Введение

Организм человека почти на 70% состоит из воды. Вода - прежде всего растворитель, в среде которого протекают все элементарные акты жизнедеятельности. К тому же вода - продукт и субстрат энергетического метаболизма в живой клетке. Образно говоря, вода - это арена, на которой разыгрывается действие жизни и участник основных биохимических превращений.

Известно что вода присутствует во всех частях нашего организма, хотя например в коре мозга её 85%, в коже 72%, в зубной эмали всего лишь3%. Это свидетельствует о том, что в наиболее интенсивно работающих органах содержится большее число воды.

Некоторая часть воды в организме может более или менее прочно связываться с растворёнными в ней веществами и с поверхностью биополимерных макромолекул с помощью как водородных связей, так и сил ион-дипольного взаимодействия. Это может приводить к заметному изменению конфигурации, эффективных размеров и весов тех или иных частиц, участвующих в реакции, и в некоторых случаях к существенной модификации их свойств. Например, оказывается, что натриевые каналы нервных клеток, имеющие диаметр около 0,5 нм, практически недоступны для прохождения по ним ионов калия, хотя диаметр самого иона K+ равен 0,26 нм. В действительности ион K+ гидратирован и, следовательно, для расчёта его эффективных размеров к диаметру K+ следует прибавить диаметр молекулы воды 0,28 нм. В итоге комплексный ион + диаметром почти 0,6 нм сквозь натриевый канал пройти не может, тогда как гидратированный ион + диаметром около 0,47 нм свободно диффундирует через этот канал.

Другим примером изменения размеров биологического субстрата может быть молекула ДНК. В частности известно, что на каждый нуклеотид макромолекулы приходится около 50 молекул воды, связанных с ДНК. В общей сложности водная плёнка ДНК увеличивает эффективный диаметр цилиндрической макромолекулы ДНК с 2 нм в безводном состоянии до 2,9 нм в водном растворе, что чрезвычайно важно, например, при считывании с неё информации.

Строение воды

Вода - уникальное вещество и все её аномальные свойства: высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, высокая теплота испарения и другие обусловлены строением её молекулы и пространственной структурой.

У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Свойство образовывать такие мостики обусловлено наличием особого межмолекулярного взаимодействия, в котором существенную роль играет атом водорода. Это взаимодействие называется водородной связью.

Каждая из присоединённых к данной молекул воды сама способна к присоединению дальнейших молекул. Этот процесс можно называть "полимеризацией". Если только одна из двух возможных связей участвует в присоединении следующей молекулы, а другая остаётся вакантной, то "полимеризация" приведёт к образованию либо зигзагообразной цепи, либо замкнутого кольца. Наименьшее кольцо, по-видимому, может состоять из четырёх молекул, но величина угла 90° делает водородные связи крайне напряжёнными. Практически ненапряжёнными должны быть пятизвенные кольца (угол 108°), а шестизвенные (угол 120°), также как и семизвенные - напряжённые.

Рассмотрение реальных структур гидратов показывает, что, действительно, наиболее устойчиво шестизвенное кольцо, находимое в структурах льдов. Плоские кольца являются привилегией клатратных гидратов, причём во всех известных структурах чаще всего встречаются плоские пятизвенные кольца из молекул воды. Они, как правило, чередуются во всех структурах клатратных гидратов с шестизвенными кольцами, очень редко с четырёхзвенными, а в одном случае - с плоским семизвенным.

В целом структура воды представляется как смесь всевозможных гидратных структур, которые могут в ней образоваться.

В прикладном аспекте это, например, имеет важное значение для понимания действия лекарственных веществ. Как было показано Л. Полингом структурированная клатратная форма воды в межсинаптических образованиях мозга обеспечивает, с одной стороны, передачу импульсов с нейрона на нейрон, а, с другой стороны при попадании в эти участки наркозного вещества такая передача нарушается, то есть наблюдается явление наркоза. Гидратация некоторых структур мозга является одной из основ реализации действия наркотических анальгетиков (морфина).

Биологическое значение воды

Вода как растворитель . Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, у которых заряженные частицы (ионы) диссоцииируют в воде, когда вещество растворяется, а также некоторые неионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (-OH).

Результаты многочисленных исследований строения растворов электролитов свидетельствуют, что при гидратации ионов в водных растворах основную роль играет ближняя гидратация - взаимодействие ионов с ближайшими к ним молекулами воды. Большой интерес представляет выяснение индивидуальных характеристик ближней гидратации различных ионов, как степени связывания молекул воды в гидратных оболочках, так и степени искажения в этих оболочках тетраэдрической льдоподобной структуры чистой воды - связи в молекуле изменяются на неполный угол. Величина угла зависит от иона.

Когда вещество растворяется, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартаменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в её присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот и других субклеточных структур.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторных системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Большая теплоёмкость . Удельной теплоёмкостью воды называют количество теплоты в джоулях, которое необходимо, чтобы поднять температуру 1 кг воды на 1° C. Вода обладает большой теплоёмкостью (4,184 Дж/г). Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение её температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды.

Большая теплоёмкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Большая теплота испарения . Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для её перехода в пар, то есть для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии (2494 Дж/г). Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды - вещества со столь малыми молекулами - необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий (например, у крокодилов), которые на солнцепёке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев.

Большая теплота плавления . Скрытая теплота плавления есть мера тепловой энергии, необходимой для расплавления твёрдого вещества (льда). Воде для плавления (таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Плотность и поведение воды вблизи точки замерзания . Плотность воды (максимальна при +4° С) от +4 до 0° С понижается, поэтому лёд легче воды и в воде не тонет. Вода - единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твёрдом, так как структура льда более рыхлая, чем структура жидкой воды.

Поскольку лёд плавает в воде, он образуется при замерзании сначала на её поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоёмах вообще не могла бы существовать. То обстоятельство, что слои воды, температура которых упала ниже 4° С, поднимаются вверх, обусловливает перемешивание воды в больших водоёмах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоёмы заселяются живыми организмами на большую глубину.

После проведения ряда экспериментов было установлено, что связанная вода при температуре ниже точки замерзания не переходит в кристаллическую решётку льда. Это энергетически невыгодно, так как вода достаточно прочно связана с гидрофильными участками растворённых молекул. Это находит применение в криомедицине.

Большое поверхностное натяжение и когезия . Когезия - это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение - результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь её поверхности была минимальной (в идеале - форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды (7,6 · 10-4 Н/м). Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по её поверхности.

Вода как реагент . Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, то есть участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Особенности талой воды

Уже небольшое нагревание (до 50-60° С) приводит к денатурации белков и прекращает функционирование живых систем. Между тем охлаждение до полного замерзания и даже до абсолютного нуля не приводит к денатурации и не нарушает конфигурацию системы биомолекул, так что жизненная функция после оттаивания сохраняется. Это положение очень важно для консервирования органов и тканей предназначенных для пересадки. Как указывалось выше, вода в твёрдом состоянии имеет другую упорядоченность молекул, чем в жидком и после замерзания и оттаивания приобретает несколько иные биологические свойства, что послужило причиной применения талой воды с лечебной целью. После оттаивания вода имеет более упорядоченную структуру, с зародышами клатратов льда что позволяет ей взаимодействовать с биологическими компонентами и растворёнными веществами, например с другой скоростью. При употреблении талой воды в оганизм попадают мелкие центры льдоподобной структуры, которые в дальнейшем могут разрастись и перевести воду во льдоподобное состояние и тем самым произвести оздоравливающее действие.

Информационная роль воды

При взаимодействии молекул воды со структурными компонентами клетки могут образовываться не только вышеописанные пяти-, шести- и т. д. компонентные структуры, но и трёхмерные образования могут образовываться додекаэдральные формы, которые могут обладать способностью к образованию цепочечных структур, связанных общими пятиугольными сторонами. Подобные цепочки могут существовать и в виде спиралей, что делает возможным реализацию механизма протонной проводимости по этому универсальному токопроводу. Следует также учесть данные С. В. Зенина (1997 г.), что молекулы воды в таких образованиях могут взаимодействовать между собой по принципу зарядовой комплементарности, то есть посредством дальнего кулоновского взаимодействия без образования водородных связей между гранями элементов, что позволяет рассматривать структурированное состояние воды в виде исходной информационной матрицы. Такая объёмная структура имеет возможность переориентироваться, в результате чего происходит явление "памяти воды", так как в новом состоянии отражено кодирующее действие введённых веществ или других возмущающих факторов. Известно, что такие структуры существуют непродолжительное время, но в случае нахождения внутри додекаэдра кислорода или радикалов происходит стабилизация таких структур.

В прикладном аспекте возможности "памяти воды" и передачи информации посредством структурированной воды объясняют действие гомеопатических средств и акупунктурных воздействий.

Как уже говорилось, все вещества при растворении в воде образуют гидратные оболочки и поэтому каждой частице растворённого вещества соответствует конкретная структура гидратной оболочки. Встряхивание такого раствора приводит к схлопыванию микропузырьков с диссоциацией молекул воды и образованию протонов, стабилизирующих такую воду, которая приобретает излучательные свойства и свойства памяти, присущие растворённому веществу. При дальнейшем разведении этого раствора и встряхивании образуются всё более длинные цепи - спирали и в 12-сотенном разведении уже нет самого вещества, но сохраняется память о нём. Введение этой воды в организм передаёт эту информацию в структурированные компоненты воды биологических жидкостей, которая передаётся структурным компонентам клеток. Таким образом, гомеопатический препарат действует прежде всего информационно. Добавление спирта в процессе приготовления гомеопатического средства удлиняет устойчивость во времени структурированной воды.

Не исключено, что спиралеобразные цепи структурированной воды являются возможными компонентами переноса информации из биологически активных точек (точек акупунктуры) на структурные компоненты клеток определённых органов.

Список литературы

  1. Садовничая Л. П. с соавт. Биофизическая химия, К.: Вища школа, 1986. - 271 с.
  2. Габуда С. П. Связанная вода. Факты и гипотезы, Новосибирск: Наука, 1982. - 159 с.
  3. Сб. Структура и роль воды в живом организме, Л.: Изд. ЛГУ, 1966. - 208 с.
  4. Бышевский А. Ш., Терсенов О. А. Биохимия для врача, Екатеринбург: изд. "Уральский рабочий", 1994. - 378 с.
  5. Грин Н., Стаут У., Тейлор Д. Биология, т. 1.: Пер. с англ. - М.: Мир, 1993. - 368 с.
  6. Чанг Р. Физическая химия с приложениями к биологическим системам М.: Мир, 1980. - 662 с.
  7. Зенин С. В. Водная среда как информационная матрица биологических процессов. В кн. Тезисы докладов 1 Международного симпозиума, Пущино, 1997, с. 12-13.
  8. Смит С. Электромагнитная биоинформация и вода. Вестник биофизической медицины, 1994 №1, с. 3-13.
  9. Антонченко В. Я., Ильин В. В. Проблемные вопросы физики воды и гомеопатии. Вестник биофизической медицины, 1992 №1, с.11-13.

Молекула воды состоит из одного атома кислорода и двух атомов водорода (H 2 O). Схематично строение молекулы воды можно изобразить так:

Молекула воды является так называемой полярной молекулой, потому что ее положительный и отрицательный заряды не распределены равномерно вокруг какого-то центра, а размещены асимметрично, образуя положительный и отрицательный полюсы. Рисунок показывает в чрезвычайно упрощенном виде, как присоединены два атома водорода к одному атому кислорода, образуя молекулу воды.

Угол отмеченный на рисунке и расстояние между атомами зависит от агрегатного состояния воды (подразумеваются равновесные параметры, т.к. имеют место постоянные колебания). Так в парообразном состоянии угол равен 104° 40", расстояние O-H - 0,096 нм; во льду угол - 109° 30", расстояние O-H - 0,099 нм. Различие параметром молекулы в парообразном (свободном) состоянии и во льду вызвано влиянием соседних молекул. Также влиянию подвержены и молекулы в жидкой фазе, в которой помимо влияния соседних молекул воды существует сильное влияние растворенных ионов других веществ.

История определения состава молекулы воды

Начиная с истоков химии учёные в продолжение довольно большого периода времени считали воду простым веществом, так как она не могла быть разложена в результате тех реакций, которые были известны в то время. Кроме того, постоянство свойств воды как бы подтверждало это положение.

Весной 1783 г., Канендиш в своей кембриджской лаборатории работал с недавно открытым "жизненным воздухом" - так в то время называли кислород, и "горючим воздухом" (так называли водород). Он смешивал один объем "жизненного воздуха" с двумя объемами "горючего воздуха" и пропускал через смесь электрический разряд. Смесь вспыхивала, и стенки колбы покрывались капельками жидкости. Исследуя жидкость, ученый пришел к выводу, что это чистая вода. Ранее подобное явление описал французский химик Пьер Макер: он ввел в пламя "горючего воздуха" фарфоровое блюдце, на котором образовались капельки жидкости. Каково же было удивление Макера, когда он исследовал образовавшуюся жидкость, и обнаружил что это вода. Получался какой-то парадокс: вода, гасящая огонь, сама образуется при горении. Как мы теперь понимаем, происходил синтез воды из кислорода и водорода:

H 2 + O 2 → 2H 2 O + 136,74 ккал.

В обычных условиях эта реакция не идет, и чтобы водород стал активен, нужно повысить температуру смеси например с помощью электрической искры, как в опытах Кавендиша. Генри Кавендиш располагал достаточными данными, чтобы установить, в каких пропорциях входит кислород и водород в состав воды. Но он этого не сделал. Возможно, ему помешала глубокая вера в теорию флогистона, в рамках которой он пытался интерпретировать свои эксперименты.

Весть об опытах Кавендиша достигла Парижа в июне того же года. Лавуазье сразу же повторил эти опыты, затем провел целую серию подобных экспериментов и через несколько месяцев 12 ноября 1783 г. в день святого Мартина доложил результаты исследований на традиционном собрании Французской академии наук. Любопытно название его доклада, характерное для всей той несуетливой педантичной эпохи великих открытий естествознания: "О природе воды и экспериментах, по-видимому, подтверждающих, что это вещество не является, строго говоря, элементом, а может быть разложено и образовано вновь". Доклад был встречен горячими возражениями - данные Лавуазье явно противоречили уважаемой и популярной в то время теории флогистона. Он сделал правильный вывод, что вода образуется при соединении "горючего газа" с кислородом и содержит (по массе) 15% первого и 85% второго (современные данные - 11,19% и 88,81%).

Через два года Лавуазье вновь вернулся к опытам с водой. Академия наук поставила перед Лавуазье практическую задачу - найти дешевый способ получения водорода как самого легкого газа для нужд нарождающегося воздухоплавания. Лавуазье привлек к работе военного инженера, математика и химика Жана Мёнье. В качестве исходного вещества они выбрали воду - вряд ли можно было отыскать сырье дешевле. Зная, что вода - это соединение водорода с кислородом, они пытались найти способ отнять от нее кислород. Для этой цели годились различные восстановители, наиболее же доступным было металлическое железо. Из реторты-кипятильника водяные пары поступали в раскаленный докрасна на жаровне ружейный ствол с железными опилками. При температуре красного каления (800 °С) железо вступает в реакцию с водяным паром, и выделяется водород:

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Образовавшийся при этом водород собирался, а не прореагировавшие водяные пары конденсировались в холодильнике и отделялись в виде конденсата от водорода. Из каждых 100 гран воды получалось 15 гран водорода и 85 гран кислорода (1гран = 62,2мг). Эта работа имела и важное теоретическое значение. Она подтвердила ранее сделанные выводы (из опыта по сжиганию водорода в кислороде под колоколом), что вода содержит 15% водорода и 85% кислорода (современные данные - 11,19% и 88,81%).

Исходя из того, что "горючий воздух" участвует в образовании воды, французский химик Гитон де Морво в 1787 г. предложил назвать его hydrogene (от слов гидро- вода и геннао-рождаю). Русское слово "водород", т.е. "рождающий воду", является точным переводом латинского названия.

Жозеф Луи Гей-Люссак и Александр Гумбольдт, проведя совместные опыты в 1805 году, впервые установили, что для образования воды необходимы два объема водорода и один объем кислорода. Подобные мысли были высказаны и итальянским ученым Амедео Авогадро. В 1842 г. Жан Батист Дюма установил весовое соотношение водород и кислорода в воде как 2:16.

Однако в силу того что с атомными массами элементов в первой половине XIX века было много неразберихи и эта обстановка еще больше осложнилась в связи с введением понятия "эквивалентный вес", то долгое время формула воды записывалась в самых различных вариантах: то как HO, то как H 2 O и даже H 2 O 2 . Об этом писал Д.И. Менделеев: "В 50-х годах одни принимали O=8, другие O=16, если H=1. Вода для первых была HO, перекись водорода HO 2 , для вторых, как ныне, вода H 2 O, перекись водорода H 2 O 2 или HO. Смута, сбивчивость господствовали...".

После Международного конгресса химиков в Карлсруэ, состоявшегося в 1860 году, удалось внести ясность в некоторые вопросы, сыгравшие заметную роль в дальнейшем развитии атомно-молекулярной теории, а следовательно, и в правильном толковании атомарного состава воды. Была установлена единая химическая символика.

Экспериментальные исследования, выполненные в XIX веке весовыми и объемными методами, в конце концов убедительно показали, что вода как химическое соединение может быть выражена формулой H 2 O.

Как уже известно, молекула воды довольно "однобока" - оба атома водорода примыкают к кислороду с одной стороны. Интересно, что эта чрезвычайно важная особенность молекулы воды была установлена чисто умозрительно задолго до эпохи спектроскопических исследований английским профессором Д. Берналом. Он исходил из того, что вода обладает весьма сильным электрическим моментом (в то время, в 1932 г., это было известно). Проще всего, конечно, молекулу воды "сконструировать", расположив все входящие в нее атомы по прямой линия, т.е. H-O-H. "Однако, - пишет Бернал, - водяная молекула подобным образом построена быть не может, ибо при такой структуре молекула, содержащая два положительных атома водорода и отрицательный атом кислорода, была бы электрически нейтральной, не обладала бы определенной направленностью… электрический момент может быть только, если оба атома водорода примыкают к кислороду с одной и той же стороны".

Без воды жизнь на нашей планете не могла бы существовать. Вода важна для живых организмов по двум причинам. Во-первых, она является необходимым компонентом живых клеток, и, во-вторых, для многих организмов она служит еще и средой обитания. Именно поэтому следует сказать несколько слов о ее химических и физических свойствах.

Свойства эти довольно необычны и обусловлены главным образом малыми размерами молекул воды , их полярностью и способностью соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы («полюс») несет небольшой положительный заряд, а другой - отрицательный. Такую молекулу называют диполем. У атома кислорода способность притягивать электроны выражена сильнее, чем у водородных атомов, поэтому атом кислорода в молекуле воды стремится оттянуть к себе электроны двух водородных атомов. Электроны заряжены отрицательно, в связи с чем атом кислорода приобретает небольшой отрицательный заряд, а водородные атомы - положительный.

В результате между молекулами воды возникает слабое электростатическое взаимодействие и, поскольку противоположные заряды притягиваются, молекулы как бы «склеиваются». Эти взаимодействия, более слабые, чем обычные ионные или ковалентные связи, называются водородными связями. Водородные связи постоянно образуются, распадаются и вновь возникают в толще воды. И хотя это слабые связи, но их совокупный эффект обусловливает многие необычные физические свойства воды. Учитывая данную особенность воды, мы можем теперь перейти к рассмотрению тех ее свойств, которые важны с биологической точки зрения.

Водородные связи между молекулами воды. А. Две молекулы воды, соединенные водородной связью-6+ - очень маленький положительный заряд; 6~ - очень маленький отрицательный заряд. Б. Сеть из молекул воды, удерживаемых вместе водородными связями. Такие структуры постоянно образуются, распадаются и вновь возникают в воде, находящейся в жидком состоянии.

Биологическое значение воды

Вода как растворитель .Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие как соли, содержащие заряженные частицы (ионы), и некоторые неионные соединения, например сахара, в молекуле которых присутствуют полярные (слабо заряженные) группы (у Сахаров это несущая небольшой отрицательный заряд гидроксильная группа, -ОН). Когда вещество растворяется в воде, молекулы воды окружают ионы и полярные группы, отделяя ионы или молекулы друг от друга.

В растворе молекулы или ионы получают возможность двигаться более свободно, так что реакционная способность вещества возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах . Неполярные вещества, например липиды, отталкиваются водой и в ее присутствии обычно притягиваются друг к другу, иными словами, неполярные вещества гидрофобны (гидрофобный - водоотталкивающий). Подобные гидрофобные взаимодействия играют важную роль в формировании мембран, а также в определении трехмерной структуры многих белковых молекул, нуклеиновых кислот и других клеточных компонентов.

Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различныхвеществ . Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.

С ней связаны многие структурно-функциональные свойства мембран, а так же процессы стабилизации и формирования мембран. Вода входит в состав мембран и делится на свободную, связанную и захваченную. Связанная и свободная вода различается по подвижности молекул воды и растворяющей способности. Наименьшей подвижностью и растворяющей способностью обладает внутренняя связанная вода. Она присутствует в липидной зоне мембран в виде отдельных молекул. Основную часть связанной воды представляет вода гидратных оболочек. Эта вода окружает полярные группы белков и липидов, имеет min подвижность и практически не обладает свойствами растворителя. Свободная вода в порах и каналах. По ней могут перемещаться свободные ионы. Она является хорошим растворителем, подвижная и обладает всеми свойствами жидкой воды. Захваченная вода обладает изотопным движением, характерным для жидкой воды, является хорошим растворителем. Она встречается в центральной зоне мембран, между ее липидными слоями, но эта вода пространственно делится как с внеклеточной жидкостью, так и с цитоплазмой. У нее нет возможности свободно с ними обмениваться.

Особенности строения воды

Вода является средой с большим количеством водородных связей, именно они определяют особые свойства воды:

Ее способность сохранять жидкое состояние в широком диапазоне t0,

Низкую t0 образования льда.

Для льда характерно строго упорядоченное расположение молекул воды, под тетраэдрическими углами. Каждая молекула имеет 4 водородных связи между соседними молекулами. Это рыхлая структура. Когда из льда образуется вода, то эта структура разрушается, в жидкой воде встречаются молекулы с 4,3,2,1 и 0 водородными связями. Водородные связи в жидкой воде характеризуются широким набором углов и длин.

Потенциальная энергия. U вод. связ. жидк. воды – непрерывная функция угла межмолекулярной водородной связи и геометрических характеристик молекулы воды.

Существует несколько моделей структуры воды

1. Разработана Айзенбергом и Кауцманом. Особое внимание обращается на масштаб времени наблюдения за структурой. Удалось обнаружить 3 структуры воды:



1) если сделать снимок с длительностью экспозиции намного меньше, чем период колебаний молекул воды (?<

2) если продолжить?>>?кол., но намного меньше времени вращения тел диффузии t=10–5 с, то удается пронаблюдать К-структуру. Она характеризуется упорядоченным расположением молекул воды, но случайностью ориентации.

3) при?>>периода вращения диффузии получается Д-структура. Она характеризуется регулярным расположением молекул воды и их правильной, закономерной ориентацией.

2. Кластерная модель Шерага.

Жидкая вода состоит из отдельных молекул и структурно связанных кластеров. Кластеры постоянно распадаются и возникают вновь. Это создает усредненное окружение для каждой отдельно взятой молекулы воды, - слабо учитывает молекулы воды в молекулярных группах.

3. Модель Самойлова

рассматривает структурные изменения воды при различных температурах. Предположим, что во время таяния льда, оторвавшаяся молекула воды заполняет пустоты кристаллической решетки, при этом увеличивается удельный вес. Максимальный удельный вес воды наблюдается при +40С, при более высокой t0 происходит увеличение амплитуды колебаний молекул воды, увеличение занимаемого ею объема и снижению плотности.

Растворимость различных веществ в воде

В воде хорошо растворяются электролиты вследствие высокой диэлектрической проницаемости воды, так же вещества с большим дипольным моментом и вещества, способные образовывать водородные связи с молекулами воды.

Рисунок. Нерастворимые вещества в воде: различные углеводороды, масла, жиры. Это объясняется тем, что контакты между молекулами Н2О–Н2О и С6Н6–О молекулами оказываются более выгодными, чем С6Н6–Н2О. В любой ситуации, когда свободная энергия раствора меньше свободной энергии воды и растворимого вещества, данное вещество хорошо растворяется в воде (и наоборот). Мембранная вода.

Подразделяют на 3 типа в зависимости от осмотической активности, способности растворять вещества и обмениваться с внешней средой.

1. Свободная вода. Подвижная фаза, способная растворять любые химические вещества и

обладающая осмотической активностью. В мембранах находится в ионных каналах.

2. Захваченная вода. Близка к свободной, но локализована между двумя слоями мембраны,

тяжело обменивается с внешней средой и не эффективна при транспорте.

3. Связанная вода (несколько типов).

Вода гидратных оболочек (связывается с белковым компонентом)

Прочно связанная с белковым компонентом ионных каналов.

Состояние мембран зависит от состава липидов и температуры среды.

Температура фазового перехода - температура, мембрана переходит из одного фазового состояния в другое.