Биофизика – область науки, изучающая физические и физико-химические явления зарождения, формирования, жизнедеятельность, воспроизведение жизни на всех уровнях, начиная с молекул, клеток, органов и тканей, заканчивая организмами и биосферы в целом.
Биофизика – наука, изучающая физические и физико-химические закономерности в жизнедеятельности растительных и животных организмов, системную организацию процессов жизнедеятельности на всех уровнях (клетка, ткань, органы, организмы, биосфера), а также механизм действия физических факторов на организмы. Сначала Б. развивалась как часть физиологии, и только в 20 веке, благодаря достижениям физики и физической химии, с одной стороны, и физиологии, а с другой, она выделилась в самостоятельную науку. В 18 в. М. В. Ломоносов, исходя из представлений о химической связи раздражительных молекул материи с молекулярными и эфирными структурами нервов, описал механизм раздражений в чувствительным нервам и распространения возбуждения в нервах, а также объяснил, как возникает чувство вкуса и обоняния. Итальянский физиолог Л. Гальвани (1791) положил начало електробиологии, доказав, что в живых тканях есть электричество. В 19 в. немецкий физиолог Г. Гельмгольц определил скорость распространения процессов возбуждения вдоль нерва и заложил основы совр. физиологической оптики и физиологической акустики. Отечественные физиологи И. М. Сеченов, А. Ф. Вериго, А. Ф. Самойлов, Н. Е. Введенский, А. А. Ухтомский, Д. С. Воронцов разработали Б. мышц и нервов. К. А. Тимирязев, опираясь на закон сохранения энергии, впервые установил (1875) количественную зависимость между скоростью фотосинтеза и впитыванием хлорофиллом световых волн различной длины. Украинский физиолог В. Ю. Чаговец, исходя из теории электролитической диссоциации, впервые (1896) выдвинул физико-химическую теорию электрических явлений в живых тканях, которую он подробно развил в своих последующих работах.
Советский физиолог и биофизик П. П. Лазарев впервые разработал точные методы учета поглощенной энергии, установил связь между поглощением энергии и фотохимическим действием, развил ионную теорию возбуждения В. Нернста и разработал теорию адаптации применительно ко всем органам чувств и центральной нервной системы.
Анохин П. К. (1898-1974), ученик Бехтерева и Павлова сформулировал в пятидесятых теорию функциональных систем, введя понятие системогенеза, как механизм формирования живых систем, показав детерминизм явлений, формирования и развития систем и критерии их определения. Чижевский А. Л. (1897-1964), создатель гелиобиофизикы и понятие космической погоды. Впервые установил механизмы воздействия на биосферу и социум Солнечной активности. Ключевыми в работах были установлены механизмы электрических явлений в гемодинамици.
В последнее десятилетие наиболее интенсивно развивается радиобиология – раздел Б., изучающий влияние ионизирующих излучений на живой организм. Открытие Фредериком и Ирен Жолио-Кюри (1932) искусственной радиоактивности обогатило биологическую науку новыми точными методами исследования (меченые атомы, авторадиография, гисторадиография и др.), которые дали возможность глубоко изучать обменные процессы в организме. Применение искусственных радиоактивных изотопов в медицине расширило возможности диагностики и лечения отдельных болезней, в частности некоторых форм рака. В наше время, когда человек овладел ядерной энергии, перед Б. появляются новые актуальные проблемы: защита от вредоносных ядерных излучений, изучение влияния на организм условий межпланетных путешествий и т.д.
Биофизическое исследование характеризует физическая постановка задачи, касающийся живой природы, и применения физических понятий и терминов для описания биологических явлений. Биофизика изучает также действие физических факторов окружающей среды на живую материю. Большим преимуществом биофизики является возможность использования косвенных, опосредованных методов исследования объектов познания (непосредственное изучение которых по определенным причинам невозможно) путем исследования их моделей. Для понимания хода физико-химических процессов в клетках высших организмов используются как модели более простые организмы, изолированные клетки или культуры клеток, где механизмы, которые изучаются, устроены проще. Применяются также чисто физико-химические модели, назначение которых состоит в выделении явления в чистом виде с целью показа его сущности.
Современная биофизика использует новейшие методы количественного исследования, что позволяет получать количественные зависимости между изменениями различных физико-химических параметров живой системы.
Совершенствование и разработка в этом направлении методов по измерению электрических потенциалов, ионных токов, диэлектрических свойств, электропроводности, спектральных характеристик, хемолюминесценции и других является важным источником при решении многих проблем современной биологии. Биофизика выясняет важные практические задачи и вместе с другими науками является теоретической основой биологии и медицины.
Основные направления исследований:
Современная биофизика делится по специализации по уровню организации объектов или явлений и методов:
– Информатика, хотя не является основательным разделом биофизикы, и очень тесно связана с ней в сфере бионического подхода (инженеринг, нейронные сети, моделирование);
– Биоинформатика, именно с позиции коммуникаций, программ и чтения, записи, трансляции, восприятия, обработки сигналов в естественных биосистемах является основательным разделом биофизикы сенсорных систем – психофизика, коммуникативная и эргономичная биофизика;
– Биометрия – метрологическая, медицинская, эргономичная, биотехническая, экологическая;
– Биомеханика связывает функции и структуру опорно-двигательного аппарата с движением биосистем – протезирование, робототехника, эргономика, дизайн, архитектура;
– Биофизика эволюционных процессов и индивидуальный развитие – Системогенез, гомеостаз, формообразования, ведущие факторы нормы развития и жизнедеятельности и патогенеза и их оздоровительный или реабилитационный, биомедицинский, психофизический аспекты);
– Биофизика периодических (циклических) процессов – биоритмология и хрономедицина, адаптационные механизмы, периодические процессы, физические условия и стимулы для компенсации или усиления действия периодических условий естественных или искусственных источников влияния;
– Экологическая гео-биофизика – исследование, классификация биофизических аномалий геофизического и антропогенного происхождения, контроль и предотвращение и профилактики их негативного воздействия;
– Биофизические производительные технологии – Бионический, нанотехнологический, фармакологический, пищевой или биопродуктивний направления (лучевые, магнитные и другие факторы, получая

Биофизика I Биофи́зика

наука, изучающая физические свойства биологически важных молекул, молекулярных комплексов, клеток и сложных биологических систем, а также протекающие в них физические и физико-химические процессы.

Биофизические исследования используются при изучении механизмов возникновения болезней человека, разработке новых лекарственных средств, методов лечения и диагностики, а также при создании современной медицинской техники.

Изучение физико-химической основы биологических явлений, протекающих на молекулярном уровне, стало возможным благодаря успехам физики и физической химии в конце 19 - начале 20 в. По мере совершенствования методов физико-химических исследований возможности Б. значительно расширялись. Интенсивному развитию науки способствовало появление новых физических методов - рентгеноструктурного анализа, радиоспектроскопии, прецизионной спектрометрии и спектрофлюориметрии, электрометрии, оптических измерений, методов, основанных на ядерном магнитном резонансе (Ядерный магнитный резонанс) (ЯМР) и др., а также компьютерной техники. Изучение явления ЯМР и распространения ультразвуковых волн в тканях с применением компьютерной техники привело к созданию новых, перспективных методов диагностики - ЯМР и ультразвуковой томографии. Разрабатываются методы автоматической расшифровки , изучения магнитных полей человека, современные методы лабораторной диагностики, основанные на измерении люминесценции, хемилюминесценции, светорассеяния. Создаются новые аппараты для физиотерапии, основанные на действии колебаний сверхвысокой частоты в различных диапазонах частот, лазеров разных спектров, УФ-излучения в сочетании с хемотерапией и др.

Б. включает квантовую биофизику, молекулярную биофизику, биофизику клетки и биофизику сложных систем (органов, тканей, организма). Сведения из различных разделов Б., используемые в медицине, условно объединяют в комплекс под названием «медицинская биофизика».

Квантовая биофизика изучает вопросы взаимодействия света и биологических структур (молекул, биологических мембран, клеток, тканей), а также электронную структуру биологически важных соединений и ее связь с их химическими свойствами и биологической активностью. При этом используются теоретические расчеты молекулярных орбиталей, спектральный и люминесцентный (см. Оптические методы исследования), методы, основанные на электронном парамагнитном резонансе в сочетании с техникой импульсного и непрерывного облучения биологических объектов различными источниками света, включая , при обычных температурах и в условиях глубокого охлаждения объектов жидким азотом или гелием. С помощью этих методов медицинская Б. изучает первичные процессы, возникающие при действии УФ-излучения на кожу, клетки, плазму крови и зрительный , участие в них молекул белков, нуклеиновых кислот и коферментов, поглотивших квант света, а также продуктов окисления липидов (см. Фотобиологические процессы). В присутствии фотосенсибилизирующих средств (Фотосенсибилизирующие средства) эти процессы могут происходить при облучении организма не только коротковолновым (240-300 нм ), но и длинноволновым (более 300 нм ) и даже видимым светом. Интенсивный видимый , например свет лазеров, может вызвать фотохимические реакции в активных центрах ферментов, лежащие в основе механизма терапевтического действия низкоэнергетических лазеров (Лазеры).

Большой интерес представляет изучение роли свободных радикалов в жизнедеятельности клеток и развитии патологических процессов в организме (см. Радикалы свободные). Как выяснилось, образование свободных радикалов может происходить не только в результате фотохимических реакций или действия на клетки ионизирующего излучения, но и в процессе биохимических реакций, протекающих при активации фагоцитирующих клеток (макрофагов и гранулоцитов). нарушении функций митохондрий и системы гидроксилирования чужеродных соединений в эндоплазматаческом ретикулуме. Образующиеся при этом активные формы кислорода, включая супероксидный радикал, обладают сильным цитотоксическим действием. Изучение механизма этих процессов привело к созданию методов контроля за их интенсивностью, основанных на измерении хемилюминесценции (свечения, возникающего за счет этих реакций), а также лекарственных препаратов, ограничивающих развитие свободнорадикальных реакций - супероксиддисмутазы, токоферола, ретинола и др.

Молекулярная биофизика изучает структуру макромолекул, их физические свойства и связь строения молекул с их функцией. Основные объекты исследования - и белки, а также и липидные комплексы. Эти исследования способствуют раскрытию природы ряда патологических процессов, развитию генной и белковой инженерии, открывающих большие перспективы для создания наиболее эффективных методов лечения болезней человека. Получение белков с заданными свойствами может послужить основой для разработки принципиально новых лекарственных средств, физические свойства и биологическая которых могут быть предсказаны на основании анализа этих свойств у белков и пептидов и путем компьютерных расчетов их структуры.

Биофизика клетки изучает строение и функции клеточных мембран (см. Мембраны биологические), природу клеточной подвижности, биоэлектрогенез, межклеточные взаимодействия и другие вопросы, связанные с физическими свойствами клетки. Большие успехи достигнуты в изучении физических свойств липидного слоя мембран, которых зависит функционирование большинства мембранных ферментов, транспорт ионов и различных химических веществ, а также биоэлектрических потенциалов. Исследования показали, что изменение вязкости липидного слоя мембран приводит к нарушению их функций, которое в свою очередь может вызвать развитие в тканях патологических процессов. Тяжелые последствия (потеря мембранами барьерных свойств, внутриклеточных процессов и гибель клетки) отмечаются вследствие резкого увеличения проницаемости липидного слоя мембран или его электрического пробоя собственной трансмембранной разностью потенциалов. В основе многих сердечно-сосудистых, нервных болезней и болезней почек лежат нарушения проводимости ионных каналов; механизм этих нарушений также является предметом изучения биофизики клетки. Исследование проницаемости и электрических свойств мембран лежит в основе изучения механизма и эффективности действия многих лекарственных препаратов. Выявлены физические основы межклеточных и межмембранных взаимодействий - () между клетками и при контакте клеток с различными поверхностями, а также их электрические контакты. Значительные успехи достигнуты в расшифровке механизма слияния мембран, наблюдаемого на определенных стадиях различных клеточных процессов, таких, например, как , секреция, клетки (см. Клетка). Эти исследования имеют большое значение в онкологии, так как нарушение межклеточных взаимодействий характерно для опухолевого процесса.

Биофизика сложных систем достигла наибольших успехов в области изучения электрических полей в органах и тканях и, в первую очередь, электрического поля сердца и биопотенциалов головного мозга. Благодаря применению ЭВМ стали возможны расчеты электрического поля сердца, основанные на электрических свойствах отдельных клеток, а хорошо разработанные теоретические основы электрокардиографии и ее модификаций (например, вектор электрокардиографии) позволяют при анализе изменений электрической активности сердца выявить механизмы нарушений функции отдельных участков сердечной и отдельных клеточных структур, распространения возбуждения в возбудимых тканях, к которым относится сердца, а также механизмы возникновения спонтанных очагов возбуждения, приводящего к аритмиям. Все эти исследования используются при создании систем мониторного наблюдения (Мониторное наблюдение) за состоянием больных, находящихся в условиях интенсивной терапии, и во время хирургических операций. Недостаточно изучена электрическая активность головного мозга в силу исключительной сложности его сигналов, обусловленной суперпозицией большого числа биопотенциалов отдельных клеток. Использование статистических методов обработки сигналов - один из подходов к их анализу. Информация об электрической активности головного мозга расширилась благодаря измерению электрической активности отдельных его участков с помощью набора электродов во время нейрохирургических операций.

Изучением механических свойств биологических тканей и жидкостей, а также различных механических процессов в организме, таких, например, как , внешнее , гемодинамика, занимается Биомеханика . Исследования в биомеханике осуществляются методами Б. с использованием достижений смежных наук - биохимии, цитологии, физиологии.

Исследование физических процессов в органах чувств проводится на молекулярном и клеточном уровнях. Центральной проблемой в этой области стало изучение физической основы процесса рецепции, т.е. механизма преобразования различных раздражений (звуковых, механических, химических, световых и др.) в электрические сигналы, поступающие в головного мозга. Наиболее значительны достижения в изучении физико-химической основы зрительной рецепции. Расшифрован механизм превращений родопсина после поглощения кванта света. Выявлена связь между превращениями родопсина и активацией систем вторичных мессенджеров (кальция и циклических нуклеотидов) в зрительных рецепторах с последующим формированием в них электрического сигнала. Результаты этих исследований, а также достижения других разделов Б. (квантовой, молекулярной) позволили изучить механизмы развития ряда болезней . В частности, стало известно, что в патогенезе катаракты и дегенерации сетчатки ведущую роль играет активация свободнорадикальных процессов, вызванная нарушением функции защитных систем клеток - ферментов глутатионпероксидазы и супероксиддисмутазы, а также систем связывания ионов , антиоксидантов. На основе этих исследований осуществляется поиск новых лекарственных средств для лечения болезней глаз. Результаты изучения физики и физиологии органов слуха и зрения позволили приступить к созданию искусственных органов чувств.

II Биофи́зика (Био- + физика)

наука, изучающая физические явления в клетках, тканях, органах и в организме, их физические свойства, а также физико-химические основы процессов жизнедеятельности.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Синонимы :

Одной из самых древних наук является, безусловно, биология. Интерес людей к процессам, происходящим внутри них самих и окружающих существ, возник за несколько тысяч лет до нашей эры.

Наблюдения за животными, растениями, природными процессами составляло важную часть жизни людей. С течением времени знаний накопилось очень много, усовершенствовались и развились методы изучения живой природы и механизмов, в ней происходящих. Это привело к возникновению множества разделов, составляющих в общей сложности комплексную науку.

Биологические исследования в разных областях жизни позволяют получать новые ценные данные, важные для понимания устройства биомассы планеты. Использовать эти знания для практических целей человека (освоение космоса, медицина, сельское хозяйство, химическая промышленность и так далее).

Многие открытия позволили сделать биологические исследования в сфере внутреннего строения и функционирования всех живых систем. Изучен молекулярный состав организмов, их микростроение, выделены и изучены многие гены из генома человека и животных, растений. Заслуги биотехнологии, клеточной и позволяют получать несколько урожаев растений за сезон, а также выводить породы животных, дающих больше мяса, молока и яиц.

Изучение микроорганизмов позволило получить антибиотики и создать десятки и сотни вакцин, позволяющих побеждать множество болезней, даже те, что раньше целыми эпидемиями уносили тысячи жизней людей и животных.

Поэтому современная наука биология - это безграничные возможности человечества во многих отраслях науки, промышленности и сохранении здоровья.

Классификация биологических наук

Одними из самых первых появились частные разделы науки биологии. Такие, как ботаника, зоология, анатомия и систематика. Позже стали формироваться более зависимые от технического оснащения дисциплины - микробиология, вирусология, физиология и так далее.

Существует ряд молодых и прогрессивных наук, сформировавшихся только в XX-XXI столетии и играющих большую роль в современном развитии биологии.

Существует не одна, а несколько классификаций, по которым можно ранжировать биологические науки. Список их довольно внушительный во всех случаях, рассмотрим одну из них.

Биология Частные науки Ботаника занимается изучением внешнего и внутреннего строения, физиологических процессов, филогенеза и распространения в природе всех существующих на планете растений (флора)

Включает следующие разделы:

  • альгология;
  • дендрология;
  • систематика;
  • анатомия;
  • морфология;
  • физиология;
  • бриология;
  • палеоботаника;
  • экология;
  • геоботаника;
  • этноботаника;
  • размножение растений.
Зоология занимается изучением внешнего и внутреннего строения, физиологических процессов, филогенеза и распространения в природе всех существующих на планете животных (фауна)

Дисциплины, входящие в состав:

Дисциплины:

  • топографическая анатомия;
  • сравнительная;
  • систематическая;
  • возрастная;
  • пластическая;
  • функциональная;
  • экспериментальная.
Антропология ряд дисциплин, в комплексе изучающих развитие и формирование человека в биологической и социальной среде Разделы: философская, судебная, религиозная, физическая, социальная, культурная, визуальная.
Микробиология изучает самые мелкие организмы живой природы, от до бактерий и вирусов Дисциплины: вирусология, бактериология, медицинская микробиология, микология, промышленная, техническая, сельскохозяйственная, космическая микробиология

Общие науки

Систематика в задачи входит разработка основ для классификации всего живого на нашей планете с целью строгой упорядоченности и идентификации любого представителя биомассы
Морфология описание внешних признаков, внутреннего строения и топографии органов всех живых существ Разделы: растений, животных, микроорганизмов, грибов
Физиология изучает особенности функционирования той или иной системы, органа или части организма, механизмы всех процессов, обеспечивающих его жизнедеятельность Растений, животных, человека, микроорганизмов
Экология наука о взаимоотношениях живых существ друг с другом, средой обитания и человеком Геоэкология, общая, социальная, промышленная
Генетика изучает геном живых существ, механизмы наследственности и изменчивости признаков под влиянием различных условий, а также исторические изменения в генотипе в течение эволюционных преобразований

Биогеография

рассматривает расселение и распространение отдельных видов живых существ по планете

Эволюционное учение

раскрывает механизмы исторического развития человека и других живых систем на планете. Их происхождение и становление
Комплексные науки, возникшие на стыке друг с другом

Биохимия

изучает процессы, происходящие в клетках живых существ с химической точки зрения

Биотехнология

рассматривает возможности использования организмов, их продуктов и или частей для нужд человека

Молекулярная биология

изучает механизмы передачи, хранения и использования наследственной информации живыми существами, а также функции и тонкое строение белков, ДНК и РНК. Смежные науки: генная и клеточная инженерия, молекулярная генетика, биоинформатика, протеомика, геномика

Биофизика

это наука, изучающая все возможные физические процессы, происходящие во всех живых организмах, от вирусов до человека Разделы данной дисциплины будут рассмотрены ниже

Таким образом, мы постарались охватить основное разнообразие, которое представляют собой биологические науки. Список этот с развитием техники и методов изучения расширяется, пополняется. Поэтому единой классификации биологии не существует на сегодняшний день.

Прогрессивные бионауки и их значение

К самым молодым, современным и прогрессивным наукам биологии относятся такие, как:

  • биотехнология;
  • молекулярная биология;
  • космическая биология;
  • биофизика;
  • биохимия.

Каждая из этих наук сформировалась не ранее XX века, а потому по праву считается молодой, интенсивно развивающейся и наиболее значимой для практической деятельности человека.

Остановимся на такой из них, как биофизика. Это наука, появившаяся приблизительно в 1945 году и ставшая важной частью всей биологической системы.

Что такое биофизика?

Чтобы ответить на этот вопрос, в первую очередь следует указать на ее тесный контакт с химией и биологией. В некоторых вопросах границы между этими науками настолько тесные, что сложно разобрать, какая из них конкретно задействована и в приоритете. Поэтому рассматривать биофизику стоит как комплексную науку, изучающую глубокие физические и химические процессы, происходящие в живых системах на уровне как молекул, клеток, органов, так и на уровне Биосферы в целом.

Как и любая другая, биофизика - наука, имеющая свой объект изучения, цели и задачи, а также достойные и значимые результаты. Кроме того, эта дисциплина плотно коррелирует с несколькими новыми направлениями.

Объекты исследования

Ими для биофизики являются биосистемы на разных организационных уровнях.

  1. вирусы, одноклеточные грибы и водоросли).
  2. Простейшие животные.
  3. Отдельные клетки и их структурные части (органеллы).
  4. Растения.
  5. Животные (в том числе человек).
  6. Экологические сообщества.

То есть биофизика - это исследование живого с точки зрения физических процессов, в нем происходящих.

Задачи науки

Первоначально задачи биофизиков были в том, чтобы доказать наличие физических процессов и явлений в жизнедеятельности живых существ и изучить их, выяснив природу и значение.

Современные задачи данной науки можно сформулировать так:

  1. Изучить структуру генов и механизмы, сопровождающие их передачу и хранение, видоизменения (мутации).
  2. Рассмотреть многие аспекты клеточной биологии (взаимодействие клеток друг с другом, хромосомные и генетические взаимодействия и другие процессы).
  3. Изучить в комплексе с молекулярной биологией молекулы полимеров (белков, нуклеиновых кислот, полисахаридов).
  4. Выявить влияние космогеофизических факторов на течение всех физических и химических процессов в живых организмах.
  5. Более глубоко вскрыть механизмы фотобиологии (фотосинтез, фотопериодизм и так далее).
  6. Внедрить и разработать методы математического моделирования.
  7. Применить результаты нанотехнологии для изучения живых систем.

Из этого списка очевидно, что биофизика изучает очень много значимых и серьезных проблем современного общества, и результаты деятельности этой науки имеют важное значение для человека и его жизни.

История формирования

Как наука биофизика зародилась сравнительно недавно - в 1945 году, когда издал свой труд "Что такое жизнь с точки зрения физики". Именно он первым заметил и обозначил, что многие законы физики (термодинамические, законы квантовой механики) имеют место быть именно в жизнедеятельности и работе организмов живых существ.

Благодаря трудам этого человека наука биофизика начала свое интенсивное развитие. Однако еще ранее, в 1922 году, в России создается институт биофизики, которым руководит П. П. Лазарев. Там основную роль отводят изучению природы возбуждения в тканях и органах. Результатом стало выявление значение ионов в этом процессе.

  1. Гальвани открывает электричество и его значение для живых тканей (биоэлектричество).
  2. А. Л. Чижевский - отец нескольких дисциплин, изучающих влияние космоса на Биосферу, а также ионизационное излучение и электрогемодинамику.
  3. Подробная структура белковых молекул была изучена только после открытия метода РСА (рентгено-структурного анализа). Это было сделано учеными Перуц и Кендрю (1962 год).
  4. В этом же году открыта трехмерная структура ДНК (Морис Уилкинс).
  5. Неэр и Закман в 1991 году сумели разработать метод локальной фиксации электрического потенциала.

Также ряд других открытий позволил науке биофизике встать на путь интенсивной и прогрессивной модернизации в развитии и становлении.

Разделы биофизики

Существует целый ряд дисциплин, составляющих эту науку. Рассмотрим самые основные из них.

  1. Биофизика сложных систем - рассматривает все сложные механизмы саморегуляции многоклеточных организмов (системогенез, морфогенез, синергогенез). Также данной дисциплиной изучаются особенности физической составляющей процессов онтогенеза и эволюционного развития, уровней организации организмов.
  2. Биоакустика и биофизика сенсорных систем - изучает сенсорные системы живых организмов (зрение, слух, рецепция, речь и другие), способы трансляции различных сигналов. Выявляет механизмы преобразования энергии при восприятии организмами внешних воздействий (раздражений).
  3. Теоретическая биофизика - включает ряд поднаук, занимающихся изучением термодинамики биологических процессов, построением математических моделей структурных частей организмов. Также рассматривает кинетические процессы.
  4. Молекулярная биофизика - рассматривает глубокие механизмы структурной организации и функционирования таких биополимеров, как ДНК, РНК, белки, полисахариды. Занимается построением моделей и графических изображений этих молекул, прогнозирует поведение и формирование их в живых системах. Также данная дисциплина строит надмолекулярные и субмолекулярные системы с целью определения механизма построения и действия биополимеров в живых системах.
  5. Биофизика клетки. Изучает самые важные клеточные процессы: дифференцирование, деление, возбуждение и биопотенциалы мембранной структуры. Особое внимание уделяется механизмам мембранного транспорта веществ, разности потенциалов, свойствам и структуре мембраны и окружающих ее частей.
  6. Биофизика метаболизма. Основные рассматриваемые соляризация и адаптация к ней организмов, гемодинамика, теплорегуляция, метаболизм, влияние ионизационных лучей.
  7. Прикладная биофизика. Состоит из нескольких дисциплин: биоинформатика, биометрия, биомеханика, исследование эволюционных процессов и онтогенеза, патологическая (медицинская) биофизика. Объекты изучения прикладной биофизики - опорно-двигательный аппарат, способы движения, способы распознавания людей по физическим чертам. Особого внимания заслуживает медицинская биофизика. Она рассматривает патологические процессы в организмах, способы реконструкции поврежденных участков молекул или структур или их компенсацию. Дает материал для биотехнологии. Имеет большое значение в предупреждении развития заболеваний, особенно генетического характера, их устранении и объяснении механизмов воздействия.
  8. Биофизика среды обитания - изучает физическое воздействие как местных сред обитания существ, так и влияние ближних и дальних субъектов космического пространства. Также рассматривает биоритмы, влияние погодных условий и биополей на существа. Разрабатывает приемы мероприятий по профилактике негативных воздействий

Все эти дисциплины вносят колоссальный вклад в развитие понимания механизмов жизнедеятельности живых систем, влияния на них биосферы и различных условий.

Современные достижения

Можно назвать несколько самых значительных событий, которые относятся к достижениям биофизики:

  • вскрыты механизмы клонирования организмов;
  • изучены особенности превращений и роли окиси азота в живых системах;
  • установлена взаимосвязь малых и матричных РНК, что в будущем позволит найти решение многих медицинских проблем (устранения заболеваний);
  • открыта физическая природа автоволн;
  • благодаря работам молекулярных биофизиков изучены аспекты синтеза и репликации ДНК, что повлекло за собой возможность создания целого ряда новых лекарств от серьезных и сложных заболеваний;
  • созданы компьютерные модели всех реакций, сопровождающих процесс фотосинтеза;
  • разработаны методы ультразвукового исследования организма;
  • установлена связь между космогеофизическими и биохимическими процессами;
  • предсказано изменение климата на планете;
  • открытие значения фермента урокеназы в предупреждении заболеваний тромбозов и устранения последствий после инсультов;
  • также сделан ряд открытий по структуре белка, кровеносной системе и другим частям организма.

Институт биофизики в России

В нашей стране существует им. М. В. Ломоносова. На базе этого учебного заведения действует факультет биофизики. Именно он осуществляет подготовку квалифицированных специалистов для работы в этой области.

Очень важно дать качественный старт будущим профессионалам. Их ждет сложная работа. Биофизик обязан разбираться во всех тонкостях процессов, происходящих в живых существах. Кроме того, студенты должны разбираться и в физике. Ведь это комплексная наука - биофизика. Лекции строятся таким образом, чтобы объять все дисциплины, связанные и составляющие биофизику, и охватить рассмотрение вопросов как биологического, так и физического характера.

Что изучает биофизика?

Раздел 1. Общая биофизика. Включает в себя термодинамику биологических систем, кинетику биологических процессов, фотобиологию и молекулярную биофизику.

Биологическая термодинамика, или термодинамика биологических систем , изучает процессы превращения вещества и энергии в живых организмах. Этот раздел биофизики до сих пор создает почву для дискуссий о том, выполняются ли законы термодинамики в живых организмах. Основу этому разделу положили уже упомянутые выше работы А. Лавуазье и П.Лапласа, доказавшие применимость первого закона термодинамики к живым системам. Дальнейшее развитие этого направления привело к описанию Гельмгольцем тепловых эквивалентов пищи. Наибольший вклад в этот процесс внес австрийский биофизик И.Пригожин, доказавший применимость второго закона термодинамики к биологическим системам и положивший начало учению о термодинамике открытых неравновесных систем.

Кинетика биологических процессов – пожалуй, наиболее близкая к физике и химии область биофизики. Скорость и закономерности протекания реакций в живых системах мало отличаются от остальных. Эксклюзивным предметом является– учение о ферментах, о кинетике ферментативных реакций и способах регуляции ферментативной активности, описанная Михаэлисом и Ментен.

Фотобиология , или квантовая биофизика – изучает взаимодействие излучений с живыми организмами. Видимый свет играет исключительно важную роль в биологии как источник энергии (фотосинтез) и информации (зрение). Здесь нужно отметить большой вклад русского ученого М.Ломоносова, предложившего трехкомпонентную теорию цветного зрения, нашедшую затем свое развитие в работах Юнга и Гельмгольца («Физиологическая оптика», 1867). Они описали оптическую систему глаза, явление аккомодации и изобрели «глазное зеркало» – офтальмоскоп, до сегодняшнего дня используемый при исследовании сетчатки.

Молекулярная биофизика – раздел, тесно прилегающий к физической химии и изучающий закономерности образования и функционирования биомакромолекул. Этот раздел начал бурно развиваться лишь во второй половине XX века, так как требует сложного оборудования для проведения исследований. Здесь следует отметить работы Поллинга и Кори по изучению структуры молекул белка, Уотсона и Крика - по изучению молекулы ДНК.

Раздел II. Биофизика клетки . Предметом данного раздела являются принципы организации и функционирования живой клетки и ее фрагментов, биологических мембран.

Этот раздел биофизики стал развиваться после появления клеточной теории Шванна. Были описаны структура и функция клеточных мембран (Робертсон, Синджер и Николсон), сформулированы представления об избирательной проницаемости мембран (В.Пфеффер и Х.деФриз, Овертон), учение об ионных каналах (Эйзенман, Муллинз, Хилле).

Эксперименты Э. Дюбуа-Реймона и теория В. Оствальда о трансмембранной разности потенциалов положили начало учению о биологическом электричестве, о возбудимых тканях и привели к пониманию закономерностей функционирования нервных и мышечных клеток.

Механизмы передачи информации в клетках, учение о первичных и вторичных посредниках и внутриклеточных сигнальных системах – одно из активно развивающихся направлений современной биофизики. Ионы кальция, циклические нуклеотиды, продукты гидролиза мембранных фосфоинозитидов, простагландины, оксид азота – перечень молекул, передающих информацию от мембраны внутрь клетки и между клетками, постоянно пополняется.

Раздел III. Биофизика сложных систем. Естественным этапом в развитии биофизики явился переход к описанию сложных биологических систем. Начав с исследования отдельных тканей и органов, сегодня биофизика анализирует процессы, протекающие на уровне целого организма, надорганизменных систем (популяций и экологических сообществ), биосферы в целом. Делаются попытки использовать биофизические подходы к анализу социальных процессов.

Широкое внедрение физических методов исследования в биологию позволило Изучать биологические явления на молекулярном уровне. Блестящими работами биохимиков, физиологов, биофизиков и кристаллографов установлены молекулярные структуры ряда важнейших биологических объектов. Например, выяснена структура дезоксирибонуклеиновой кислоты (ДНК) - основного носителя наследственной информации, структура молекул миоглобина, запасающих кислород в мышцах животных, структура молекул гемоглобина, входящих в состав красных кровяных телец и переносящих кислород из легких к тканям, строение поперечнополосатых мышц и белковых молекул, входящих в их состав, структура некоторых ферментов, витаминов и ряда других важных биологических молекул.

Новые экспериментальные данные, полученные при исследовании биологических процессов на молекулярном уровне, поставили на повестку дня вопрос об их интерпретации. Поскольку все живые организмы построены из молекул и атомов, выяснение на молекулярном уровне механизма биопроцессов возможно только с помощью квантовой теории, успешно описывающей движение электронов и ядер, из которых состоят молекулы и атомы.

Тесная связь биологии и физики проявилась уже на ранних этапах развития естествознания. Однако наряду с материалистическим пониманием связи между физикой и биологией долгое время существовала глубоко ошибочная, антинаучная точка зрения, получившая название «витализм». Виталисты утверждали, что живое якобы отделено от неживого непроходимой пропастью и подчинено не природным закономерностям, а «жизненной силе» и поэтому непостижимо для человека.

Представления виталистов давно отвергнуты наукой. В настоящее время никто не сомневается в том, что жизнь есть особое

проявление физических и химических процессов, протекающих в сложных молекулярных системах, взаимодействующих с другими системами путем обмена энергией и веществом. Однако и сейчас некоторые ученые придерживаются мнения, что сложность биологических систем исключает возможность их истолкования на молекулярном уровне.

Следует, конечно, иметь в виду, что биологические объекты обладают рядом весьма своеобразных особенностей, отличающих их от тел неживой природы. К этим особенностям прежде всего относится самовоспроизводство и адаптация к изменяющимся внешним условиям, тончайшая регуляция и самосогласованис всех биологических процессов, происходящих в живых системах и обеспечивающих их жизнедеятельность.

Молекулы, входящие в состав живых организмов, необычайно велики, многообразны и сложны. Самыми сложными и разнообразными из всех молекул, входящих в состав клеток, являются белковые молекулы. Их молекулярные массы варьируют от нескольких десятков тысяч до нескольких миллионов.

Величайшее разнообразие биологических организмов не означает чрезвычайного многообразия химических единиц, из которых они построены. Это разнообразие определяется многочисленными комбинациями одних и тех же соединений и атомных групп. Например, все белки состоят в основном из 20 остатков аминокислот. Молекулы ДНК строятся из четырех типов нуклеотидов.

При изучении тел неживой природы было установлено, что по мере усложнения атомных систем появляются новые качества. Понятия температуры, энтропии, звуковых волн и других элементарных коллективных возбуждений применимы к системе атомов и молекул, но неприменимы к одному атому.

Не может быть сомнения в том, что все своеобразие живых организмов, отличающее их от тел неживой природы, возникает в результате особой организации сложных молекулярных систем, в основе которых лежат те же элементарные законы, которые определяют свойства атомов и молекул и построенных из них тел неживой природы.

Рост, развитие и воспроизведение живых организмов связаны с разнообразными химическими реакциями. В их изучение значительный вклад внесла биохимия. Однако в биохимии главное внимание уделялось исследованию взаимодействия между атомами при непосредственном их соприкосновении. Как писал в 1957 г. лауреат Нобелевской премии Сент-Дьердьи }