальция

Участвует в процессе свертывания крови, сокращения мышц, входит в состав костной ткани, зубной эмали, раковин моллюсков

Формирование срединной пластинки и клеточной стенки у растений

Хлорофилл

Фотосинтез

Формирование пространственной структуры белка за счет образования дисульфидных мостиков

Нуклеиновые кислоты, АТФ

Синтез нуклеиновых кислот, фосфорилирование белков (их активирование)

Поддерживает электрический потенциал клеточной мембраны, работу Na + /Ka + -насоса, проведение нервных импульсов, анионный, катионный и осмотический балансы

Активизирует пищеварительные ферменты желудочного сока

Гемоглобин

Цитохромы

Транспорт кислорода

Перенос электронов при фотосинтезе и дыхании

Марганец

Декарбоксилазы, дегидрогеназы

Окисление жирных кислот, участие в процессах дыхания и фотосинтеза

Гемоцианин

Тирозиназа

Транспорт кислорода у некоторых беспозвоночных

Образование меланина

Витамин В 12

Формирование эритроцитов

Входит в состав более 100 ферментов: Алькогольдегидрогеназа, карбоангидраза

Анаэробное дыхание у растений

Транспорт СО 2 у позвоночных

Фторид кальция

Костная ткань, зубная эмаль

Тироксин

Регуляция основного обмена

Молибден

Нитрогеназа

Фиксация азота

Различные ионы принимают участие во многих процессах жизнедеятельности клетки: катионы К + , Na + , Ca 2+ обеспечивают раздражимость живых организмов; катионы Mg 2+ , Mn 2+ , Zn 2+ , Ca 2+ и др. необходимы для нормального функционирования многих ферментов; образование углеводов в процессе фотосинтеза невозможно без Mg 2+ (составная часть хлорофилла).

От концентрации солей внутри клетки зависят ее буферные свойства . Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне (рН около 7,4). Внутри клетки буферность обеспечивается главным образом анионами H 2 PO 4 - и НРО 4 2- . Во внеклеточной жидкости и в крови роль буфера играют Н 2 СО 3 и НСО 3 - .

Фосфатная буферная система:

Низкий pH Высокий pH

НРО 4 2- + Н + H 2 PO 4 -

Гидрофосфат – ион Дигидрофосфат – ион

Бикарбонатная буферная система:

Низкий pH Высокий pH

НСО 3 - + Н + H 2 СO 3

Гидрокарбонат – ион Угольная кислота

Некоторые неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. Например, Са и Р содержатся в костной ткани, в раковинах моллюсков в виде двойных углекислых и фосфорнокислых солей.

Ключевые термины и понятия

1. Общая биология. 2. Тропизмы, таксисы, рефлексы. 2. Биогенные элементы. 3. Макроэлементы. 4. Элементы 1 и 2 групп. 5. Микро- и ультрамикроэлементы. 6. Гидрофильные и гидрофобные вещества. 7. Амфипатические вещества. 8. Гидролиз. 9. Гидратация. 10. Буферность.

Основные вопросы для повторения

  1. Строение молекулы воды и ее свойства.
  2. Значение воды.
  3. Процентное соотношение органических веществ в клетке.
  4. Важнейшие катионы клетки и их концентрация в нервных и мышечных клетках.
  5. Реакция фосфатной буферной системы при понижении рН.
  6. Реакция карбонатной буферной системы при повышении рН.

Цитоплазма . - обязательная часть клетки, заключенная между плазической мембраной и ядром и представляющая собой вязкое бесцветное основное вещество цитоплазмы, органоиды - постоянные компоненты цитоплазмы и включения - временные компоненты цитоплазмы. Химический состав цитоплазмы разнообразен. Ее основу составляет вода (60-50% всей массы цитоплазмы). Цитоплазма богата белками, в состав цитоплазмы могут входить жиры и жироподобные вещества, различные органические и неорганические соединения.

Цитоплазма имеет щелочную реакцию. Одна из характерных особенностей цитоплазмы -постоянное движение (циклоз). Оно обнаруживается прежде всего по перемещению органелл клетки, например хлоропластов.Если движение цитоплазмы прекращается, клетка погибает, так как только находясь в постоянном движении она может выполнять свои функции.

Основное вещество цитоплазмы - гиалоплазма (цитозоль) - представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор . Именно в нем протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоилазме жидкой части или крупных молекул различают две формы гиалоплазмы: золь - более жидкая гиалоплазма и гель - более густая гиалоплазма. Между ними возможны взаимо переходы: гель легко превращается в золь и наоборот.

Функции гиалоплазмы:

Объединение всех компонентов клетки в единую среду

Среда для прохождения химических реакций

Среда для существования и функционирования органоидов.

Гиалоплазма и эргастоплазма.Ультраструктура и функциональное значение.

Гиалоплазма (от греч. hyalos - стекло и плазма), основная плазма, матрикс цитоплазмы, сложная бесцветная коллоидная система в клетке, способная к обратимым переходам из золя в гель. В состав Г. входят растворимые белки (ферменты гликолиза, активации аминокислот при биосинтезе белка, многие АТФ-азы и др.), растворимые РНК, полисахариды, липиды. Через Г. идёт транспорт аминокислот, жирных к-т, нуклеотидов, Сахаров, неорганич. ионов, перенос АТФ. Состав Г. определяет буферные и осмотич. свойства клетки.
Цитоплазма



Цитоплазма эукариотических клеток состоит из полужидкого содержимого и органелл. Основное полужидкое вещество цитоплазмы называют гиалоплазмой (от греч. hyalos - стекло) или матриксом. Гиалоилазма является важной частью клетки, ее внутренней средой.

Она представляет собой сложную коллоидную систему, которая образована белками, нуклеиновыми кислотами, углеводами, водой и другими веществами. В гиалоплазме в растворенном состоянии содержится большое количество аминокислот, нуклео-тидов и других строительных блоков биополимеров, множество промежуточных продуктов, возникающих при синтезе и распаде макромолекул, а также ионов неорганических соединений, таких как Na-, К-, Са2+ Mg2- , Сl-, НС03 , НР042 и др.

Несмотря на то что в электронном микроскопе гиалоплазма выглядит гомогенным веществом, она не является однородной. Гиалоплазма систоит из двух фаз - жидкой и твердой. Жидкая фаза представляет собой коллоидный раствор различных белков и других веществ. В жидкой фазе содержится система тонких (- 2 нм толщиной) белковых нитей - микротрабекул, пересекающих цитоплазму в различных направлениях; это так называемая микротрабекулярная система (рис. 1.7).

Микротрабекулярная система связывает все внутриклеточные структуры. В местах пересечения или соединения концов микротрабекул располагаются группы рибосом.

С микротрабекулярной системой связаны нитевидные, белковые комплексы, или филаменты (тонкие нити) - микротрубочки и микрофиламенты.

Микротрубочки, микрофиламенты и микротрабекулярная система образуют внутриклеточный цитоплазматический скелет (цитоскелет), который упорядочивает размещение всех структурных компонентов клетки

Функции гиалоплазмы следующие:

1)Является внутренней средой клетки, в которой происходят многие химические процессы.

2)Объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.

3)Определяет местоположение органелл в клетке.

4)Обеспечивает внутриклеточный транспорт веществ и перемещение органелл (например, движение хлоропластов в растительных клетках).

5)Является основным вместилищем и зоной перемещения молекул АТФ. 6)Определяет форму клетки.

Эргастоплазма участки цитоплазмы клеток растений и животных участки, богатые рибонуклеиновой кислотой (например, глыбки Берга в клетках печени, тельца Ниссля в нейронах). В электронном микроскопе эти участки наблюдаются как упорядоченно расположенные элементы гранулярной эндоплазматической сети.
??????????????????????????????????????????????????????????чтодальше!?!?!

Плазматическая мембрана, её функции.Современные представления о плазматической мембране.

Кле́точная мембра́на (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки - компартменты или органеллы, в которых поддерживаются определённые условия среды.

Функции

барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных - межклеточное вещество.

энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

ферментативная - мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

маркировка клетки - на мембране есть антигены, действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Согласно современным представлениям центральный слой такой мембраны представляет собой текучий липидный бислой с включениями внутримембранных белков. Полагают, что ассоциированные с мембраной белки являются глобулярными. Некоторые из них расположены на полярной поверхности мембраны или частично погружены в ее монослой как с наружной, так и с внутренней стороны. Это так называемые периферические, функционально ассоциированные с мембраной белки, удерживаемые на ее поверхности при помощи нековалентных связей. Другие, интегральные, белки проходят через всю толщу мембраны, в том числе и через внутренние неполярные ее слои. В интегральных белках последовательность аминокислотных остатков распределена таким образом, что гидрофобные остатки аминокислот формируют структуры, которые пронизывают мембрану, а гидрофильные образуют функциональные домены на внутренней и/или наружной поверхности мембраны. Таким образом, функционально разные белки мембраны образуют в жидкокристаллическом бислое фосфолипидов своеобразную мозаичную структуру. Эта мозаика не является строго фиксированной, что позволяет разным классам ФЛ и минорным липидам мембраны при латеральной диффузии формировать определенные кластеры (участки поверхностного монослоя мембраны).

Плазматическая мембрана содержит много гликолипидов, полярные углеводные части которых (остатки моно- и олигосахаридов) расположены на ее поверхности, что позволяет им выполнять специфичные функции, такие как рецепция (клеточное узнавание) и иммунохимические реакции. Выступающие из бислоя гидрофильные олигосахаридные участки гликолипидов образуют у эукариотических клеток подобие наружной оболочки – гликокаликса.

Определенную роль в стабилизации липидного бислоя играет и слой воды, покрывающий снаружи монослой фосфолипидов и мембранных белков. Такие монослои воды удерживаются на поверхности мембраны за счет водородных связей между полярными «головками» ФЛ и молекулами воды . В бислое индивидуальные липидные молекулы могут перемещаться (латеральная диффузия), что обеспечивает мембране жидкостность и гибкость. Отдельные молекулы ФЛ в зависимости от длины их жирнокислотных цепей способны перемещаться между наружным и внутренним монослоем мембраны, используя механизм флип-флопа.

Все это указывает на то, что бислойная мембрана является единой динамичной и саморегулирующейся системой

Модели БМ.

1.4 Эволюция представлений о строении мембран

Наличие мембран вокруг живых клеток было установлено более ста лет назад в работах Негели К., который в 1855 г. обнаружил, что неповрежденные клетки могут изменять свой объем при изменении осмотического давления окружающей среды. Эти исследования были продолжены Овертоном Е., показавшим, что неполярные молекулы легче проходят через клеточную мембрану, чем полярные соединения.

На основе этих наблюдений он впервые высказал предположение, что клеточная мембрана имеет липидную природу. Развитие идей о структуре мембран существенно продвинулось благодаря работам Гортера Е. и Грендела Ф., проведенным в 1925 г. Эти авторы впервые выдвинули концепцию липидного бислоя. Идея возникла на основе простого эксперимента. Липиды эритроцитов экстрагировали ацетоном и затем получали из них тонкую пленку на поверхности воды.

С помощью поплавка сжимали слой липидных молекул на границе раздела вода–воздух до тех пор, пока этот слой не начинал оказывать сопротивление дальнейшему сжатию; это явление было объяснено образованием плотно упакованной мономолекулярной липидной пленки. Измерение площади, занимаемой липидами, и сравнение ее с площадью поверхности эритроцитов, из которых эти липиды были экстрагированы, дали соотношение 2:1. Отсюда был сделан вывод, что мембрана эритроцитов состоит из липидных молекул, расположенных в два слоя. По-видимому, этот вывод Гортера Е. и Грендела Ф. оказался правильным только благодаря взаимной компенсации ошибок (во-первых, экстракция ацетоном извлекает не все липиды, во-вторых, они дали заниженную оценку площади поверхности эритроцитов, использовав для ее определения высушенные клетки). Однако в историческом плане эта работа имела большое значение, поскольку концепция липидного бислоя как структурной основы биологических мембран на самом деле оказалась верной. Мысль о том, что с мембранами связаны белки, высказана десятью годами позже Даниелли Дж. в связи с необходимостью объяснить явное расхождение между поверхностным натяжением на границах раздела масло–вода и мембрана–вода. Была высказана гипотеза, что мембрана состоит из двойного липидного слоя, и предположено, что белок располагается на ее поверхности – модель Даниелли–Дэвисона, или модель «сэндвича» (рисунок 1.2).

1 – углеводородные гидрофобные цепочки; 2 – полярные

гидрофильные группы молекулы; 3 – полярные поры, по которым

вещества диффундируют в клетку

Рисунок 1.2 – Модель строения биологических мембран

Даниелли–Девисона

На рисунке 1.2 показан бимолекулярный липидный слой, окруженный с двух сторон монослоями белка. Это была очень удачная

модель, и в течение последующих 30 лет многочисленные экспериментальные данные, особенно полученные с помощью дифракции рентгеновских лучей и электронной микроскопии, полностью подтвердили

ее адекватность. Основными компонентами биологической мембраны являются липид и белок, вопрос о взаимном расположении этих

компонентов в мембране стал предметом многочисленных дискуссий, так как обнаружилось, что мембраны выполняют разнообразные функции.

В 1959 г. Робертсон Дж. Д. предположил, что все клеточные мембраны построены по единому принципу, и высказал концепцию унитарной (или единообразной) мембраны (рисунок 1.3).

Рисунок 1.3 – Унитарная схема асимметричного строения биомембраны Робертсона.

Предложенная модель во многом сходна с классической моделью Даниелли Дж.: основу мембраны составляет липидный бислой, а нелипидные компоненты (прежде всего белки) в полностью развернутой конформации лежат на поверхности бислоя, связываясь с липидами за счет электростатических и гидрофобных взаимодействий. В модели Робертсона нашла отражение еще одна важная структурная особенность мембраны – ее асимметрия.

Последующий прогресс в мембранологии, в результате которого сформировались современные представления о структуре биомембран, в значительной мере был достигнут благодаря успехам в изучении свойств мембранных белков. Электронно-микроскопические исследования с применением метода замораживания–скалывания показали, что в мембраны встроены глобулярные частицы, а биохимикам с помощью детергентов удалось диссоциировать мембраны до состояния функционально активных «частиц». Данные спектральных исследований указывали, что для мембранных белков характерно высокое содержание α-спиралей и что они, вероятно, образуют глобулы, а не распределены в виде монослоя на поверхности липидного бислоя. Неполярные свойства мембранных белков наводили на мысль о наличии гидрофобных контактов между белками и внутренней неполярной областью липидного бислоя. Тогда же были разработаны методы, позволившие выявить текучесть липидного бислоя. Сингер и Николсон свели воедино все эти идеи, предложив в 1972 г. новую модель молекулярной организации биомембран – жидкостно-мозаичную модель (рисунок 1.4).

1 – углеводные фрагменты гликопротеидов; 2 – липидный бислой;

3 – интегральный белок; 4 – «головки» фосфолипидов;

5 – периферический белок; 6 – холестерин;

7 – жирнокислотные «хвосты» фосфолипидов.

Рисунок 1.4 – Модель жидкостно-мозаичной мембраны

Сингера и Николсона

Согласно жидкостно-мозаичной модели:

1) Структурной основой биомембран является липидный бислой, в котором углеводородные цепи молекул фосфолипидов находятся в жидкокристаллическом состоянии.

2) В липидный бислой, имеющий вязкость растительного масла, погружены или встроены молекулы белков, способные передвигаться по мембране.

В противоположность прежним моделям, рассматривающим мембраны как системы из жестко фиксированных компонентов, жидкостно-мозаичная модель представляет мембрану, как «море» жидких липидов, в котором плавают «айсберги» белков. В зависимости от прочности связи с мембраной белки в рамках мозаичной модели подразделяются на два типа: периферические и интегральные.

К периферическим относятся белки, которые связаны с мембраной за счет полярных и ионных взаимодействий и относительно легко отделяются от нее в мягких условиях, например, при промывании буферными растворами с различными значениями рН или ионной силы либо растворами, содержащими комплексообразующие вещества типа ЭДТА.

Интегральные белки имеют на своей поверхности большие гидрофобные участки и располагаются внутри мембраны. Для выделения интегральных белков необходимо сначала разрушить липидный бислой.

Жидкостно-мозаичная модель строения биомембран в настоящее время является общепризнанной, однако следует помнить, что она все же представляет собой упрощенное и схематичное отражение такой сложной и разносторонней системы, как биологическая мембрана. Одним из постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка вследствие его агрегации, образования липидных доменов, а также взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки.

В некоторых мембранах значительные количества липидов могут находиться в сильно упорядоченном состоянии или, наоборот, в составе небислойных фаз. Это означает, что распределение липидов вдоль поверхности мембраны не является гомогенным, как следовало бы ожидать в случае их свободной диффузии согласно жидкостно-мозаичной модели, а в значительной мере гетерогенно .

Кроме того, жидкостно-мозаичная модель не объясняет высокую гетерогенность липидного состава биологических мембран. Необходимо отметить, что липиды биологических мембран различаются не только по структуре полярных групп, но и по степени ненасыщенности и длине углеводородных цепей, а также по способу их присоединения к глицериновому остатку (сложная эфирная, простая эфирная и винильно-эфирная связь). Липидный состав биологических мембран всегда чрезвычайно гетерогенен, и в его построении участвуют сотни химически индивидуальных липидных молекул. Данный факт не согласуется с представлениями о пассивной роли липидов в функционировании мембран в качестве структурной матрицы, в которой расположены мембранные белки . Несмотря на это в настоящее время по-прежнему пользуются жидкостно-мозаичной моделью строения мембраны, но в усложненной форме, в которой отражены новые, специфические, не известные ранее закономерности.

Вопрос 1. Каковы особенности пространствен-ной организации молекул воды, обуславливающие ее биологическое значение?

Молекулы воды представляют собой дипо-ли — структуры, на положительном полюсе которых находятся два атома водорода, а на отрицательном полюсе — атом кислорода. По-ложительные и отрицательные полюса разных молекул воды притягиваются друг к другу. Это приводит к образованию так называемых водородных связей, что обеспечивает высо-кую теплоемкость воды, а также особенности процессов смены ее агрегатного состояния (плавление, испарение). Кроме того, Н20-ди- поли активно взаимодействуют с любыми мо-лекулами, имеющими заряженные участки. Это обуславливает важнейшее свойство воды как универсального растворителя органиче-ских и неорганических веществ.

Вопрос 2. В чем заключается биологическая роль воды?

Вода выполняет в клетке множество важ-ных функций:

  • служит универсальным растворителем;
  • является средой для большинства процес-сов, протекающих в клетке;
  • сама участвует во многих биохимических реакциях — гидролизе органических веществ, высвобождении энергии при распаде АТФ, фо-тосинтезе и др.;
  • высокая теплоёмкость и теплопровод-ность воды облегчает организмам (в том числе теплокровным) процесс поддержания теплово-го равновесия с окружающей средой;
  • высокая интенсивность испарения защи-щает живые существа от перегрева;
  • почти полная несжимаемость воды обес-печивает поддержание формы отдельных кле-ток и целых организмов;
  • вязкость придает воде свойства смазки;
  • высокая сила поверхностного натяжения облегчает транспорт веществ в сосудах расте-ний.

Вопрос 3. Какие вещества называют гидро-фильными? Гидрофобными?

Гидрофильными называют вещества, ко-торые хорошо растворяются в воде. К ним от-носят соли, аминокислоты, сахара, белки, простые спирты. Как правило, в составе их молекул присутствуют заряженные участки (спиртовые группы, аминогруппы и т. п.); не-редко при растворении гидрофильных веществ образуются заряженные частицы — ионы. Гидрофобные вещества, напротив, плохо или совсем не растворяются в воде. В их число вхо-дят в первую очередь жиры и жироподобные соединения, а также полисахариды (хитин, целлюлоза).

Вопрос 4. Какие вещества поддерживают pH клетки на постоянном уровне?

Способность сохранять кислотно-щелоч-ной баланс, т. е. поддерживать постоянное значение pH, обеспечивается так называемы-ми буферными свойствами клетки. Это означа-ет, что при добавлении небольших количеств кислот или щелочей концентрация ионов во-дорода (иначе — pH) в цитоплазме практиче-ски не изменяется. Такой эффект достигается благодаря присутствию в клетке отрицательно заряженных ионов — остатков слабых кислот (в первую очередь НСО3 и НРО2|4). При закислении (избытке ионов Н +) эти ионы могут пре-вращаться в Н 2 С0 3 и Н 2 Р0 4 соответственно. Напротив, при дефиците Н + (защелачивание цитоплазмы) НСО3 и НРО2|4 способны отдавать часть своих ионов водорода. Буферные свой-ства клетки очень важны, поскольку боль-шинство биологически активных веществ (в частности, белки-ферменты) могут вступать в реакции только при строго определенном уровне pH. Материал с сайта

Вопрос 5. Расскажите о роли минеральных со-лей в жизнедеятельности клетки.

Минеральные соли и входящие в их состав элементы участвуют во многих процессах жиз-недеятельности клетки. Так, остатки слабых кислот (НСО3, НРО2|4) обеспечивают ее буфер-ные свойства. Движение ионов Na + , К + , Са 2+ , С1 через мембраны клеток лежит в основе всех электрических явлений, наблюдаемых в живых организмах (вплоть до разрядов элект-рических рыб); без этого мышечные волокна не способны сокращаться, а нервная ткань — про-водить сигналы. Остатки фосфорной кислоты нужны для синтеза нуклеотидов и фосфолипи-дов. Фосфаты кальция и магния участвуют в об-разовании костей, а карбонат кальция является основой раковины моллюсков.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • характеристика молекулы общая