Одноосновная сильная кислота, представляющая собой в стандартных условиях бесцветную жидкость, которая при хранении желтеет, может находиться в твердом состоянии, характеризующемся двумя кристаллическими модификациями (моноклинная или ромбическая решетки), при температурах ниже минус 41,6 оС. Это вещество с химической формулой — HNO3 — называется азотная кислота. Имеет молярную массу 63,0 г/моль, а ее плотность соответствует 1,51 г/см³. Температура кипения кислоты равняется 82,6 оС, процесс сопровождается разложением (частичным): 4HNO3 → 2H2O + 4NO2 + O2. Раствор кислоты с массовой долей основного вещества, равной 68 % кипит при температуре 121 оС. чистого вещества соответствует 1,397. Кислота способна смешиваться с водой в любых соотношениях и, являясь сильным электролитом, почти полностью распадаться на ионы H+ и NO3-. Твердые формы — тригидрат и моногидрат имеют формулы: HNO3 . 3H2O и HNO3 . H2O соответственно.

Азотная кислота — коррозионно активное, токсическое вещество и сильный окислитель. Со средних веков известно такое название, как «сильная вода» (Aqua fortis). Алхимики, открывшие кислоту в 13 веке, дали такое название, убедившись в ее необычайных свойствах (разъедала все металлы, кроме золота), превосходящих в миллион раз силу уксусной кислоты, которую в те времена считали самой активной. Но еще через три столетия было установлено, что разъедать, даже золото, может смесь таких кислот, как азотная и соляная в объемном соотношении 1:3, которую по этой причине и назвали «царская водка». Появление желтого оттенка при хранении объясняется накоплением в ней окислов азота. В продаже кислота чаще бывает с концентрацией 68 %, а при содержании основного вещества более 89 % ее называют «дымящей».

Химические свойства азотной кислоты отличают ее от разбавленной серной или соляной кислот тем, что HNO3 более сильный окислитель, поэтому никогда не выделяется водород в реакциях с металлами. Благодаря окислительным свойствам она реагирует также с многими неметаллами. И в том, и другом случае всегда образуется диоксид азота NO2. В окислительно-восстановительных реакциях восстановление азота происходит до различной степени: HNO3, NO2, N2O3, NO, N2O, N2, NH3, что определяется концентрацией кислоты и активностью металла. В молекулах образующихся соединений содержится азот со степенью окисления: +5, +4, +3, +2, +1, 0, +3 соответственно. Например, медь окисляется концентрированной кислотой до нитрата меди (II): Cu + 4HNO3 → 2NO2 + Cu(NO3)2 + 2H2O, а фосфор — до метафосфорной кислоты: P + 5HNO3 → 5NO2 + HPO3 + 2H2O.

Иначе взаимодействует разбавленная азотная кислота с неметаллами. На примере реакции с фосфором: 3P + 5HNO3 +2H2O → 3H3PO4 + 5NO видно, что азот восстанавливается до двухвалентного состояния. В результате образуется монооксид азота, а фосфор окисляется до Концентрированная азотная кислота в смеси с соляной кислотой растворяет золото: Au + 4HCl + HNO3 → NO + H + 2H2O и платину: 3Pt + 18HCl + 4HNO3 → 4NO +3H2 + 8H2O. В этих реакциях на начальном этапе соляная кислота окисляется азотной с выделением хлора, а затем металлы образуют комплексные хлориды.

Азотная кислота в промышленных масштабах получается тремя основными способами:

  1. Первый — взаимодействием солей с серной кислотой: H2SO4 + NaNO3 → HNO3 + NaHSO4. Раньше это способ был единственным, но, с появлением других технологий, в настоящее время его используют в лабораторных условиях для получения дымящей кислоты.
  2. Второй — это дуговой способ. При продувании воздуха через с температурой от 3000 до 3500 оС, часть азота воздуха реагирует с кислородом, при этом образуется монооксид азота: N2 + O2 → 2NO, который после охлаждения окисляется до диоксида азота (при высокой температуре монооксид с кислородом не взаимодействует): O2 + 2NO → 2NO2. Затем, практически, весь диоксид азота, при избытке кислорода, растворяется в воде: 2H2O +4NO2 + O2 → 4HNO3.
  3. Третий — это аммиачный способ. Аммиак окисляется на платиновом катализаторе до монооксида азота: 4NH3 + 5O2 → 4NO + 6H2O. Образовавшиеся нитрозные газы охлаждаются, и образуется диоксид азота, который поглощается водой. Этим способом получают кислоту с концентрацией от 60 до 62 %.

Азотная кислота в промышленности широко применяется для получения лекарств, красителей, азотных удобрений и солей азотной кислоты. Кроме того, она используется для растворения металлов (например, медь, свинец, серебро), которые не реагируют с другими кислотами. В ювелирном деле используется для определения золота в сплаве (это способ является основным).


Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV .

Физические свойства

Азотная кислота HNO 3 в чистом виде - бесцветная жид­кость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см 3 . В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

Под действием света азотная кислота частично разлагается с выделением N О 2 и за c чет этого приобретает светло-бурый цвет:

N 2 + O 2 грозовые эл . разряды → 2NO

2NO + O 2 → 2NO 2

4Н N О 3 свет → 4 N О 2 (бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

Получение

1. Лабораторный способ

KNO 3 + H 2 SO 4 (конц) → KHSO 4 + HNO 3 ­ (при нагревании)

2. Промышленный способ

Осуществляется в три этапа :

a) Окисление аммиака на платиновом катализаторе до NO

4NH 3 + 5O 2 → 4NO + 6H 2 O (Условия: катализатор – Pt , t = 500˚С)

б) Окисление кислородом воздуха NO до NO 2

2NO + O 2 → 2NO 2

в) Поглощение NO 2 водой в присутствии избытка кислорода

4NO 2 + О 2 + 2H 2 O ↔ 4HNO 3

или3 NO 2 + H 2 O ↔ 2 HNO 3 + NO (без избытка кислорода)

Тренажёр "Получение азотной кислоты"

Применение

  • в производстве минеральных удобрений;
  • в военной промышленности;
  • в фотографии - подкисление некоторых тонирующих растворов;
  • в станковой графике - для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).
  • в производстве взрывчатых и отравляющих веществ

Вопросы для контроля:

№1. Степень окисления атома азота в молекуле азотной кислоты

a. +4

b. +3

c. +5

d. +2

№2. Атом азота в молекуле азотной кислоты имеет валентность равную -

a. II

b. V

c. IV

d. III

№3. Какими физическими свойствами характеризуют чистую азотную кислоту?

a. без цвета

b. не имеет запаха

c. имеет резкий раздражающий запах

d. дымящая жидкость

e. окрашена в жёлтый цвет

№4. Установите соответствие между исходными веществами и продуктами реакции:

a) NH 3 + O 2

1) NO 2

b) KNO 3 + H 2 SO 4

2) NO 2 + О 2 + H 2 O

c) HNO 3

3) NO + H 2 O

d) NO + O 2

4)KHSO 4 + HNO 3 ­

№5. Расставьте коэффициенты методом электронного баланса, покажите переход электронов, укажите процессы окисления (восстановления; окислитель (восстановитель):

NO 2 + О 2 + H 2 O ↔ HNO 3

Азотная кислота – сильная кислота. Представляет собой бесцветную жидкость с резким запахом. В небольших количествах образуется при грозовых разрядах и присутствует в дождевой воде.

Под действием света она частично разлагается:

4 HNO 3 = 4 NO 2 + 2 H 2 O + O 2

Азотную кислоту в промышленности получают в три стадии. На первой стадии происходит контактное окисление аммиака до оксида азота (П):

4NH 3 + 5O 2 = 4NO + 6H 2 O

На второй стадии происходит окисление оксида азота (П) до оксида азота (IV) кислородом воздуха:

2NO + O 2 = 2NO 2

На третьей стадии оксид азота (IV) поглощается водой в присутствии O 2:

4NO 2 + 2H 2 O + O 2 = 4HNO 3

В результате получается 60-62% -ная азотная кислота. В лаборатории её получают действием концентрированной азотной кислоты на нитраты при слабом нагревании:

NaNO 3 + H2SO 4 = NaHSO 4 + HNO 3

Молекула азотной кислоты имеет плоское строение. В ней имеется четыре связи с атомом азота:

Однако два атома кислорода равноценны, так как между ними четвёртая связь атома азота делится поровну, а перешедший от него электрон принадлежит им в равной степени. Таким образом, формулу азотной кислоты можно представить в виде:

Азотная кислота является одноосновной кислотой, образует только средние соли – нитраты. Азотная кислота проявляет все свойства кислот: реагирует с оксидами металлов, гидроксидами, солями:

2HNO 3 + CuO = Cu(NO 3) 2 + H 2 O

2HNO 3 + Ba(OH) 2 = Ba(NO 3) 2 + 2H 2 O

2HNO 3 + CaCO 3 = Ca(NO 3) 2 + CO 2 + H 2 O

Концентрированная азотная кислота реагирует со всеми металлами (кроме золота, платины, палладия) с образованием нитратов, оксида азота (+4). воды:

Zn + 4HNO 3 = Zn(NO 3) 2 + 2NO 2 + 2H 2 O

Формально концентрированная азотная кислота не реагирует с железом, алюминием, свинцом, оловом, но на их поверхности она образует оксидную плёнку, предохраняющую растворение общей массы металла:

2Al + 6HNO 3 = Al 2 O 3 + 6NO 2 + 3H 2 O

В зависимости от степени разбавленности, азотная кислота образует следующие продукты реакции:

3Mg + 8HNO 3 (30%) = 3Zn(NO 3) 2 + 2NO + 4H 2 O

4Mg + 10HNO 3 (20%) = 4Zn(NO 3) 2 + N 2 O + 5H 2 O

Сильно разбавленная азотная кислота с активными металлами образует соединения азота (-3), по сути: аммиак, но вследствие избытка азотной кислоты он образует нитрат аммония:

4Ca + 10HNO 3 = 4Ca(NO 3) 2 + NH4NO 3 + 3H 2 O

Активные металлы с сильно разбавленной кислотой на холоде могут образовывать азот:

5Zn + 12HNO 3 = 5Zn(NO 3) 2 + N 2 + 6H 2 O

Металлы: золото, платина, палладий реагируют с концентрированной азотной кислотой в присутствии концентрированной соляной кислоты:

Au + 3HCl + HNO 3 = AuCl3 + NO + 2H 2 O

Азотная кислота, как сильный окислитель, окисляет простые вещества – неметаллы:

6HNO 3 + S = H 2 SO 4 + 6NO 2 + 2H 2 O

2HNO 3 + S = H 2 SO 4 + 2NO

5HNO 3 + P = H 3 PO 4 + 5NO 2 + H 2 O

Кремний окисляется азотной кислотой до оксида:

4HNO 3 + 3Si = 3SiO 2 + 4NO + 2H 2 O

В присутствии фтористоводородной кислоты азотная кислота растворяет кремний:

4HNO 3 + 12HF + 3Si = 3SiF 4 + 4NO + 8H 2 O

Азотная кислота способна окислять сильные кислоты:

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O

Азотная кислота способна окислять как слабые кислоты, так и сложные вещества:

6HNO 3 + HJ = HJO 3 + NO 2 + 3H 2 O

FeS + 10HNO 3 = Fe(NO 3) 2 + SO 2 + 7NO 2 + 5H 2 O

Соли азотной кислоты – нитраты хорошо растворимы в воде. Соли щелочных металлов и аммония называются селитрами . Нитраты обладают менее сильной окислительной активностью, однако в присутствии кислот могут растворять даже неактивные металлы:

3Cu + 2KNO 3 + 4H 2 SO 4 = 3CuSO 4 + K 2 SO 4 + 2NO + 4H 2 O

Нитраты в кислой среде окисляют соли металлов с меньшей валентностью до их солей с высшей валентностью:

3FeCl 2 + KNO 3 + 4HCl = 3FeCl 3 + KCl + NO + 2H 2 O

Характерной особенностью нитратов является образование кислорода при их разложении. При этом продукты реакции могут быть различны и зависеть от положения металла в ряду активности. Нитраты первой группы (от лития до алюминия) разлагаются с образованием нитритов и кислорода:

2KNO 3 = 2KNO 2 + O 2

Нитраты второй группы (от алюминия до меди) разлагаются с образованием оксида металла, кислорода и оксида азота (IV):

2Zn(NO 3)2 = 2ZnO + 4NO2 + O 2

Нитраты третьей группы (после меди) разлагаются на металл, кислород и оксид азота (IV):

Hg(NO 3) 2 = Hg + 2NO 2 + O 2

Нитрат аммония при разложении не образует кислород:

NH 4 NO 3 = N 2 O+ 2H 2 O

Сама же азотная кислота разлагается по механизму нитратов второй группы:

4HNO 3 = 4NO 2 + 2H 2 O + O 2

Если у Вас есть вопросы, приглашаю Вас на свои уроки химии. Записывайтесь в расписании на сайте .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Азотная кислота и ее свойства.

Чистая азотная кислота HNO 3 - бесцветная жидкость. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с влагой воздуха мелкие капельки тумана.

Азотная кислота не отличается прочностью. Уже под влиянием света она постепенно разлагается:

4HN0 3 = 4N0 2 + 0 2 + 2Н 2 0.

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот: в разбавленных растворах она полностью распадается на ионы Н+ и N0 _ .

Азотная кислота - один из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор -в фосфорную.

Азотная кислота действует почти на все металлы (см. разд. 11.3.2), превращая их в нитраты, а некоторые металлы - в оксиды.

Концентрированная HNO 3 пассивирует некоторые металлы.

Степень окисления азота в азотной кислоте равна +5. Выступая в качестве окислителя, HNO 3 может восстанавливаться до различных продуктов:

4 +3 +2 +1 0 -3

N0 2 N 2 0 3 NO N 2 О N 2 NH 4 N0 3

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрация HNO3, тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется NO2. При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется N0. В случае более активных металлов - железа, цинка - образуется N2O. Сильно разбавленная азотная кислота взаимодействует с активными металлами - цинком, магнием, алюминием - с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Си + HN0 3(конц.) - Cu(N0 3) 2 + N0 2 + Н 2 0;

Си + HN0 3 (разбавл.) -^ Си(N0 3) 2 + N0 + Н 2 О;

Mg + HN0 3 (разбавл.) -> Mg(N0 3) 2 + N 2 0 + н 2 0 ;

Zn + HN0 3(очень разбавл.) - Zn(N0 3) 2 + NH 4 N0 3 + Н 2 0.

При действии азотной кислоты на металлы водород, как правило, не выделяется.

При окислении неметаллов концентрированная азотная кислота, как и в случае металлов, восстанавливается до N0 2 , например

S + 6HNO 3 = H 2 S0 4 + 6N0 2 + 2Н 2 0.

ЗР + 5HN0 3 + 2Н 2 0 = ЗН 3 РО 4 + 5N0

Приведенные схемы иллюстрируют наиболее типичные случаи взаимодействия азотной кислоты с металлами и неметаллами. Вообще же, окислительно-восстановительные реакции, идущие с участием HNO 3 , протекают сложно.

Смесь, состоящая из 1 объема азотной и 3-4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет не-которые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов» - золото. Действие ее объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (1П), или хлорида нитрозила, N0C1:

HN0 3 + ЗНС1 = С1 2 + 2Н 2 0 + N0C1.

Хлорид нитрозила является промежуточным продуктом реакции и разлага-ется:

2N0C1 = 2N0 + С1 2 .

Хлор в момент выделения состоит из атомов, что и обусловливает высокую окислительную способность царской водки. Реакции окисления золота и платины протекают в основном согласно следующим уравнениям:

Au + HN0 3 + ЗНС1 = AuCl 3 + NO + 2Н 2 0;

3Pt + 4HN0 3 + 12НС1 = 3PtCl 4 + 4N0 + 8Н 2 0.

На многие органические вещества азотная кислота действует так, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами - NO 2 . Этот процесс называется нитрованием и имеет большое значение в органической химии.

Соли азотной кислоты называются нитратами. Все они хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода. При этом нитраты наиболее активных металлов переходят в нитриты:

2KN0 3 = 2KN0 2 +О 2

Промышленное получение азотной кислоты. Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При описании свойств аммиака было указано, что он горит в кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение NH 3 в N0:

4NH 3 (r) + 5О 2 (г) = 4NO(r) + 6Н 2 О(г), АН = -907 кДж.

Образовавшийся N0 легко переходит в NO 2 , который с водой в присутствии кислорода воздуха дает азотную кислоту.

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.

Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концентрируют.

Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45 %, а концентрированная - 98 и 97 %. Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную - в цистернах из кислотоупорной стали.

Билет 5

2. Роль железа в процессе жизнедеятельности организма.

Железо в организме. Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (так называемые концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Железа). Почти все Железо в организмах животных и растений связано с белками. Недостаток Железа вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Железа, вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Железа, и растения не получают его в достаточном количестве; в кислых почвах Железо переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Железа заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60-110 мг Железа, что значительно превышает его суточную потребность. Всасывание поступившего с пищей Железа происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Железо-белкового комплекса - ферритина. Основное депо Железа в организме - печень и селезенка. За счет ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и других железосодержащие ферменты. Выделяется Железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками.

Азотная кислота (HNO 3), -- сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками. Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и t кип 120 °C при атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Азот в азотной кислоте четырёхвалентен, степень окисления +5. Азотная кислота -- бесцветная газ, не имеет запаха, дымящая на воздухе жидкость, температура плавления? 41,59 °C, кипения + 82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 -- концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d 20 = 1,41 г/см, T кип =120,7 °C). При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

  • · моногидрат HNO 3 ·H 2 O, T пл = ?37,62 °C
  • · тригидрат HNO 3 ·3H 2 O, T пл = ?18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

  • · моноклинная, пространственная группа P 2 1 /a, a = 1,623 нм, b = 0,857 нм, c = 0,631, в = 90°, Z = 16;
  • · ромбическая

Моногидрат образует кристаллы ромбической сингонии, пространственная группа P na2, a = 0,631 нм, b = 0,869 нм, c = 0,544, Z = 4;

Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением

где d -- плотность в г/смі, с -- массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.

Под действием света азотная кислота частично разлагается с выделением NО 2 и за cчет этого приобретает светло-бурый цвет:

N 2 + O 2 грозовые эл.разряды > 2NO

  • 2NO + O 2 > 2NO 2
  • 4НNО 3 свет > 4NО 2 ^(бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту - жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок - ксантопротеиновая реакция). То есть - это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.