Радиоуглеродное надувательство

Вокруг ра­дио­угле­род­но­го ана­ли­за сло­ма­но мно­же­ство копий, и сейчас он вроде как за­слу­жен­ный физико-хи­ми­че­ский метод да­ти­ров­ки ор­га­ни­че­ских остат­ков, да­вай­те по­про­бу­ем разо­брать­ся, так ли это.

Вве­де­ние

За­бе­гая вперед скажу, что на мой неис­ку­шен­ный взгляд, метод ра­дио­угле­род­ной да­ти­ров­ки ор­га­ни­че­ских остат­ков, мягко говоря вы­зы­ва­ет ряд во­про­сов к доб­ро­со­вест­но­сти да­ти­ров­щи­ков, а если го­во­рить жестко, то это пример на­уч­ной ше­лу­ди­во­сти и бри­тан­ско­го низ­ко­по­клон­ства , а также видимо по­ли­ти­че­ской ан­га­жи­ро­ван­но­сти, но правда это или нет судить тебе чи­та­тель.

Я не буду ка­сать­ся здесь во­про­сов к физике метода, хотя они есть, за ссылку бла­го­да­рю ка­мра­да Ин­фор­ма­тик.

Мы будем счи­тать что с фи­зи­кой этого метода все более или менее в по­ряд­ке. Так же не будем об­ра­щать вни­ма­ния на то, что аб­со­лют­ные ошибки метода с каждым пе­ри­о­дом по­лу­рас­па­да удва­и­ва­ют­ся и к 60000 лет их зна­че­ние воз­рас­та­ет в 16-20 раз. Все это малые част­но­сти ко­то­ры­ми можно было бы пре­не­бречь. Я хочу об­ра­тить вни­ма­ние на то, что обычно ста­ра­ют­ся любым спо­со­бом за­тол­кать под ковер ис­то­рии, а именно ма­те­ри­а­лы, ко­то­рые ана­ли­зи­ру­ют.

Немно­го теории

Для тех, кто не знаком с сутью метода ра­дио­угле­род­но­го да­ти­ро­ва­ния, бегло озна­ко­мит­ся с осо­бен­но­стя­ми метода можно вот здесь.

Если совсем кратко, то метод ба­зи­ру­ет­ся на ра­дио­ак­тив­ном изо­то­пе C 14 (период по­лу­рас­па­да ~6000 лет), ко­то­рый об­ра­зу­ет­ся из атомов азота N 14 , под вли­я­ни­ем кос­ми­че­ских(Сол­неч­ных) из­лу­че­ний в ат­мо­сфе­ре Земли. Данный изотоп уг­ле­ро­да по­сту­па­ет в био­ло­ги­че­ские пи­ще­вые цепи Земли из ат­мо­сфе­ры в виде СО 2 , где встра­и­ва­ет­ся в раз­лич­ные ор­га­ни­че­ские со­еди­не­ния и пу­те­ше­ству­ет по пи­ще­вым цепям, внося неболь­шой вклад в те­ку­щий ра­дио­ак­тив­ный фон, как бы со­зда­вая ра­дио­ак­тив­ный маркер те­ку­ще­го вре­ме­ни.

Когда био­ло­ги­че­ский объект уми­ра­ет, то ра­дио­ак­тив­ный уг­ле­род в него по­сту­пать пе­ре­ста­ет, по из­вест­ным при­чи­нам, и со­дер­жа­ние изо­то­па C 14 в остан­ках на­чи­на­ет сни­жать­ся. Соб­ствен­но, эта раз­ни­ца кон­цен­тра­ций изо­то­па и яв­ля­ет­ся фи­зи­че­ским ос­но­ва­ни­ем для ра­дио­угле­род­ной да­ти­ров­ки.

Метод ос­но­ван на том пред­по­ло­же­нии что сол­неч­ная ак­тив­ность вещь в прин­ци­пе по­сто­ян­ная, по­след­нее время вы­яс­ни­лось что это не совсем так, и для метода были вве­де­ны до­пол­ни­тель­ные ка­либ­ров­ки, по широте и неко­то­рые другие, ко­то­рые при­зва­ны по­вы­сить точ­ность ука­зан­но­го метода.

Анализ ра­дио­ак­тив­но­сти осу­ществ­ля­ет­ся в ос­нов­ном двумя ме­то­да­ми, сцин­тил­ля­ци­он­ным (проба имеет размер по­ряд­ка 10 г) и спек­тро­фо­то­мет­ри­че­ским (проба имеет размер по­ряд­ка 10 мг). По­сколь­ку под­го­тов­ка об­раз­ца к ана­ли­зу его раз­ру­ша­ет, то по­след­нее время сцин­тил­ля­ци­он­ный метод при­ме­ня­ет­ся реже, но он все еще до­ста­точ­но рас­про­стра­нен.

По­сколь­ку ор­га­ни­ка неиз­беж­но при­сут­ству­ет, прак­ти­че­ски в любом на­зем­ном или за­хо­ро­нен­ном об­раз­це, а метод до­ста­точ­но прост в ис­поль­зо­ва­нии, он по­лу­чил ши­ро­чай­шее рас­про­стра­не­ние для да­ти­ров­ки ор­га­ни­че­ских остат­ков воз­рас­том не старше 60000 (по другим ис­точ­ни­ка 45000) лет. При­зна­ние на­уч­но­го со­об­ще­ства вы­ра­зи­лось в при­суж­де­нии но­бе­лев­ской премии раз­ра­бот­чи­ку метода док­то­ру Либби.

Ну вот ка­жет­ся и все с офи­ци­аль­ной частью, а теперь на­чи­на­ет­ся на­сто­я­щая сказка про репку.

За­бы­тые овраги

У ра­дио­угле­род­но­го метода в общем су­ще­ству­ет две неустра­ни­мых про­бле­мы, даже если про­бле­мы с фи­зи­кой решить удаст­ся. Первая про­бле­ма гео­гра­фи­че­ская свя­зан­ная с гео­гра­фи­че­ски­ми осо­бен­но­стя­ми мест рас­по­ло­же­ния ис­ко­па­е­мых об­раз­цов, а вторая био­ло­ги­че­ская, свя­зан­ная с осо­бен­но­стя­ми функ­ци­о­ни­ро­ва­ния живых ор­га­низ­мов.

Гео­гра­фи­че­ские про­бле­мы

Так уж вышло что на Земле, есть свои огром­ные залежи раз­лич­ных со­еди­не­ний уг­ле­ро­да, на­чи­ная от тор­фя­ных болот и кончая нефтью и из­вест­ня­ка­ми. Уг­ле­род в этих за­ле­жах дев­ствен­но чист с точки зрения C 14 , для тор­фя­ни­ков ко­неч­но есть некая оста­точ­ная ра­ди­а­ция, но что она ха­рак­те­ри­зу­ет ска­зать сложно, как мягко вы­ра­жа­ют­ся да­ти­ров­щи­ки уг­ле­ро­дом ошибка может со­ста­вить до несколь­ких тысяч лет, я бы от себя до­ба­вил де­сят­ков тысяч, это было бы чест­нее, но тут уж у каж­до­го своя чест­ность.

Что ка­са­ет­ся за­ле­жей кар­бо­на­тов и нефти там по­нят­ное дело, ни о какой да­ти­ров­ке речи быть не может чисто фи­зи­че­ски, это же ка­са­ет­ся и СО 2 из­вер­жен­но­го вул­ка­на­ми.

Таким об­ра­зом мы должны ав­то­ма­ти­че­ски при­знать, что да­ти­ров­ки ор­га­ни­че­ско­го ма­те­ри­а­ла воз­ник­ше­го в пе­ри­о­ды вул­ка­ни­че­ской ак­тив­но­сти, неф­тя­ных, уголь­ных, тор­фя­ных по­жа­ров, могут быть самыми фан­та­сти­че­ски­ми, лучше такие ма­те­ри­а­лы не да­ти­ро­вать, ну вы понели: ошибка да­ти­ров­ки может со­ста­вить до несколь­ких тысяч лет.

Био­ло­ги­че­ские со­об­ще­ства на­хо­дя­щи­е­ся на бо­ло­тах, а также на вы­хо­дах мела, до­ло­ми­та или каль­ци­та, тоже в ос­нов­ном поль­зу­ют­ся ис­ко­па­е­мым СО 2 , для да­ти­ров­ки мало при­год­ны, как там у нас де­жур­ная фраза: ошибка да­ти­ров­ки может со­ста­вить до несколь­ких тысяч лет.

Ну и самый глав­ный гео­гра­фи­че­ский арбуз на могилу этого пре­крас­но­го метода, это мор­ская вода и мор­ские залежи со­еди­не­ний уг­ле­ро­да, их в прин­ци­пе очень сложно да­ти­ро­вать , потому, что уг­ле­род в океане ак­тив­но ми­гри­ру­ет, и его там очень много и раз­но­го воз­рас­та, но в целом очень древ­не­го, по­это­му даже офи­ци­аль­но да­ти­ров­щи­ки ста­ра­ют­ся из­бе­гать да­ти­ров­ки мор­ских ор­га­ни­че­ских остан­ков, потому то она за­ви­сит в ос­нов­ном от тем­пе­ра­ту­ры океана его кис­лот­но­сти, а также от пре­об­ла­да­ю­щих мор­ских те­че­ний. Ана­ло­гич­ная беда с теми рай­о­нам суши куда дуют ветра из океана, осо­бен­но из тех его об­ла­стей в ко­то­рых под­ни­ма­ют­ся воды из глубин или есть мощные теплые те­че­ния ко­то­рые пе­ре­но­сят ор­га­ни­ку. В этих об­ла­стях даже на по­бе­ре­жье уже де­жур­ное: ошибка да­ти­ров­ки может со­ста­вить до несколь­ких тысяч лет.

Также пре­крас­но об­сто­ит дело с жи­вот­ны­ми упо­треб­ля­ю­щи­ми в пищу мо­ре­про­дук­ты, осо­бен­но про­ход­ных мор­ских рыб типа ло­со­се­вых или осет­ро­вых, при да­ти­ров­ке остан­ков этих жи­вот­ных неиз­беж­но со­кра­мен­таль­ное: ошибка да­ти­ров­ки может со­ста­вить до несколь­ких тысяч лет. Таким об­ра­зом в при­по­ляр­ных рай­о­нах, где ос­нов­ным по­став­щи­ком ор­га­ни­ки яв­ля­ют­ся про­ход­ные рыбы, ни­ка­кая ра­зум­ная да­ти­ров­ка ра­дио­угле­род­ным ме­то­дом невоз­мож­на в прин­ци­пе, ана­ло­гич­но для мус­сон­ных кли­ма­ти­че­ских зон, потому что муссон по­став­ля­ет СО 2 из моря.

Хотя да­ти­ров­щи­ки врут про какую-то ка­либ­ров­ку по ко­рал­лам , ра­дио­угле­род­ный воз­раст ко­рал­лов фак­ти­че­ски будет опре­де­лять­ся теми водами ко­то­ры­ми они омы­ва­ют­ся, а так же под­ле­жа­щим ос­но­ва­ни­ем, как из этого из­влечь какую либо прак­ти­че­скую пользу мне ка­те­го­ри­че­ски не ясно, ведь мало того что мор­ские да­ти­ров­ки прак­ти­че­ски невоз­мож­ны, так потом еще и на суше это все пе­ре­ме­ша­ет­ся с ат­мо­сфе­рой, что там и где в итоге по­лу­чит­ся точно ска­зать уже никто не может.

Таким об­ра­зом, гео­гра­фи­че­ские про­бле­мы, это глав­ная и неустра­ни­мая ошибка ра­дио­угле­род­но­го метода да­ти­ров­ки, для того что бы им вос­поль­зо­вать­ся тре­бу­ет­ся такая ин­фор­ма­ция ко­то­рая в прин­ци­пе не может быть до­ступ­на. Эти ис­ка­же­ния носят непред­ска­зу­е­мый ха­рак­тер и ам­пли­ту­ду, их невоз­мож­но ка­либ­ро­вать, вернее для каж­до­го кон­крет­но­го об­раз­ца должна быть своя ка­либ­ро­воч­ная кривая, ибо его гео­гра­фи­че­ская ис­то­рия прак­ти­че­ски уни­каль­на.

Био­ло­ги­че­ские про­бле­мы

Ка­либ­ров­щи­ки, воз­мож­но были хо­ро­ши­ми фи­зи­ка­ми, в чем я лично глу­бо­ко со­мне­ва­юсь, но были очень сквер­ны­ми био­ло­га­ми . Ра­дио­угле­род­ный метод ре­ко­мен­ду­ют для да­ти­ров­ки био­ло­ги­че­ских объ­ек­тов да­вай­те при­гля­дим­ся к ним по­дроб­нее, воз­мож­на ли их да­ти­ров­ка этим ме­то­дом.

Клас­си­фи­ка­ция био­ло­ги­че­ских объ­ек­тов для да­ти­ров­ки весьма об­шир­на, я пе­ре­чис­лю только ос­нов­ные типы и свя­зан­ные с ними труд­но­сти, более по­дроб­но можно по­смот­реть в про­филь­ной ли­те­ра­ту­ре ссылка ниже.

Я бы сразу раз­де­лил все био­ло­ги­че­ские объ­ек­ты на мор­ские (свя­зан­ные с морем) и су­хо­пут­ные. Мор­ские объ­ек­ты, по гео­гра­фи­че­ским при­чи­нам да­ти­ро­вать невоз­мож­но , мы не будем на них оста­нав­ли­вать­ся, всякие да­ти­ров­ки ко­рал­лов считаю от­кро­вен­ной ма­ни­пу­ля­ци­ей, почему, см выше.

Из су­хо­пут­ных я бы вы­де­лил сле­ду­ю­щие группы объ­ек­тов:

1. Рас­ти­тель­но­го про­ис­хож­де­ния

1. Дре­ве­си­на

2. Жи­вот­но­го про­ис­хож­де­ния

1. Кост­ные остан­ки

2. Бел­ко­вые остан­ки (ке­ра­тин, хитин)

Самые рас­про­стра­нен­ные объ­ек­ты,- это остат­ки дре­ве­си­ны (1.1), они плохо раз­ру­ша­ют­ся со вре­ме­нем, а глав­ное их очень много, так же из них много чего сде­ла­но, это и до­маш­няя утварь и стены домов и оружие и многое другое. На первый взгляд это иде­аль­ная вещь для да­ти­ров­щи­ков, но есть вещь ко­то­рая сводят цен­ность дре­вес­ных остат­ков к нулю, вещь эта чисто био­ло­ги­че­ская.

Многие де­ре­вья растут 400 лет, но есть такие ре­корд­сме­ны как дубы ко­то­рые растут по 2000 лет, я сам встре­чал дуб в при­реч­ной дуб­ра­ве на спиле ко­то­ро­го на­счи­тал 833 кольца и сбился, а это был не самый тол­стый дуб ко­то­рый я видел. Су­ще­ству­ют сви­де­тель­ства о де­ре­вьях по 3500 тысячи лет, ре­корд­сме­ном на се­го­дняш­ний день счи­та­ет­ся ости­стая сосна, около 4600 лет.

Есте­ствен­но, когда дерево растет, все ос­нов­ное со­ко­дви­же­ние идет по пе­ри­фе­рии ствола, яд­ро­вая дре­ве­си­на прак­ти­че­ски мертва, и в жизни дерева не участ­ву­ет, со­от­вет­ствен­но ра­дио­ак­тив­ность от пе­ри­фе­рии к центру убы­ва­ет. То есть если я возьму 1000 летний дуб и из его среза сделаю себе на­при­мер две ложки, для одной из ко­то­рых я возьму яд­ро­вую дре­ве­си­ну, а для другой пе­ри­фе­ри­че­скую дре­ве­си­ну, то да­ти­ров­ка этих пред­ме­тов разой­дет­ся в 1000 лет, и это будет пра­виль­но. Ана­ло­гич­ным об­ра­зом будет из­ме­нять­ся и да­ти­ров­ка стро­е­ния, все будет за­ви­сеть от того с какой части доски или бревна я возьму пробу и сде­лать с этим ре­ши­тель­но ничего нельзя.

Смолы (1.2), тоже вроде хороши для да­ти­ро­ва­ния, к со­жа­ле­нию должен вас огор­чить, как пра­ви­ло смола в смо­ля­ных ка­на­лах ко­пит­ся на про­тя­же­нии всей жизни дерева, и если сосна живет лет 150-200, то смола выдаст некое сред­нее ариф­ме­ти­че­ское по всему дереву, причем в каких-то частях дерева она будет «моложе» в каких-то старше, одним словом ти­пич­ная кар­ти­на черт знает чего, а если это будет 1000 летняя лист­вен­ни­ца, воз­раст ее смолы будет от 1000 лет в цен­траль­ных об­ла­стях ствола, до нуля в камбии.

Пыльца (1.3) - на­вер­ное един­ствен­ное что можно было бы ис­поль­зо­вать для да­ти­ро­ва­ния, если бы не гу­ми­но­вые кис­ло­ты, по­сколь­ку пыльца лежит в почве, то на нее непре­мен­но осядут гу­ми­но­вые кис­ло­ты и скорее всего на­мерт­во за­кре­пят­ся, отмыть их от цел­лю­ло­зы прак­ти­че­ски не воз­мож­но для пыльцы, так что в общем я бы не стал бы ста­вить на пыльцу

Вывод: Дре­вес­ные остан­ки из мас­сив­ных ство­лов дре­ве­си­ны дол­го­жи­ву­щих дре­вес­ных пород ка­те­го­ри­че­ски не под­хо­дят для ра­дио­угле­род­но­го ана­ли­за, ошибка в лучшем случае со­ста­вит лет 50. Со­от­вет­ствен­но, со­вер­шен­но невоз­мож­но да­ти­ро­вать вещи из дре­вес­ной бумаги, их воз­раст может быть самый фан­та­сти­че­ский. Да­ти­ров­ки па­пи­ру­са так же бес­смыс­лен­ны, так как он растет на бо­ло­ти­стых почвах, а да­ти­ров­ки хлоп­чат­ной бумаги невоз­мож­ны по той про­стой при­чине что не ясен воз­раст хлоп­чат­ных вещей ко­то­рые в нее вошли. Един­ствен­ное что можно да­ти­ро­вать из дре­вес­ных остан­ков это бе­ре­ста, но опять же береза часто растет на бо­ло­тах, такая бе­ре­ста не может быть да­ти­ро­ва­на никак. При­бли­зи­тель­но такая же кар­ти­на для других видов дре­вес­ных остан­ков. Думаю, от­но­си­тель­но при­год­ны для да­ти­ров­ки только хлоп­чат­ные ткани, не об­ра­бо­тан­ные баль­за­ми­ро­воч­ны­ми со­ста­ва­ми и не под­верг­ши­е­ся воз­дей­ствию гу­ми­но­вых кислот и то, они могут быть спле­те­ны из нитей разных лет.

С жи­вот­ны­ми остан­ка­ми вроде, все должно быть лучше жи­вот­ные долго не живут, так что вроде бы тут да­ти­ров­щи­кам раз­до­лье.

Как го­во­рит­ся, а вот хрен. Что ка­са­ет­ся ко­стя­ков за­хо­ро­нен­ных в земле (2.1), то их жизнь, вовсе не кон­ча­ет­ся со смер­тью живого су­ще­ства, эти ко­стя­ки ак­тив­но «живут» об­ме­ни­ва­ясь ми­не­раль­ной и ор­га­ни­че­ской со­став­ля­ю­щей с окру­жа­ю­щим миром на про­тя­же­нии неиз­вест­но­го ко­ли­че­ства лет. Я думаю, что да­ти­ро­вать ко­стя­ки ле­жав­шие в земле ка­те­го­ри­че­ски нельзя, по той про­стой при­чине, что со­вер­шен­но неясно что от них ушло, а что при­со­во­ку­пи­лось, помня о гео­гра­фи­че­ских за­труд­не­ни­ях.

Ну ладно, но остат­ки ке­ра­ти­на и хитина, в виде кожи и пан­цы­рей жи­вот­ных, их на­вер­ня­ка можно да­ти­ро­вать. Увы, ли­чин­ки жест­ко­кры­лых(жуков) почти все по­го­лов­но са­про­ви­ты они живут в лесной по­сдстил­ке и пи­та­ют­ся ею, да­ти­ров­ка пан­ци­рей на­се­ко­мых не пред­став­ля­ет­ся воз­мож­ной. По­дав­ля­ю­щее боль­шин­ство жи­вот­ных пи­та­ют­ся ор­га­ни­че­ским ве­ще­ством уже бывшим в упо­треб­ле­нии, то есть цир­ку­ли­ру­ю­щим в биоме дли­тель­ное время, на их ра­дио­ак­тив­ность по­дав­ля­ю­щее вли­я­ние ока­зы­ва­ет гео­гра­фи­че­ский фактор. Кроме того, многие жи­вот­ные упо­треб­ля­ют ми­не­раль­ные до­бав­ки в пищу (со­дер­жа­щие кар­бо­на­ты), на­при­мер ко­пыт­ные, что есте­ствен­но сильно влияет на да­ти­ров­ку их остан­ков.

Вывод: Жи­вот­ные остат­ки со­вер­шен­но не под­хо­дят для да­ти­ро­ва­ния, в ос­нов­ном по гео­гра­фи­че­ским при­чи­нам.

Вы ду­ма­е­те я вам тут от­кро­ве­ние какое открыл? Вовсе нет, людям в теме это все от­лич­но из­вест­но и тем не менее они про­дол­жа­ют вдох­но­вен­но врать, а вот когда я про­чи­тал учеб­ник для вузов, тут-то меня и на­стиг­ло от­кро­ве­ние.

От­кро­ве­ние

Недав­но я пуб­ли­ко­вал на АШ статью, где вы­ра­жал со­мне­ние в методе ра­дио­угле­род­но­го ана­ли­за, у меня есть зна­ко­мый, мы с ним сильно за­спо­ри­ли. Он мне ре­ко­мен­до­вал книгу для вузов «Гео­ар­хео­ло­гия: есте­ствен­но­на­уч­ные методы в ар­хео­ло­ги­че­ских ис­сле­до­ва­ни­ях» Я.В. Кузь­мин.

Типа, это дей­стви­тель­но сто­я­щая книга, а все что я говорю это вранье и под­та­сов­ки, в па­ра­гра­фе 3.1 (раздел кри­ти­ка) этой книги вы можете про­чи­тать все, что я го­во­рил выше о пре­ле­стях ра­дио­угле­род­но­го метода, только го­раз­до более по­дроб­но, но не это было для меня от­кро­ве­ни­ем, со­вер­шен­но не это.

Вот на­сто­я­щий перл, бри­льянт среди жем­чу­жин, внем­ли­те и тре­пе­щи­те в вос­тор­ге:

"един­ствен­ным и окон­ча­тель­ным ме­ри­лом до­сто­вер­но­сти по­лу­ча­е­мых 14 С дат яв­ля­ет­ся здра­вый смысл" [с.177]

Вы только за­ду­май­тесь, физико-хи­ми­че­ский метод и ме­ри­лом его до­сто­вер­но­сти яв­ля­ет­ся "здра­вый смысл" ? Вот уж во­ис­ти­ну при­пе­ча­тал, так при­пе­ча­тал.

Мне вот здра­вый смысл го­во­рит о том, чтобы ни­ко­гда не поль­зо­вать­ся этим с поз­во­ле­ния ска­зать «ме­то­дом» да­ти­ров­ки, ни­ко­гда и нигде. Эта мер­зость не может решать ни­ка­ких про­блем да­ти­ров­ки по опре­де­ле­нию, потому что био­ло­ги­че­ские си­сте­мы пла­не­ты Земля не от­ве­ча­ют за­яв­лен­ной для этого ана­ли­за фи­зи­че­ской модели.

По сути для каж­до­го об­раз­ца име­ет­ся своя ис­то­рия ра­дио­ак­тив­но­сти, ко­то­рую мы знать не можем, со­от­вет­ствен­но и ка­либ­ро­вать­ся по этим данным мы не можем. Весть метод ра­дио­угле­род­но­го ана­ли­за это одна боль­шая куча мусора, скреп­лен­ная ав­то­ри­те­том тех, кто выждал этим раз­ра­бот­чи­кам но­бе­лев­скую премию.

За­клю­че­ние

Ну что ска­зать в за­клю­че­ние.

Почему ис­то­ри­ки так любят этот метод?

Мне ка­жет­ся ответ прост, при необ­хо­ди­мой лов­ко­сти рук, вы по­лу­чи­те «же­ле­зо­бе­тон­ное» до­ка­за­тель­ство своей право­ты, а если вас вдруг при­прут к стенке с невер­ной да­ти­ров­кой всегда можно со­слать­ся на объ­ек­тив­ные труд­но­сти ана­ли­за , лепота в общем. Глав­ное чтоб ана­ли­зы за ка­зен­ный кошт были.

Почему этот метод любят «ла­бо­ра­то­рии»?

В общем это пре­крас­ный метод, во-первых, он не бес­пла­тен, а во-вторых вы можете под­ра­ба­ты­вать по­мо­гая всяким афе­ри­стам лепить «древ­но­сти», очень удобно, а глав­ное без­опас­но, ведь на страже вашего доб­ро­го имени стоит «здра­вый смысл», а ви­но­ва­ты будут афе­ри­сты под­су­нув­шие вам негод­ную пробу.

Почему данный метод так нра­вит­ся «бри­тан­цам», что аж но­бе­лев­ку от­ва­ли­ли?

Да очень просто, можно дис­кре­ди­ти­ро­вать любую ре­лик­вию , ко­то­рая со­став­ля­ет ис­то­ри­че­ское на­сле­дие. Можно за­ост­рять вни­ма­ние на одних пред­ме­тах и объ­яв­лять другие пред­ме­ты фаль­шив­ка­ми, в общем, все, как всегда.

Вот таково мое мнение о ра­дио­угле­род­ном методе да­ти­ро­ва­ния, как ин­стру­мен­те ис­то­рии.

Как работает Радиоуглеродный анализ

Плащаница, Христос, Иешуа, христианство, радиоуглеродный анализ, ракушка моллюска (Левашов Н.В.)

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях , постоянно проводящихся на сайте «Ключи познания» . Все Конференции - открытые и совершенно безплатные . Приглашаем всех просыпающихся и интересующихся…

Физические основания

Углерод, являющийся одной из основных составляющих биологических организмов, присутствует в земной атмосфере в виде стабильных 12 C и 13 C и радиоактивного 14 C. Изотоп 14 C постоянно образуется в под действием (главным образом, но и излучения от земных источников тоже). Соотношение радиоактивного и стабильных изотопов углерода в атмосфере и в биосфере в одно и то же время в одном и том же месте одинаково, поскольку все живые организмы постоянно участвуют в углеродном обмене и получают углерод из окружающей среды, а изотопы, в силу их химической неразличимости, участвуют в биохимических процессах практически одинаковым образом. В живом организме удельная активность 14 C равна примерно 0,3 распада в секунду на грамм углерода, что соответствует изотопному содержанию 14 C около 10 −10 %.

С гибелью организма углеродный обмен прекращается. После этого стабильные изотопы сохраняются, а радиоактивный (14 C) испытывает с 5568±30 лет, в результате его содержание в останках постепенно уменьшается. Зная исходное соотношение содержания изотопов в организме и измерив их текущее соотношение в биологическом материале, можно определить, сколько углерода-14 распалось и, таким образом, установить время, прошедшее с момента гибели организма.

Применение

Для определения возраста из фрагмента исследуемого образца выделяется углерод (путём сжигания фрагмента), для выделенного углерода производится измерение радиоактивности, на основании этого определяется соотношение изотопов, которое и показывает возраст образца. Образец углерода для измерения активности обычно вводится в газ, которым наполняется пропорциональный счётчик, либо в жидкий . В последнее время для очень малых содержаний 14 C и/или очень малых масс образцов (несколько мг) используется ускорительная масс-спектрометрия, позволяющая прямо определять содержание 14 C. Предельный возраст образца, который может быть определён радиоуглеродным методом - около 60 000 лет, т. е. около 10 периодов полураспада 14 C. За это время содержание 14 C уменьшается примерно в 1000 раз (около 1 распада в час на грамм углерода).

Измерение возраста предмета радиоуглеродным методом возможно только тогда, когда соотношение изотопов в образце не было нарушено за время его существования, то есть образец не был загрязнён углеродосодержащими материалами более позднего происхождения, радиоактивными веществами и не подвергался действию сильных источников радиации. Определение возраста таких загрязнённых образцов может дать огромные ошибки. Так, например, описан случай, когда тестовое определение по траве, сорванной в день анализа, дало возраст порядка миллионов лет, из-за того, что трава была сорвана на газоне вблизи автодороги с постоянным сильным движением, и оказалась сильно загрязнена веществами выхлопных газов. За прошедшие с момента разработки метода десятилетия накоплен большой опыт в выявлении загрязнений и в очистке от них образцов. Погрешность метода в настоящее время, как считается, находится в пределах от семидесяти до трёхсот лет.

Один из наиболее известных случаев применения радиоуглеродного метода - исследование фрагментов (христианской святыни, якобы хранящей на себе следы тела распятого ), проведённый в году, одновременно в нескольких лабораториях . Радиоуглеродный анализ позволил датировать плащаницу периодом - веков.

Калибровка

Исходные предположения Либби, на которых строилась идея метода, заключались в том, что соотношение изотопов углерода в атмосфере во времени и пространстве не меняется, а содержание изотопов в живых организмах в точности соответствует текущему состоянию атмосферы. В настоящее время твёрдо установлено, что все эти предположения могут быть приняты лишь приблизительно. Содержание изотопа 14 C зависит от радиационной обстановки, которая меняется во времени из-за колебания уровня космических лучей и активности , и в пространстве, вследствие неодинакового распространения радиоактивных веществ на поверхности Земли и событий, связанных с радиоактивными материалами (так, например, в настоящее время в образование изотопа 14 C до сих пор вносят свой вклад радиоактивные материалы, которые образовались и были рассеяны при испытаниях в атмосфере в середине века). В последние десятилетия вследствие сжигания ископаемого топлива, в котором 14 C практически отсутствует, атмосферное содержание этого изотопа снижается. Таким образом, принятие некоторого соотношения изотопов за постоянное способно породить значительные ошибки (порядка тысячелетий). Кроме того, исследования показали, что некоторые процессы в живых организмах приводят к избыточному накоплению радиоактивного изотопа углерода, что нарушает естественное соотношение изотопов. Понимание процессов, связанных с углеродным обменом в природе и влияния этих процессов на соотношение изотопов в биологических объектах было достигнуто не сразу.

В результате радиоуглеродные датировки, производившиеся 30-40 лет назад часто оказывались весьма неточными. В частности, проведённая тогда проверка метода по ныне живущим деревьям возрастом в несколько тысяч лет показала значительные отклонения для образцов древесины возрастом свыше 1000 лет.

В настоящее время для правильного применения метода произведена тщательная калибровка, учитывающая изменение соотношения изотопов для различных эпох и географических регионов, а также учёт специфики накопления радиоактивных изотопов в живых существах и растениях. Для калибровки метода используется определение соотношения изотопов для предметов, абсолютная датировка которых заведомо известна. Одним из источников калибровочных данных является . Также проведены сопоставления определения возраста образцов радиоуглеродным методом с результатами других изотопных методов датирования. Стандартная кривая, используемая для пересчёта измеренного радиоуглеродного возраста образца в абсолютный возраст, приведена здесь: .

Можно констатировать, что в своём современном виде на историческом интервале (от десятков лет до 60-70 тысяч лет в прошлое) радиоуглеродный метод можно считать достаточно надёжным и качественно откалиброванным независимым методом датирования предметов биологического происхождения.

Критика метода

Несмотря на то, что радиоуглеродное датирование уже давно вошло в научную практику и достаточно широко используется, высказывается и критика этого метода, ставящая под сомнение как отдельные случаи его применения, так и теоретические основания метода в целом. Как правило, радиоуглеродный метод критикуется сторонниками , и других . Основные возражения против радиоуглеродного датирования приведены в статье .

Исследователи измерили содержание углерода-14 в деревьях, растущих на юге Иордании, определили их возраст и сравнили полученные датировки со стандартной шкалой метода. В результате они обнаружили расхождения в среднем на 19 лет. Относительно небольшая неточность, тем не менее, может существенно сказаться на археологических исследованиях раннебиблейской эпохи и палеоэкологических реконструкциях. Результаты изложены в журнале Proceedings of the National Academy of Sciences.

Радиоуглеродный анализ - один из основных методов датировки растений и археологических предметов с содержанием органического материала. Ученые уже давно его используют, поэтому сейчас уже выработаны стандартные шкалы для Северного и Южного полушарий, которые называются калибровочными кривыми. Они представляют собой зависимость календарного и радиоуглеродного возрастов. Эти кривые достаточно близки к прямой линии, но отражают вариации соотношения изотопов в различные эпохи.

«Мы начали проверять предположения, на которых покоится вся область радиоуглеродного датирования, - говорит ведущий автор работы Стюарт Мэннинг из Корнеллского университета в США. - Из атмосферных измерений последних 50 лет мы знаем, что содержание изотопов углерода меняется в течение года, а также понимаем, что в различных точках Северного полушария растения зачастую активно растут в разное время. Мы хотели выяснить, насколько сильно колеблется зависимость [точности радиоуглеродного датирования] от исследуемой [географической] области, и может ли это повлиять на археологическую датировку».

Материалом для исследования стали растущие на юге Иордании деревья, возраст которых известен ученым. Авторы измеряли возраст их годовых колец при помощи радиоуглеродного метода и обнаружили сдвиг на 19 лет относительно стандартной калибровочной кривой Северного полушария. В результате, утверждают ученые, многие работы по истории этого региона, который также включает современную территорию Израиля, могут опираться на неверные предположения. Например, имеет смысл перепроверить датировки раннебиблейских событий, так как использованные во многих работах калибровочные кривые просто не подходят для данной области.

Авторы применили результаты к нескольким опубликованным ранее хронологическим таблицам и выяснили, что даже небольшой сдвиг датировок может привести к изменению календарных дат, что необходимо учитывать при решении спорных вопросов истории, археологии и климата прошлого. «Наша работа должна стать началом пересмотра и переосмысления временной шкалы археологии и ранней истории южного Леванта в течение раннего библейского периода», - подытоживает Мэннинг.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.

Одним из основных химических элементов круговорота веществ в биосфере Земли является углерод, который встречается в виде трех изотопов – 12 С, 13 С, 14 С. В атмосфере углерод присутствует в основном в виде углекислого газа (есть и другие соединения, но их уровень незначителен). Львиная доля углерода приходится на изотоп 12 С. На изотоп 13 С приходится примерно 0,1%, а доля 14 С – 1,18 . 10 -12 .

14 N + n → 14 C + p +

Из атмосферного воздуха изотоп 14 С в процессе обмена веществ попадает в биосферу Земли. При этом основным каналом поступления 14 С в живые организмы является фотосинтез растений, а далее – по пищевой цепочке – он попадает в организм животных и человека. Через биосферу и непосредственно из атмосферы (хотя и менее интенсивно) 14 С попадает в почву и воду океанов.

Если изотопы 12 С и 13 С являются устойчивыми, то 14 С радиоактивен и с течением времени распадается по реакции:

14 С → 14 N + e – + n

Данная реакция (как и другие реакции радиоактивного распада) характеризуется следующей зависимостью:

А/А 0 = 2 – t / T

где А 0 – концентрация 14 С в некотором образце в начальный момент времени; А – концентрация 14 С в момент времени t; Т – период полураспада, равный для радиоуглерода величине 5730±40 лет.

Именно это свойство нестабильности и «склонности» к распаду и используется в радиоуглеродных методах датирования. Если известно начальное содержание 14 С в образце, то, измерив его содержание в текущий момент времени, по вышеприведенной зависимости можно определить возраст образца.

Рис. 124. Кривая радиоактивного распада

Если известно…

Вот тут-то мы и сталкиваемся с первой серьезной проблемой. Дело в том, что вышеприведенная зависимость представляет собой уравнение, в котором помимо периода полураспада реально известна (точнее – ее можно измерить) только текущая концентрация радиоуглерода. То есть мы имеем одно уравнение с двумя неизвестными. А такое уравнение имеет бесконечное число решений…

И это – уже только в теории. На практике же для возможности корректного определения возраста образца, необходимо выполнить целый ряд дополнительных требований. Все же в целом можно свести к трем важным условиям.

Во-первых, должна быть сведена к минимуму ошибка в определении текущей концентрации 14 С в исследуемом образце.

Во-вторых, необходимо знать начальную концентрацию 14 С в образце.

И в-третьих, нужно быть уверенным, что за период, прошедший с начального момента времени, с образцом не происходило процессов, которые могли бы привести к изменению содержания 14 С в образце, помимо процесса радиоактивного распада. Либо быть уверенным, что существующие методы учета влияния таких процессов в достаточной степени корректны.



Проще всего оказалось решить первую задачу. В настоящее время масс-спектрометрические методы позволяют определять содержание 14 С в очень малых образцах (достаточно лишь 10 микрограмм углерода) с высокой степенью точности. Помимо этого успешно применяются методы очистки образцов и углеродного обогащения. Для минимизации ошибок в этих методах используются измерения на контрольных образцах, которые позволяют корректно учесть возможные изменения концентрации 14 С в исследуемых образцах в процессе соответствующих лабораторных процедур.

Несколько сложнее дело обстоит с третьей задачей (чуть нарушим порядок), то есть с задачей учета предыстории образца. Дело в том, что метод радиоуглеродного датирования базируется на предположении, согласно которому смерть живого организма (растения, животного, человека) означает его выход из активного процесса обмена веществ, в процессе которого непрерывно пополняется его «запас» 14 С. Но ведь на самом деле процесс обмена веществ со смертью организма не прекращается: бренные останки в той или иной степени подвержены влиянию со стороны внешней среды, – а следовательно, возможно и нарушение соотношения между содержанием разных изотопов углерода в этих бренных останках.

Здесь был найден «обходной вариант» – задействован метод выделения специфичного для образца соединения (белки, аминокислоты, целлюлоза, хитин и т.п.), минимально подверженного внешним воздействиям в процессе разложения бренных останков...

Рис. 125. Годичные кольца у сосны

Необходимость же знания начальной концентрации 14 С послужила мощным стимулом к решению другой задачи радиоуглеродного метода – определение содержания 14 С в атмосфере в прошлом. И здесь роль «палочки-выручалочки» выпала на дендрохронологию – метод, основанный на исследовании колец деревьев.

Исследователи пришли к выводу, что изотопное соотношение 14 С/ 12 С в растениях довольно точно соответствует этому отношению в атмосфере. В частности, внешнее кольцо деревьев как бы «фотографирует» содержание радиоуглерода в атмосфере в год образования этого кольца. А поскольку ранее уже были выстроены довольно длинные дендрошкалы (отражающие зависимость ширины колец от времени), радиоуглеродное исследование колец деревьев позволило создать картину изменений содержания 14 С в атмосфере Земли в прошлом.

Рис. 126. Изменение содержания радиоуглерода в атмосфере

Честно говоря, в справедливости данного утверждения у меня остались серьезные сомнения... Дело в том, что трудно представить реальное живое дерево, ствол которого представляет собой набор абсолютно изолированных друг от друга цилиндрических годовых слоев без какого-либо обмена между слоями. Более того, ведь и внутренние слои продолжают жить, участвуя в процессе обмена веществ в дереве. В частности, по внутренним слоям ежегодно прокачиваются «соки» (жидкая фаза) растения. По всем логическим соображениям, это должно влиять на содержание радиоуглерода и в твердой составляющей древесины, поскольку снизу, из почвы, поступает раствор, обедненный 14 С; а от листьев – обогащенный свежим 14 С, поглощенным из атмосферы уже не в год образования кольца, а позже. И строго говоря, для корректного определения концентрации радиоуглерода именно в год формирования кольца необходимо знать баланс этих потоков.

К сожалению, в многочисленных доступных источниках (а мне пришлось в поисках различных данных «прочесать» более тысячи сайтов на различных языках) данный вопрос, если и затрагивается, то обсуждается лишь «на пальцах» без подкрепления какими-либо эмпирическими данными. А ведь общий вид приведенной на Рис. 126 кривой, с возрастанием концентрации радиоуглерода при удалении вглубь времени, вполне может иметь и иное объяснение, нежели изменение содержания 14 С в самой атмосфере – если в результате баланса упомянутых потоков внутренние слои все-таки получают свежий радиоуглерод, то он, естественно, будет повышать общую концентрацию 14 С в них, «омолаживая» их и создавая иллюзию более высокого содержания радиоуглерода в прошлом.

Но, увы, я здесь вынужден тоже лишь «рассуждать на пальцах»... Поэтому в данном случае остается только принять утверждение об абсолютной изолированности внутренних слоев от атмосферного радиоуглерода в качестве рабочей гипотезы и двинуться далее...

На основании данных об изменении во времени содержания 14 С в атмосфере для практических целей сформированы так называемые калибровочные (поправочные) кривые, позволяющие переводить возраст образцов, определенный радиоуглеродным методом (радиоуглеродный возраст), в действительный возраст.

Рис. 127. Калибровочная кривая

Таким образом, в нынешней практике исследователь: тщательно очищает образец; выделяет из него специфическую (наиболее устойчивую по 14 С) фракцию; измеряет содержание в ней 14 С (в сравнении с 12 С); корректирует данное значение 14 С на поправочный коэффициент, учитывающий (по контрольным образцам) возможные искажения, возникающие в ходе лабораторных процедур; вычисляет радиоуглеродный возраст образца; и, наконец, с помощью калибровочной кривой переводит радиоуглеродный возраст в «истинный».

Я опускаю здесь еще одну процедуру – поправку на изотопное фракционирование, о котором речь пойдет дальше. И на этом закончу краткое описание современного состояния метода радиоуглеродного датирования, составленное по многочисленной литературе, имеющейся сейчас в печатном и электронном виде.

Перейдем к тому, что предпочитают не афишировать сторонники радиоуглеродного датирования, а именно – к «подводным камням» метода и его реальным погрешностям.

May 12th, 2013

Все, что дошло до нас от язычества, окутано густым туманом; оно принадлежит к тому промежутку бремени, который мы не в силах измерить. Мы знаем, что оно древнее христианства, но на два года, на двести лет или на целое тысячелетие – здесь мы можем только гадать. Расмус Ниерап, 1806.

Многие из нас запуганы наукой. Радиоуглеродная датировка как один из результатов развития ядерной физики является примером такого феномена. Этот метод имеет важное значение для разных и независимых научных дисциплип, таких, как гидрология, геология, наука об атмосфере и археология. Однако мы оставляем понимание принципов радиоуглеродной датировки научным специалистам и слепо соглашаемся с их выводами из уважения к точности их оборудования и восхищения их интеллектом.

На самом деле принципы радиоуглеродной датировки поразительно просты и легкодоступны. Более того, представление о радиоуглеродной датировке как о «точной науке» является ошибочным, и, по правде говоря, лишь немногие ученые придерживаются такого мнения. Проблема в том, что представители многих дисциплин, пользующиеся радиоуглеродной датировкой в хронологических целях, не понимают ее природы и назначения. Давайте разберемся в этом.

Принципы радиоуглеродной датировки


Уильям Фрэнк Либби и члены его команды разработали принципы радиоуглеродной датировки в 1950-е годы. К 1960 году их работа была завершена, и в декабре этого года Либби был номинирован на Нобелевскую премию по химии. Один из ученых, участвовавших в его выдвижении, отметил:

«Редко случалось так, что одно открытие в области химии оказывало такое влияние на разные области человеческих знаний. Очень редко отдельное открытие привлекало столь широкий интерес».

Либби обнаружил, что нестабильный радиоактивный изотоп углерода (С 14) с предсказуемой скоростью распадается на стабильные изотопы углерода (С12 и С13). Все три изотопа встречаются в атмофере в естественном виде в следующих пропорциях; С12 – 98,89%, С13 – 1,11% и С14 – 0,00000000010%.

Стабильные изотопы углерода С12 и С13 образовались вместе со всеми остальными атомами, из которых состоит наша планета, то есть очень и очень давно. Изотоп С14 образуется в микроскопических количествах в результате еже- , дневной бобмардировки солнечной атмосферы космическими лучами. При соударении с определенными атомами космические лучи разрушают их, в результате чего нейтроны этих атомов переходят в свободное состояние в земной атмосфере.

Изотоп С14 образуется, когда один из таких свободных нейтронов сливается с ядром атома азота. Таким образом, радиоуглерод представляет собой «изотоп Франкенштейна», сплав разных химических элементов. Затем атомы С14, которые образуются с постоянной скоростью, подвергаются окислению и проникают в биосферу в процессе фотосинтеза и естественной цепочки питания.

В организмах всех живых существ отношение изотопов С12 и С14 равно атмосферному отношению этих изотопов в их географическом регионе и поддерживается скоростью их метаболизма. Однако после смерти организмы перестают накапливать углерод, и поведение изотопа С14 с этого момента становится интересным. Либби установил, что период полураспада С14 составляет 5568 лет; еще через 5568 лет распадается половина оставшихся атомов изотопа.

Таким образом, поскольку первоначальное отношение изотопов С12 и С14 является геологической постоянной, возраст образца можно определить, измерив количество остаточного изотопа С14. К примеру, если в образце присутствует некоторое первоначальное количество С14, значит, дата смерти организма определяется двумя периодами полураспада (5568 + 5568), что соответствует возрасту 10 146 лет.

В этом заключается основной принцип радиоуглеродной датировки как инструмента археологии. Радиоуглерод абсорбируется в биосфере; он прекращает накапливаться со смертью организма и распадается с определенной скоростью, которую можно измерить.

Иными словами, соотношение С 14 /С 12 постепенно падает. Таким образом мы получаем «часы», которые начинают идти с момента смерти живого существа. Очевидно, что эти часы действуют только для мертвых тел, которые когда-то были живыми существами. Например, их нельзя использовать для определения возраста вулканических пород.

Скорость распада С 14 такова, что половина этого вещества превращается обратно в N 14 в течение 5730±40 лет. Это и есть так называемый «период полураспада». За два периода полураспада, то есть за 11460 лет, останется только четверть изначального количества. Таким образом, если соотношение С 14 /С 12 в образце составляет четверть от соотношения в современных живых организмах, теоретически этот образец имеет возраст 11460 лет. Возраст же предметов старше 50 000 лет с помощью радиоуглеродного метода определить теоретически невозможно. Поэтому радиоуглеродное датирование не может показать возраст в миллионы лет. Если проба содержит С 14 , это уже свидетельствует о том, что ее возраст меньше миллионов лет.

Однако все не так просто. Во-первых, растения хуже усваивают углекислый газ, содержащий С 14 . Следовательно, они накапливают его меньше ожидаемого и поэтому при тестировании кажутся старше, чем есть на самом деле. Более того, различные растения по-разному усваивают С 14 , и на это тоже следует делать поправку. 2

Во-вторых, соотношение С 14 /С 12 в атмосфере не всегда было постоянным – например, оно снизилось с наступлением индустриальной эпохи, когда вследствие сжигания огромных количеств органического топлива высвободилась масса углекислого газа, обедненного С 14 . Соответственно, организмы, умершие в этот период, в рамках радиоуглеродного датирования кажутся старше. Затем произошло увеличение содержания С 14 О 2 , связанное с наземными ядерными испытаниями 1950-х годов, 3 вследствие чего организмы, умершие в этот период, стали казаться моложе, чем были на самом деле.

Измерения содержания С 14 в объектах, чей возраст точно установлен историками (например, зерно в гробницах с указанием даты захоронения) позволяют оценить уровень С 14 в атмосфере того времени и, таким образом, частично «подправить ход» радиоуглеродных «часов». Соответственно, радиоуглеродное датирование, проведенное с учетом исторических данных, может дать весьма плодотворные результаты. Однако даже с такой «исторической настройкой» археологи не считают даты, полученные радиоуглеродным методом, абсолютным – из-за частых аномалий. Они больше полагаются на методы датирования, связанные с историческими летописями.

За пределами исторических данных «настройка» «часов» С 14 не представляется возможной

В лаборатории


С учетом всех этих неопровержимых фактов крайне странно видеть в журнале «Радиоуглерод» (где публикуются результаты радиоуглеродных исследований по всему миру) следующее утверждение:

«Шесть уважаемых лабораторий выполнили 18 анализов возраста древесины из Шелфорда в графстве Чешир. Оценки варьируют от 26 200 до 60 000 лет (до настоящего времени), разброс составляет 34 600 лет».

Вот еще один факт: хотя теория радиоуглеродной датировки звучит убедительно, когда ее принципы применяются к лабораторным образцам, в игру вступает человеческий фактор. Это приводит к ошибкам, порой очень значительным. Кроме того, лабораторные образцы загрязняются фоновым излучением, изменяющим остаточный уровень С14, который подвергается измерению.

Как указал Ренфрю в 1973-м и Тейлор в 1986 году, метод радиоуглеродной датировки опирается на ряд необоснованных предположений, сделанных Либби во время разработки его теории. К примеру, в последние годы было много дискуссий о периоде полураспада С14, якобы составляющем 5568 лет. В наши дни большинство ученых сходится на том, что Либби ошибался и что период полураспада С14 на самом деле составляет примерно 5730 лет, Расхождение в 162 года приобретает большое значение при датировке образцов тысячелетней давности.

Но вместе с Нобелевской премией по химии к Либби пришла полная уверенность в его новой системе. Его радиоуглеродные датировки археологических образцов из Древнего Египта уже были датированы, поскольку древние египтяне тщательно следили за своей хронологией. К сожалению, радиоуглеродный анализ давал слишком заниженный возраст, в некоторых случаях на 800 лет меньше, чем по данным исторической летописи. Но Либби пришел к поразительному выводу:

«Распределение данных показывает, что древнеегипетские исторические датировки до начала второго тысячелетия до нашей эры слишком завышены и, возможно, превышают истинные на 500 лет в начале третьего тысячелетия до нашей эры».

Это классический случай научного самомнения и слепой, почти религиозной веры в превосходство научных методов над археологическими. Либби ошибался, радиоуглеродный метод подвел его. Теперь эта проблема решена, но самопровозглашенная репутация метода радиоуглеродной датировки по-прежнему превышает уровень его надежности.

Мои исследования показывают, что с радиоуглеродной датировкой связаны две серьезные проблемы, которые и в наши дни могут привести к большим недоразумениям. Это (1) загрязнение образцов и (2) изменение уровня С14 в атмосфере в течение геологических эпох.

Эталоны радиоуглеродного датирования. Значение эталона, принятого при расчёте радиоуглеродного возраста образца, прямо влияет на полученную величину. По результатам детального анализа опубликованной литературы установлено, что при радиоуглеродном датировании применялось несколько эталонов. Наиболее известные из них: эталон Андерсона (12,5 dpm/g), эталон Либби (15,3 dpm/g) и современный эталон (13,56 dpm/g).

Датирование ладьи фараона. Древесина ладьи фараона Sesostris III датировалась радиоуглеродным методом на основе трёх эталонов. При датировании древесины в 1949 году на основе эталона (12,5 dpm/g) получен радиоуглеродный возраст 3700 +/- 50 ВР лет. Позднее Либби датировал древесину на основе эталона (15,3 dpm/g) . Радиоуглеродный возраст не изменился. В 1955 году Либби повторно датировал древесину ладьи на основе эталона (15,3 dpm/g) и получил радиоуглеродный возраст 3621 +/-180 ВР лет. При датировании древесины ладьи в 1970 году применён эталон (13,56 dpm/g) . Радиоуглеродный возраст почти не изменился и составил 3640 ВР лет. Приведённые нами фактические данные по датированию ладьи фараона можно проверить по соответствующим ссылкам на научные публикации.

Цена вопроса. Получение практически одного и того же радиоуглеродного возраста древесины ладьи фараона: 3621-3700 ВР лет на основе применения трёх эталонов, значения которых отличаются существенно, физически невозможно. Применение эталона (15,3 dpm/g) автоматически даёт увеличение возраста датируемого образца на 998 лет, по сравнению с эталоном (13,56 dpm/g), и на 1668 лет, по сравнению с эталоном (12,5 dpm/g). Из этой ситуации имеется всего два выхода. Признание того, что:

При датировании древесины ладьи фараона Sesostris III были осуществлены манипуляции с эталонами (древесина вопреки декларациям, датировалась на основе одного и того же эталона);

Ладья фараона Sesostris III волшебная.

Заключение. Суть рассмотренных явлений, названных манипуляциями, выражается одним словом – фальсификация.

После смерти содержание C 12 остается постоянным, а содержание C 14 уменьшается

Загрязнение образцов


Мэри Левайн объясняет:

«Загрязнением называется наличие в образце органического материала чуждого происхождения, который не был сформирован вместе с материалом образца».

На многих фотографиях раннего периода радиоуглеродного анализа изображены научные специалисты, которые курят сигареты во время сбора или обработки образцов. Не слишком умно с их стороны! Как указывает Ренфрю, «уроните щепотку пепла на ваши образцы, подготовленные к анализу, и вы получите радиоуглеродный возраст табака, из которого была сделана ваша сигарета».

Хотя в наши дни такая методологическая некомпетентность считается недопустимой, археологические образцы все равно страдают от загрязнения. Известные виды загрязнений и способы борьбы с ними обсуждаются в статье Тейлора (1987). Он делит загрязнения на четыре главные категории: 1) физически устранимые, 2) растворимые в кислотах, 3) растворимые в щелочах, 4) растворимые в растворителях. Все эти загрязнения, если не устранить их, сильно влияют на лабораторное определение возраста образца.

X. Э. Гоув, один из изобретателей метода акселераторной масс-спектрометрии (AMS), сделал радиоуглеродную датировку Туринской плащаницы. Он пришел к выводу, что волокна ткани, использованные для изготовления плащаницы, датируются 1325 годом.

Хотя Гоув и его коллеги совершенно уверены в аутентичности своего определения, многие, по очевидным причинам, считают возраст Туринской плащаницы гораздо более почтенным. Гоув со своими единомышленниками дал достойный ответ всем критикам, и если бы мне пришлось делать выбор, то я бы рискнул сказать, что научная датировка Туринской плащаницы, скорее всего, является точной. Но в любом случае, ураган критики, обрушившийся на этот конкретный проект, показывает, как дорого может стоить ошибка при радиоуглеродной датировке и с каким подозрением некоторые ученые относятся к этому методу.

Утверждалось, что образцы могли подвергнуться загрязнению более молодым органическим углеродом; методы очистки могли пропустить следы современных загрязнений. Роберт Хеджес из Оксфордского университета отмечает, что

«нельзя совершенно исключить небольшую систематическую погрешность».

Интересно, назвал бы он расхождение датировок, полученных разными лабораториями по образцу древесины из Шелфорда, «небольшой систематической погрешностью»? Разве не похоже, что нас снова дурачат ученой риторикой и заставляют поверить в совершенство существующих методов?

Леонсио Гарза-Вальдес, безусловно, придерживается такого мнения по отношению к датировке Туринской плащаницы. Все древние ткани покрыты биопластической пленкой в результате жизнедеятельности бактерий, которая, по мнению Гарза-Вальдеса, сбивает с толку радиоуглеродный анализатор. Фактически возраст Туринской плащаницы вполне может составлять 2000 лет, так как ее радиоуглеродную датировку нельзя считать окончательной. Необходимы дальнейшие исследования. Интересно отметить, что Гоув (хотя он расходится во мнениях с Гарза-Вальдесом) согласен, что такая критика служит основанием для новых исследований.

Цикл радиоуглерода (14С) в атмосфере, гидросфере и биосфере Земли

Уровень С14 в земной атмосфере


Согласно «принципу одновременности» Либби, уровень С14 в любом конкретном географическом регионе является постоянным на всем протяжении геологической истории. Эта предпосылка была жизненно необходима для достоверности радиоуглеродного анализа на раннем этапе его развития. Действительно, для надежного измерения остаточного уровня С14 вам нужно знать, какое количество этого изотопа присутствовало в организме на момент его смерти. Но эта предпосылка, по мнению Ренфрю, является ошибочной:

«Однако теперь известно, что пропорциональное отношение радиоуглерода к обычному С12 не оставалось постоянным во времени и что до 1000 года до нашей эры отклонения так велики, что радиоуглеродные датировки могут заметно расходиться с действительностью».

Дендрологические исследования (изучение древесных колец) убедительно показывают, что уровень С14 в земной атмосфере за последние 8000 лет был подвержен значительным флуктуациям. Значит, Либби выбрал ложную константу и его исследования были основаны на ошибочных предположениях.

Возраст колорадской сосны, растущей в юго-западных регионах США, может достигать нескольких тысяч лет. Некоторые деревья, еще живые в наши дни, появились на свет 4000 лет назад. Кроме того, по бревнам, собранным в тех местах, где росли эти деревья, можно протянуть летопись древесных колец еще на 4000 лет в прошлое. Другими деревьями-долгожителями, полезными для дендрологических исследований, являются дуб и калифорнийская секвойя.

Как известно, ежегодно на срезе живого древесного ствола нарастает новое годичное кольцо. Подсчитав годичные кольца, можно узнать возраст дерева. Логично предположить, что уровень С14 в годичном кольце 6000-летнего возраста будет аналогичен уровню С14 в современной атмосфере. Но это не так.

К примеру, анализ годичных колец показал, что уровень С14 в земной атмосфере 6000 лет назад был существенно выше, чем сейчас. Соответственно, радиоуглеродные образцы, датируемые этим возрастом, оказались заметно моложе, чем на самом деле, на основании дендрологического анализа. Благодаря работе Ханса Суисса были составлены диаграммы коррекции уровня С14 для компенсации его флуктуации в атмосфере в разные периоды времени. Однако это значительно снизило достоверность радиоуглеродных датировок образцов, возраст которых превышает 8000 лет. У нас просто нет данных о содержании радиоуглерода в атмосфере до этой даты.

Ускорительный масс-спектрометр Университета Аризоны (г. Тусон, штат Аризона, США) производства компании National Electrostatics Corporation: а – схема, б – пульт управления и источник ионов С¯, в – ускорительный танк, г – детектор изотопов углерода. Фото Дж.С. Бурра

Про установки.

«Плохие» результаты?

Когда установленный «возраст» отличается от ожидаемого, исследователи поспешно находят повод объявить результат датирования недействительным. Широкая распространенность этого апостериорного доказательства показывает, что у радиометрического датирования имеются серьезные проблемы. Вудморапп приводит сотни примеров уловок, к которым прибегают исследователи, пытаясь объяснить «неподходящие» значения возраста.

Так, ученые пересмотрели возраст ископаемых останков Australopithecus ramidus. 9 Большинство образцов базальта, наиболее близко подходящего к слоям, в которых были найдены эти окаменелости, показало возраст около 23 миллионов лет по методу «аргон-аргон». Авторы решили, что эта цифра «слишком велика», если исходить из их представлений о месте этих окаменелостей в глобальной эволюционной схеме. Они рассмотрели базальт, располагавшийся подальше от окаменелостей, и, отобрав 17 из 26 образцов, получили приемлемый максимальный возраст в 4,4 миллиона лет. Остальные девять образцов показали опять-таки гораздо больший возраст, но экспериментаторы решили, что дело в загрязнении породы, и отвергли эти данные. Таким образом, на методы радиометрического датирования существенно влияет доминирующее в научных кругах мировоззрение «долгих эпох».

Аналогичная история связана с установлением возраста черепа примата (этот череп известен как образец KNM-ER 1470). 10, 11 Поначалу был получен результат 212–230 млн. лет, который, исходя из окаменелостей, был признан неверным («людей в то время еще не было»), после чего были предприняты попытки установления возраста вулканических пород в этом регионе. Через несколько лет, после опубликования нескольких различных результатов исследований, «сошлись» на цифре 2,9 млн. лет (хотя эти исследования включали в себя и отделение «хороших» результатов от «плохих» – как и в случае с Australopithecus ramidus).

Исходя из предвзятых представлений об эволюции человека, исследователи никак не могли примириться с мыслью, что череп 1470 «настолько стар». После изучения ископаемых останков свиньи в Африке антропологи с готовностью поверили в то, что череп 1470 на самом деле гораздо моложе. После того, как научная общественность утвердилась в этом мнении, дальнейшие исследования пород еще больше снизили радиометрический возраст этого черепа – до 1,9 млн. лет – и вновь отыскались данные, «подтверждающие» очередную цифру. Вот такая «игра в радиометрическое датирование»…

Мы не утверждаем, что эволюционисты сговорились подгонять все данные под наиболее удобный для себя результат. Конечно же, в норме дело обстоит совсем не так. Беда в другом: все данные наблюдения должны соответствовать доминирующей в науке парадигме. Эта парадигма – или, скорей, вера в миллионы лет эволюции от молекулы до человека – настолько прочно укрепилась в сознании, что никто не позволяет себе подвергнуть ее сомнению; напротив, говорят о «факте» эволюции. Вот под эту парадигму и должны подходить абсолютно все наблюдения. В результате исследователи, которые в глазах общественности выглядят «объективными и беспристрастными учеными», бессознательно отбирают именно те результаты наблюдений, которые согласуются с верой в эволюцию.

Нельзя забывать, что прошлое недоступно для нормального экспериментального исследования (серии опытов, проводимые в настоящем). Ученые не могут экспериментировать с событиями, происходившими когда-то. Измеряется не возраст пород – измеряются концентрации изотопов, причем их-то как раз можно измерить с высокой точностью. А вот «возраст» определяется уже с учетом предположений о прошлом, доказать которые невозможно.

Мы должны всегда помнить слова Бога, обращенные к Иову: «Где был ты, когда Я полагал основания земли?» (Иов 38:4).

Те, кто имеет дело с неписаной историей, собирают информацию в настоящем и таким образом пытаются воссоздать прошлое. При этом уровень требований к доказательствам гораздо ниже, чем в эмпирических науках, таких, как физика, химия, молекулярная биология, физиология и т.д.

Уильяме (Williams ), специалист по превращениям радиоактивных элементов в окружающей среде, установил 17 изъянов в методах изотопного датирования (по результатам этого датирования были изданы три весьма солидные труда, позволившие определить возраст Земли приблизительно в 4,6 миллиарда лет). 12 Джон Вудморапп остро критикует эти методы датирования 8 и разоблачает сотни связанных с ними мифов. Он убедительно доказывает, что немногие «хорошие» результаты, оставшиеся после того, как «плохие» данные были отфильтрованы, можно легко объяснить удачным совпадением.

«Какой возраст предпочитаете?»

В анкетах, предлагаемых радиоизотопными лабораториями, обычно спрашивается: «Каким, по-вашему, должен быть возраст данного образца?». Но что это за вопрос? В нем не возникало бы нужды, если бы техники датирования были абсолютно надежны и объективны. Вероятно, дело в том, что лаборатории знают о распространенности аномальных результатов и потому пытаются выяснить, насколько «хороши» получаемые ими данные.

Проверка методов радиометрического датирования

Если бы методы радиометрического датирования могли действительно объективно определять возраст пород, они срабатывали бы и в ситуациях, когда возраст нам точно известен; кроме того, различные методы давали бы согласованные результаты.

Методы датирования должны показывать достоверные результаты для предметов известного возраста

Есть целый ряд примеров, когда методы радиометрического датирования неверно устанавливали возраст пород (этот возраст был точно известен заранее). Один из таких примеров – калий-аргоновое «датирование» пяти потоков андезитовой лавы с горы Нгаурухо в Новой Зеландии. Хотя было известно, что лава один раз текла в 1949 году, три раза – в 1954 и еще один раз – в 1975, «установленные возрасты» варьировали от 0,27 до 3,5 млн. лет.

Все тот же ретроспективный метод породил следующее объяснение: когда порода отвердела, в ней остался «лишний» аргон из-за магмы (расплавленной породы). В светской научной литературе приводится масса примеров тому, как избыток аргона приводит к «лишним миллионам лет» при датировании пород известного исторического возраста. 14 Источником избыточного аргона, по всей видимости, служит верхняя часть мантии Земли, расположенная непосредственно под земной корой. Это вполне соответствует теории «молодой Земли» – у аргона было слишком мало времени, он просто не успел высвободиться. Но если избыток аргона привел к столь вопиющим ошибкам в датировании пород известного возраста, почему мы должны доверять этому же методу при датировании пород, возраст которых неизвестен ?!

Другие методы – в частности, использование изохрон, – включают в себя различные гипотезы о начальных условиях; но ученые все больше убеждаются в том, что даже такие «надежные» методы тоже приводят к «плохим» результатам. И тут снова выбор данных основан на предположении исследователя о возрасте той или иной породы.

Доктор Стив Остин (Steve Austin) , геолог, взял пробы базальта из нижних слоев Большого Каньона и из потоков лавы на краю каньона. 17 По эволюционной логике, базальт у края каньона должен быть на миллиард лет моложе базальта из глубин. Стандартный лабораторный анализ изотопов с применением изохронного датирования «рубидий-стронций» показал, что сравнительно недавний поток лавы на 270 млн. лет старше базальта из недр Большого Каньона – что, конечно же, абсолютно невозможно!

Проблемы методики

Изначально идея Либби опиралась на следующие гипотезы:

  1. 14C образуется в верхних слоях атмосферы под действием космических лучей, затем перемешивается в атмосфере, входя в состав углекислого газа. При этом процентное содержание 14C в атмосфере является постоянным и не зависит ни от времени, ни от места, несмотря на неоднородность самой атмосферы и распад изотопов.
  2. Скорость радиоактивного распада является постоянной величиной, измеряемой периодом полураспада в 5568 лет (предполагается, что за это время половина изотопов 14C превращается в 14N).
  3. Животные и растительные организмы строят свои тела из углекислоты, добываемой из атмосферы, и при этом живые клетки содержат тот же процент изотопа 14C, что находится в атмосфере.
  4. По смерти организма его клетки выходят из цикла углеродного обмена, но атомы изотопа 14C продолжают превращаться в атомы стабильного изотопа 12C по экспоненциальному закону радиоактивного распада, что и позволяет рассчитать время, прошедшее со времени смерти организма. Это время называется «радиоуглеродным возрастом» (или, для краткости, «РУ-возрастом»).

У этой теории, по мере накопления материала, стали появляться контрпримеры: анализ недавно умерших организмов иногда даёт очень древний возраст, или, наоборот, проба содержит столь огромное количество изотопа, что вычисления дают отрицательный РУ-возраст. Некоторые заведомо древние предметы имели молодой РУ-возраст (такие артефакты объявлялись поздними подделками). В итоге оказалось, что РУ-возраст далеко не всегда совпадает с истинным возрастом в тех случаях, когда истинный возраст можно проверить. Такие факты приводят к обоснованным сомнениям в случаях, когда РУ-метод применяется для датирования органических предметов неизвестного возраста, и РУ-датировка не может быть проверена. Случаи ошибочного определения возраста объясняются следующими известными недостатками теории Либби (эти и иные факторы проанализированы в книге М. М. Постникова «Критическое исследование хронологии древнего мира, в 3-х томах» ,- М.: Крафт+Леан, 2000, в томе 1, стр. 311-318, написанной в 1978 году):

  1. Непостоянство процентного содержания 14C в атмосфере. Содержание 14C зависит от космического фактора (интенсивность солнечного излучения) и земного (поступление в атмосферу «старого» углерода из-за горения и гниения древней органики, возникновения новых источников радиоактивности, колебаний магнитного поля Земли). Изменение этого параметра на 20 % влечёт ошибку в РУ-возрасте почти в 2 тысячи лет.
  2. Не доказано однородное распределение 14C в атмосфере. Скорость перемешивания атмосферы не исключает возможности существенных различий содержания 14C в разных географических регионах.
  3. Скорость радиоактивного распада изотопов может быть определена не вполне точно. Так, со времён Либби период полураспада 14C по официальным справочникам «изменился» на сотню лет, то есть, - на пару процентов (этому соответствует изменение РУ-возраста на полторы сотни лет). Высказывается предположение, что значение периода полураспада значительно (в пределах нескольких процентов) зависит от экспериментов, в которых он определяется.
  4. Изотопы углерода не являются вполне эквивалентными , клеточные мембраны могут использовать их избирательно: некоторые абсорбировать 14C, некоторые, наоборот, избегать его. Поскольку процентное содержание 14C ничтожно (один атом 14C к 10 миллиардам атомов 12C), даже незначительная избирательность клетки в изотопном отношении влечёт большое изменение РУ-возраста (колебание на 10 % приводит к ошибке примерно 600 лет).
  5. По смерти организма его ткани не обязательно выходят из углеродного обмена , участвуя в процессах гниения и диффузии.
  6. Содержание 14C в предмете может быть неоднородным. Со времени Либби физики-радиоуглеродчики научились очень точно определять содержание изотопа в образце; заявляют даже, что они способны пересчитать отдельные атомы изотопа. Разумеется, такой подсчёт возможен только для небольшого образца, но в этом случае возникает вопрос - насколько точно этот небольшой образец представляет весь предмет? Насколько однородно содержание изотопа в нём? Ведь ошибки в несколько процентов приводят к столетним изменениям РУ-возраста.

Резюме


Радиоуглеродная датировка – это развивающийся научный метод. Однако на каждом этапе его развития ученые безоговорочно поддерживали его общую достоверность и замолкали лишь после выявления серьезных ошибок в оценках или в самом методе анализа. Не стоит удивляться ошибкам, если учитывать количество переменных, которые должен принять во внимание ученый: атмосферные флуктуации, фоновое излучение, рост бактерий, загрязнение и человеческая ошибка.

Как часть представительного археологического исследования, радиоуглеродная датировка по-прежнему имеет крайне важное значение; просто ее нужно поместить в культурную и историческую перспективу. Разве ученый имеет право сбрасывать со счетов противоречащие археологические свидетельства только потому, что его радиоуглеродная датировка указывает на другой возраст? Это опасно. Фактически многие египтологи поддержали предположение Либби о том, что хронология Древнего Царства составлена неправильно, так как это было «научно доказано». На самом деле Либби ошибался.

Радиоуглеродная датировка полезна в качестве дополнения к другим данным, и в этом заключается ее сильная сторона. Но пока не наступит день, когда все переменные окажутся под контролем, а все ошибки будут устранены, радиоуглеродные датировки не получат окончательного слова на археологических раскопках.
источники Глава из книги К. Хэма, Д. Сарфати, К. Виланда под ред. Д. Баттена «КНИГА ОТВЕТОВ: РАСШИРЕННАЯ И ОБНОВЛЕННАЯ»
Грэм Хэнкок: Следы богов . М., 2006. Стр. 692-707.

В том числе и по этим причинам, описанным выше «всплывают» и возникают загадки Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -