• Перевод

Примечание. Дата публикации статьи: 26.12.2015. За прошедшее время некоторые тезисы автора подтвердились реальными фактами, а некоторые оказались ошибочными - прим. пер.

В последние 40 лет мы видели, как скорость компьютеров росла экспоненциально. У сегодняшних CPU тактовая частота в тысячу раз выше, чем у первых персональных компьютеров в начале 1980-х. Объём оперативной памяти на компьютере вырос в десять тысяч раз, а ёмкость жёсткого диска увеличилась более чем в сто тысяч раз. Мы так привыкли к этому непрерывному росту, что почти считаем его законом природы и называем законом Мура. Но есть пределы этому росту, на которые указал и сам Гордон Мур . Мы сейчас приближаемся к физическому пределу, где скорость вычислений ограничена размером атома и скоростью света.

Канонические часы Тик-так от Intel начали пропускать такты то здесь, то там. Каждый «тик» соответствует уменьшению размера транзисторов, а каждый «так» - улучшение микроархитектуры. Нынешнее поколение процессоров под названием Skylake - это «так» с 14-нанометровым технологическим процессом. Логически, следующим должен стать «тик» с 10-нанометровым техпроцессом, но Intel теперь выдаёт «циклы обновления» после каждого «так». Следующий процессор, анонсированный на 2016 год, станет обновлением Skylake, всё ещё на 14-нанометровом техпроцессе . Замедление часов Тик-так - это физическая необходимость, потому что мы приближаемся к лимиту, где размер транзистора составляет всего несколько атомов (размер атома кремния - 0,2 нанометра).

Другое физическое ограничение - это скорость передачи данных, которая не может превышать скорость света. Требуется несколько тактовых циклов, чтобы данные попали из одного конца CPU в другой конец. По мере того как микросхемы становятся крупнее с большим и большим количеством транзисторов, скорость начинает ограничиваться самой передачей данных на микросхеме.

Технологические ограничения - не единственная вещь, которая замедляет эволюцию процессоров. Другим фактором является ослабление рыночной конкуренции. Крупнейший конкурент Intel, компания AMD, сейчас больше внимания уделяет тому, что она называет APU (Accelerated Processing Units), то есть процессорам меньшего размера с интегрированной графикой для мини-ПК, планшетов и других ультра-мобильных устройств. Intel теперь завладела подавляющей долей рынка процессоров для высококлассных ПК и серверов. Свирепая конкуренция между Intel и AMD, которая несколько десятилетий толкала вперёд развитие процессоров x86, практически исчезла.

Рост компьютерной мощи в последние годы идёт не столько от увеличения скорости вычислений, сколько от усиления параллелизма. В современных микропроцессорах используется три типа параллелизма:

  1. Одновременное выполнение нескольких команд с изменением их очерёдности.
  2. Операции Single-Operation-Multiple-Data (SIMD) в векторных регистрах.
  3. Несколько ядер CPU на одной микросхеме.
У этих типов параллелизма нет теоретических лимитов, но есть реальные практические. Выполнение команд с изменением их очерёдности ограничено количеством независимых команд в программном коде. Вы не можете одновременно выполнить две команды, если вторая команда ждёт результат выполнения первой. Нынешние CPU обычно могут одновременно выполнять четыре команды. Увеличение этого количества не принесёт много пользы, потому что процессору будет сложно или невозможно найти в коде больше независимых команд, которые можно выполнить одновременно.

В нынешних процессорах с набором инструкций AVX2 есть 16 векторных регистров по 256 бит. Грядущий набор инструкций AVX-512 даст нам 32 регистра по 512 бит, и вполне можно ожидать в будущем расширения на 1024- или 2048-битные векторы. Но эти увеличения векторных регистров будут давать всё меньший эффект. Немногие вычислительные задачи имеют достаточный встроенный параллелизм, чтобы извлечь выгоду из этих векторов большего размера. 512-битные векторные регистры соединяются набором регистров маски, у которых ограничение на размер 64 бита. 2048-битные векторные регистры смогут хранить 64 числа одинарной точности по 32 бита каждое. Можно предположить, что Intel не планирует делать векторные регистры более чем 2048 бита, поскольку они превзойдут ограничения 64-битных регистров маски.

Многочисленные ядра CPU дают преимущество только если имеется множество критических к скорости одновременно работающих программ или если задача делится на многочисленные независимые потоки. Количество потоков, на которые можно с выгодой разделить задачу, всегда ограничено.

Производители без сомнения постараются делать всё более и более мощные компьютеры, но какова вероятность, что эту компьютерная мощь можно будет использовать на практике?

Существует четвёртая возможность параллелизма, которая пока не используется. В программах обычно полно веток if-else, так что если CPU научатся предсказывать, какая из веток сработает, то можно было бы поставить её на выполнение. Можно выполнять одновременно сразу несколько веток кода, чтобы избежать потери времени, если предсказание окажется неправильным. Конечно, за это придётся заплатить повышенным энергопотреблением.

Другое возможное улучшение - разместить программируемое логическое устройство на микросхеме процессора. Подобная комбинация сейчас является обычным делом для так называемых FPGA, которые используются в продвинутой аппаратуре. Такие программируемые логические устройства в персональных компьютерах можно использовать для реализации функций, специфических для конкретных приложений, для задач вроде обработки изображений, шифрования, сжатия данных и нейросетей.

Полупроводниковая индустрия экспериментирует с материалами, которые можно использовать вместо кремния. Некоторые полупроводниковые материалы III-V способны работать на более низком напряжении и на более высоких частотах, чем кремний , но они не делают атомы меньше или свет медленнее. Физические ограничения по-прежнему в силе.

Когда-нибудь мы можем увидеть трёхмерные многослойные чипы. Это позволит уплотнить схемы, уменьшить расстояния, а следовательно, и задержки. Но как эффективно охлаждать такой чип, когда энергия распространяется повсюду внутри него? Потребуются новые технологии охлаждения. Микросхема не сможет передавать питание на все схемы одновременно без перегрева. Ей придётся держать отключенными большинство своих частей основную часть времени и подавать питание в каждую часть только во время её использования.

В последние годы скорость CPU увеличивается быстрее, чем скорость RAM, которая часто становится серьёзным узким местом. Без сомнения, в будущем мы увидим много попыток увеличить скорость оперативной памяти. Вероятной разработкой будет поместить оперативную память на одну микросхему с CPU (или хотя бы в один корпус), чтобы уменьшить расстояние для передачи данных. Это будет полезное использование трёхмерных чипов. Вероятно, RAM будет статического типа, то есть на каждую ячейку памяти будет подаваться питание только когда к ней осуществляется доступ.

Intel также снабжает рынок суперкомпьютеров для научного использования. У процессора Knight"s Corner - до 61 ядра на одной микросхеме. Он имеет слабое соотношение производительность/цена, но его ожидаемый наследник Knight"s Landing должен быть лучше по этому показателю. Он вместит до 72 ядер на чипе и сможет выполнять команды с изменением их очерёдности. Это маленький нишевый рынок, но Intel может повысить свой авторитет.

Сейчас лучшие возможности по улучшению производительности, как я думаю, с программной стороны. Разработчики ПО быстро нашли применение экспоненциальному росту производительности современных компьютеров, который произошёл благодаря закону Мура. Программная индустрия стала использовать её, а также начала использовать более и более продвинутые инструменты разработки и программные фреймворки. Эти высокоуровневые инструменты разработки и фреймворки сделали возможным ускорить разработку ПО, но за счёт потребления большего количества вычислительных ресурсов конечным продуктом. Многие из сегодняшних программ довольно расточительны в своём чрезмерном потреблении аппаратной вычислительной мощности.

На протяжении многих лет мы наблюдали симбиоз между аппаратной и программной индустриями, где последняя производила всё более продвинутые и ресурсоёмкие продукты, которые подталкивали пользователей покупать всё более мощное оборудование. Поскольку скорость роста аппаратных технологий замедлилась, а пользователи перешли на маленькие портативные устройства, где ёмкость батареи важнее, чем производительность, программной индустрии теперь придётся изменить курс. Ей придётся урезать ресурсоёмкие инструменты разработки и многоуровневый софт и разрабатывать программы, не так набитые функциями. Сроки разработки увеличатся, но программы станут потреблять меньше аппаратных ресурсов и быстрее работать на маленьких портативных устройствах с ограниченным ресурсом батареи. Если индустрия коммерческого ПО сейчас не изменит курс, то может уступить долю рынка более аскетичным продуктам open source.

Размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца. Часто цитируемый интервал в 18 месяцев связан с прогнозом Давида Хауса из Intel , по мнению которого производительность процессоров должна удваиваться каждые 18 месяцев из-за сочетания роста количества транзисторов и быстродействия каждого из них.

Рост числа транзисторов на кристалле микропроцессора показан на графике справа. Точки соответствуют наблюдаемым данным, а прямая - периоду удвоения в 24 месяца.

Энциклопедичный YouTube

    1 / 3

    ✪ НАУКА ЗА МИНУТУ_Спинтроника

    ✪ Парадокс Мура

    ✪ Артем Оганов: Новые материалы

    Субтитры

    НАУКА ЗА МИНУТУ [ЗВУК ТИКАЮЩИХ ЧАСОВ] В 1965 году один из основателей Intel Гордон Мур обнаружил удивительную закономерность: количество транзисторов в микросхемах возрастает примерно вдвое за год. Мы называем это правило, с несущественными модификациями, законом Мура. Закон Мура – страшная сила. Посмотрите на небо. Все звезды, которые вы видите, входят в нашу галактику. А теперь вообразите, что сейчас за одну секунду в мире производится 25 таких галактик, но из транзисторов! Этот закон Мура - главный драйвер Индустрии 4.0. Но такой рост не может быть вечным. Такие люди, как вице-президент NVIDIA Билл Дэлли или физик-теоретик Мичио Каку, говорят, что закон Мура либо уже мертв, либо умрет в ближайшие 5 лет. Дело в том, что нельзя уменьшать размеры транзисторов до бесконечности. Когда они станут меньше 5 нанометров, рабочая температура чипов станет слишком высокой, и электроны начнут улетать. Неужели рост скоро замедлится? Нет! На смену приходит новая технология, называемая спинтроника. В устройствах спинтроники, в отличие от устройств обычной электроники, энергию или информацию переносит не электрический ток, а ток спинов! Сейчас в мире идет бум – спинтроника вместо электроники. Новые технологии наступают! Индустрия 4.0! Готовьтесь! НАУКА ЗА МИНУТУ МЕДИАЦЕНТР БФУ ИМЕНИ И. КАНТА Субтитры КАРИНЫ МОКИНОЙ

История

По поводу эффектов, обусловленных законом Мура, в журнале «В мире науки » как-то было приведено такое интересное сравнение:

«Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (~18,9 л) топлива. Приведенные цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

В 2003 году Мур опубликовал работу «No Exponential is Forever: But „Forever“ Can Be Delayed!», в которой признал, что экспоненциальный рост физических величин в течение длительного времени невозможен, и постоянно достигаются те или иные пределы. Лишь эволюция транзисторов и технологий их изготовления позволяла продлить действие закона еще на несколько поколений .

В 2007 году Мур заявил, что закон, очевидно, скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света .

Одним из физических ограничений на миниатюризацию электронных схем является также принцип Ландауэра , согласно которому логические схемы, не являющиеся. На протяжении многих лет, производители процессоров постоянно увеличивали тактовую частоту и параллелизм на уровне инструкций, так что на новых процессорах старые однопоточные приложения исполнялись быстрее без каких-либо изменений в программном коде. Сейчас по разным причинам производители процессоров предпочитают многоядерные архитектуры, и для получения всей выгоды от возросшей производительности ЦП программы должны переписываться в соответствующей манере. Однако, по фундаментальным причинам, это возможно не всегда.

Закон Мура больше не актуален October 7th, 2017

С технической точки зрения закон Мура появился как простое наблюдение: в 1965 году один из основателей Intel Гордон Мур заметил, что в развивающейся индустрии компьютерной электроники наблюдается интересная закономерность: количество транзисторов на квадратный дюйм интегральных схем постоянно увеличивалось примерно в два раза каждый год. Основываясь на этом наблюдении, от предсказал, что вычислительная мощность компьютеров соответственно будет увеличиваться (а ее стоимость снижаться) экспоненциально примерно каждые 2 года. Позднее он пересмотрел свой «закон» и сократил срок до 18 месяцев, поскольку темпы производства начали замедляться, однако основной посыл стал неотъемлемой частью нашего понимания принципов информатики, электроники и экономики.

В течение последних десятилетий определение закона изменилось, да и сам он многократно был поставлен под сомнение.

Теперь, кажется, пришло время и вовсе отказаться от этого правила.



В новом исследовании, опубликованном на этой неделе в журнале Nature Nanotechnology , команда исследователей из Массачусетского технологического института (MIT) продемонстрировала необычные магнитные свойства систем, которые уже в ближайшем будущем могут значительно улучшить методы хранения данных.

В настоящее время данные считываются и записываются по принципу «один бит за один раз», что достигается изменением локализации магнитных частиц. Вместо этого, новый метод использует так называемые «скирмионы» — виртуальные частицы, основанные на небольших возмущениях ориентации магнитных элементов — вкупе с электрическими полями. Эти частицы, как оказалось, могут хранить данные намного дольше, чем традиционные системы.

Джеффри Бич, адъюнкт-профессор материаловедения и инженерии в Массачусетском технологическом институте, провел исследование, в котором впервые было описано существование скирмионов, еще в 2016 году. В нем он продемонстрировал, что виртуальные частицы можно создавать в определенных местах, тогда как ранее считалось, что их местоположение при генерации было случайным. Именно это и позволило специалистам разработать улучшенную версию технологии хранения данных.

На сегодняшний день емкости для хранения данных, существующие в виде физических носителей, в общем и целом соответствуют закону Мура. Как бы то ни было, эта технология уже практически достигла своего предела, и, если заменить ее более совершенной, на основе тех же скирмионов, то и сам закон можно было бы не просто переписать, а полностью устранить. Основная причина того, почему до сих пор разработки не вышли дальше лабораторных застенков, заключаются в методах считывания информации с новых носителей. Для достижения этих целей можно использовать рентгеновскую микроскопию, но подобное оборудование стоит дорого и практически недоступно рядовому обывателю, так что устанавливать его на портативные компьютеры нецелесообразно.

Будущее информационных технологий

Существуют и другие методы для чтения данных, но все они пока остаются на бумаге. Именно создание реалистично рентабельного, дешевого и применимого для ПК оборудования и станет одной из основных задач для инженеров в ближайшие несколько лет.

Несмотря на это, эпоха закона Мура определенно подходит к концу. Он исправно доказывал свою правоту на протяжении десятилетий, поскольку информатика сама по себе была весьма новаторским направлением науки, но теперь технологии подошли к следующему этапу своего развития. Речь идет не просто об отмене формального закона, но и о смене самих представлений человека о том, каких мощностей может достигнуть обработка и хранение данных.


источники

Количество транзисторов на одном кристалле достигает миллиардов штук. Естественный способ их использовать – строить многопроцессорные системы. Для таких компаний как Intel вопрос создания многопроцессорных систем – это вопрос существования.

Г. Мур (G. Moor – создатель Intel) на основе развития технологии в компа

нии Intel в 1965 году выдвинул следующее положение, которое сейчас называ-

ют законом Мура:

Каждые 2 года количество транзисторов на кристалле удваивается

Этот закон и с некоторыми колебаниями сохраняется длительное время.

Число транзисисторов на кристалле увеличится в такой степени, что это позво-

ляет создавать многоядерные процессоры (МЯП), в которых на одном кристал-

ле размещены сотни и тысячи ядер, каждое из которых является полноценным

процессором.

Считается, что нанотехнологии начинаютя со 100 нм. Таким образом, можно сказать, что современные микропроцессоры – это область нанотехнологий.

До минимального размера порядка 10 нм транзистор сохраняет свои пере-

ключательные и усилительные свойства, что полностью определяет путь разви-

тия кремниевой наноэлектроники вплоть до 2020 г. Ниже 10 нм кремний теря-

ет проводимость. В диапазоне размеров 5-0.5 нм наступает эра мезоскопических структур и приборов. Мезоскопические структуры - электронные при-

боры, размеры активной области которых сопоставимы с параметрами электро-

на. При размерах 0.5 нм и менее - эра квантовых кристаллов.

Графен – это одиночный плоский лист, состоящий из атомов углерода, образующих решётку из шестиугольных ячеек. Нанотрубки состоят из тех же шестиугольных ячеек, имеют средний диаметр около 1 нм и длину до нескольких сантиметров. Но отдельный транзистор – это не процессор. Поэтому квантовые компьютеры могут оказаться ближе по времени, чем мезоскопические структуры.

Вопросы для самоконтроля

    В чем суть параллелизм независимых ветвей?

    Сформулируйте закон Амдала.

    Закон Мура и его перспективы.

Лекция 4. Основные этапы развития параллельной обработки

Идея параллельной обработки возникла одновременно с появлением первых вычислительных машин. В начале 50-х гг. американский математик Дж. Фон Нейман предложил архитектуру последовательной ЭВМ, которая приобрела классические формы и применяется практически во всех современных ЭВМ. Однако фон Нейман разработал также принцип построения процессорной матрицы, в которой каждый процессор был соединен с четырьмя соседними.

D825. Одной из первых полномасштабных многопроцессорных систем явилась система D825 фирмы “BURROUGHS”. Начиная с 1962 г. было выпущено большое число экземпляров и модификаций D825. Выпуск первых многопроцессорных систем, в частности D825, диктовался необходимостью получения не высокого быстродействия, а высокой живучести ЭВМ, встраиваемых в военные командные системы и системы управления. С этой точки зрения параллельные ЭВМ считались наиболее перспективными. Система D825 содержала до четырех процессоров и 16 модулей памяти, соединенных матричным коммутатором, который допускал одновременное соединение любого процессора с любым блоком памяти.

Практическая реализация основных идей параллельной обработки началась только в 60-х гг. 20 - го столетия. Это связано с появлением транзистора, который позволил строить машины, состоящие из большого количества логических элементов, что принципиально необходимо для реализации любой формы параллелизма.

CRAY. Основополагающим моментом для развития конвейерных ЭВМ явилось обоснование академиком С.А. Лебедевым в 1956 г. метода, названного

“принципом водопровода” (позже он стал называться конвейером ). Прежде все-

го был реализован конвейер команд, на основании которого практически одно-

временно были построены советская ЭВМ БЭСМ-6 (1957-1966 гг., разработка

Института точной механики и вычислительной техники АН СССР), и англий-

ская машина ATLAS (1957-1963 гг.). Конвейер команд предполагал наличие

многоблочной памяти и секционированного процессора, в котором на разных

этапах обработки находилось несколько команд.

Следующим заметным шагом в развитии конвейерной обработки, реализо

ванном в ЭВМ CDC-6600 (1964 г.), было введение в состав процессора не-

скольких функциональных устройств, позволяющих одновременно выполнять

несколько арифметико-логических операций: сложение, умножение, логические операции.

В конце 60-х гг. был введен в использование арифметический конвейер , который нашел наиболее полное воплощение в ЭВМ CRAY-1 (1972-1976 гг.).

Арифметический конвейер предполагает разбиение цикла выполнения арифме-

тико-логической операции на ряд этапов, для каждого из которых отводится

собственное оборудование. Таким образом, на разных этапах обработки нахо-

дится несколько чисел, что позволяет производить эффективную обработку

вектора чисел.

Сочетание многофункциональности, арифметического конвейера для каж

дого функционального блока и малой длительности такта синхронизации по-

зволяет получить быстродействие в десятки и сотни миллионов операций в се-

кунду. Такие ЭВМ называются супер ЭВМ.

ILLIAC-IV. Идея получения сверхвысокого быстродействия в первую очередь связывалась с процессорными матрицами (ПМ). Предполагалось, что,

увеличивая в нужной степени число процессорных элементов в матрице, можно

получить любое заранее заданное быстродействие.

Поскольку в 60-е гг. логические схемы с большим уровнем интеграции от

сутствовали, то напрямую реализовать принципы функционирования процес-

сорной матрицы, содержащей множество элементарных процессоров, не пред-

ставлялось возможным. Поэтому для проверки основных идей строились одно-

родные системы из нескольких больших машин. Так, в 1966 г. была построена

система Минск-222, разработанная Институтом математики Сибирского отде-

ления АН СССР и минским заводом ЭВМ им. Г.К.Орджоникидзе. Система со-

держала до 16 соединенных в кольцо ЭВМ Минск-2. Для нее было разработано

специальное математическое обеспечение.

Другое направление в развитии однородных сред, основанное на построе-

нии процессорных матриц, состоящих из крупных процессорных элементов с

достаточно большой локальной памятью, возникло в США и связано с именами

Унгера, Холланда, Слотника. Была создана ЭВМ ILLIAC-IV (1966-1975 гг.), ко-

торая надолго определила пути развития процессорных матриц. В машине ис-

пользовались матрицы 8×8 процессоров, каждый с быстродействием около 4

млн оп/с и памятью 16 кбайт. Для ILLIAC-IV были разработаны кроме Ассемб-

лера еще несколько параллельных языков высокого уровня. Особенно ценным

является опыт разработки параллельных алгоритмов вычислений, определив-

ший области эффективного использования подобных машин.

T ранспьютер . Совершенствование микроэлектронной элементной базы,

появление в 80-х годах БИС и СБИС позволили разместить в одной микросхеме

процессор с 4-мя внешними связями, который получил название транспьютер .

Теперь стало возможным строить системы с сотнями процессоров.

пошло широким потоком. Сначала строились монолитные многопроцессорные

системы, для которых все разрабатывалось специально для конкретной систе-

мы: элементная база, конструктивы, языки программирования, операционные

системы. Затем оказалось много дешевле строить вычислительные кластеры на

основе промышленные средства, появились многояденые процессора, Грид,

квантовые компьютеры.

Некоторые этапы развития параллельных ЭВМ качественно можно представить следующей таблицей:

НАЗВАНИЕ ЭВМ

ПРОГРАММЫ

D825 - одна из первых многопроцессорных систем

Доказана возможность построения многопроцессорных систем

Первая ОС для многопроцессорных систем - ASOR

Матричный процессор ILLIAC IV

Реализована ОКМД

Параллельный язык

Векторно- конвейерная ЭВМ CRAY

Предложены конвейерные вычисления

Предложен ЯВУ векторного типа

Транспьютер Т414

Разработан процессор на кристалле со связями для мультисистем

Язык описания параллелизма OCCAM

Кластер Beowulf

Сборка на серийном оборудовании

Использованы обыч

ные сетевые ОС

Неограниченная возможность расширения

GlobusToolkit, gLite

Многоядерные про-

Разработаны МЯ процессоры с общей и индивидуальной памятью

OpenMP и MPI. Нужны новые разработки

Квантовый компью-

тер Orion компании

Кубит, эспоненциальная скорость за счет суперпозиции

Алгоритмы Шора,

Гровера. Языки моделирования

Вопросы для самоконтроля.

    Основные этапы развития параллельной обработки. D825

    Основные этапы развития параллельной обработки. CRAY.

    Основные этапы развития параллельной обработки. ILLIAC-IV.

    Некоторые этапы развития параллельных ЭВМ.

Закон Мура

По поводу эффектов, обусловленных законом Мура, в журнале «В мире науки » как-то было приведено такое интересное сравнение:

«Если бы авиапромышленность в последние 25 лет развивалась столь же стремительно, как промышленность средств вычислительной техники, то сейчас самолёт Boeing 767 стоил бы 500 долл. и совершал облёт земного шара за 20 минут, затрачивая при этом пять галлонов (~18,9 л) топлива. Приведенные цифры весьма точно отражают снижение стоимости, рост быстродействия и повышение экономичности ЭВМ».

В 2007 году Мур заявил, что закон, очевидно, скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света .

Одним из физических ограничений на миниатюризацию электронных схем является также Принцип Ландауэра , согласно которому логические схемы, не являющиеся обратимыми, должны выделять теплоту в количестве, пропорциональном количеству стираемых (безвозвратно потерянных) данных. Возможности по отводу теплоты физически ограничены .

Следствия и ограничения

Параллелизм и закон Мура

В последнее время, чтобы получить возможность задействовать на практике ту дополнительную вычислительную мощность, которую предсказывает закон Мура, стало необходимо задействовать параллельные вычисления . На протяжении многих лет, производители процессоров постоянно увеличивали тактовую частоту и параллелизм на уровне инструкций, так что на новых процессорах старые однопоточные приложения исполнялись быстрее без каких-либо изменений в программном коде. Сейчас по разным причинам производители процессоров предпочитают многоядерные архитектуры, и для получения всей выгоды от возросшей производительности ЦП программы должны переписываться в соответствующей манере. Однако, по фундаментальным причинам, это возможно не всегда.

См. также

  • Закон гиперболического роста численности населения Земли

Примечания

Ссылки

  • Закон Мура Воплощается в жизнь благодаря инновациям Intel

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Мура" в других словарях:

    Увеличение количества транзисторов по времени. Количество удваивается каждые 2 года Закон Мура эмпирическое наблюдение, сделанное в 1965 году (через шесть лет после изобретения интегральной схемы), в процессе подготовки выступления Гордоном… … Википедия

    Закон Мура - Moore s Law Закон Мура Эмпирическое наблюдение, сделанное в 1965 году (через шесть лет после изобретения интегральной схемы) одним из основателей корпорации «Intel» Гордоном Муром: число транзисторов на кристалле будет удваиваться каждые 24… … Толковый англо-русский словарь по нанотехнологии. - М.

    Законом Гроша называют следующее замечание о производительности компьютеров, сделанное Хербом Грошем в 1965 году: Существует фундаментальное правило, которое я скромно называю законом Гроша: получение добавочной экономии есть только квадратный… … Википедия

    Ускорение программы с помощью параллельных вычислений на нескольких процессорах ограничено размером последовательной части программы. Например, если можно распараллелить 95% программы, то теоретически максимальное ускорение составит 20×, невзирая … Википедия

    Это полушутливое высказывание, популяризированное Никлаусом Виртом в 1995 году. Звучит оно так: … Википедия

    У этого термина существуют и другие значения, см. Мур. Гордон Мур Gordon Moore … Википедия

    Гордон Мур Gordon Moore основатель Имя при рождении: Gordon Earle Moore Дата рождения: 3 январ … Википедия

    - (англ. International Technology Roadmap for Semiconductors, ITRS) набор документов, выпускаемый группой экспертов полупроводниковой промышленности. Эти эксперты являются представителями спонсирующих организаций, которые включают в себя … Википедия

    Intel - (Интел) Компания Intel, история компании, деятельность компании Информация о компании Intel, история компании, деятельность компании Содержание Содержание Core Описание Intel Продукция фирмы Intel Технические характеристики Преимущества и… … Энциклопедия инвестора

    У этого термина существуют и другие значения, см. Будущее (значения). Антонио Сант’Элиа Урбанистический рисунок в футуристическом стиле Будущее часть лин … Википедия