Абсолютной величиной (или абсолютным значением) отрицательного числаназывается положительное число, получаемое от перемены его знака (-) на обратный (+). Абсолютная величина -5 есть +5, т. е. 5. Абсолютной величиной положительного числа (а также числа 0) называется само это число.

Знак абсолютной величины - две прямые черты, в которые заключается число, абсолютная величина которого берется. Например,

|-5| = 5,
|+5| = 5,
| 0 | = 0.

Сложение чисел с одинаковым знаком.а) При сложении двух чисел с одинаковым знаком складываются их абсолютные величины и перед суммой ставится общий их знак.

Примеры.
(+8) + (+11) = 19;
(-7) + (-3) = -10.

б) При сложении двух чисел с разными знаками из абсолютной величины одного из них вычитается абсолютная величина другого (меньшая из большей) а ставится знак того числа, у которого абсолютная величина больше.

Примеры.
(-3) + (+12) = 9;
(-3) + (+1) = -2.

Вычитание чисел с разными знаками.Вычитание одного числа из другого можно заменить сложением; при этом уменьшаемое берется со своим знаком, а вычитаемое с обратным.

Примеры.
(+7) - (+4) = (+7) + (-4) = 3;
(+7) - (-4) = (+7) + (+4) = 11;
(-7) - (-4) = (-7) + (+4) = -3;
(-4) - (-4) = (-4) + (+4) = 0;

Замечание. При выполнении сложения и вычитания, особенно когда имеем дело с несколькими числами, лучше всего поступать так:
1) освободить все числа от скобок, при этом перед числом поставить знак «+ », если прежний знак перед скобкой был одинаков со знаком в скобке, и « -», если он был противоположен знаку в скобке;
2) сложить абсолютные величины всех чисел, имеющих теперь слева знак +;
3) сложить абсолютные величины всех чисел, имеющих теперь слева знак -;
4) из большей суммы вычесть меньшую и поставить знак, соответствующий большей сумме.

Пример.
(-30) - (-17) + (-6) - (+12) + (+2);
(-30) - (-17) + (-6) - (+12) + (+2) = -30 + 17 - 6 - 12 + 2;
17 + 2 = 19;
30 + 6 + 12 = 48;
48 - 19 = 29.

Результат есть отрицательное число -29, так как большая сумма (48) получилась от сложения абсолютных величин тех чисел, перед которыми стоили минусы в выражении -30 + 17 – 6 -12 + 2. На это последнее выражение можно смотреть и как на сумму чисел -30, +17, -6, -12, +2, и как на результат последовательного прибавления к числу -30 числа 17, затем вычитания числа 6, затем вычитания 12и, наконец, прибавления 2. Вообще на выражение а - b + с - d и т. д. можно смотреть и как на сумму чисел (+а), (-b), (+с), (-d), и как на результат таких последовательных действий: вычитания из (+а) числа (+b) , прибавления (+c), вычитании (+d) и т. д.

Умножение чисел с разными знакамиПри умножении двух чисел умножаются их абсолютные величины и перед произведением ставится знак плюс, если знаки сомножителей одинаковы, и минус, если они разные.

Схема (правило знаков при умножении):

+*+=+ +*-=- -*+=- -*-=+
Примеры.
(+ 2,4) * (-5) = -12;
(-2,4) * (-5) = 12;
(-8,2) * (+2) = -16,4.

При перемножении нескольких сомножителей знак произведения положителен, если число отрицательных сомножителей четно, и отрицателен, если число отрицательных сомножителей нечетно.

Примеры.
(+1/3) * (+2) * (-6) * (-7) * (-1/2) = 7 (три отрицательных сомножителя);
(-1/3) * (+2) * (-3) * (+7) * (+1/2) = 7 (два отрицательных сомножителя).

Деление чисел с разными знакамиПри делении одного числа на другое делят абсолютную величину первого на абсолютную величину второго и перед частным ставится знак плюс, если знаки делимого и делителя одинаковы, и минус, если они разные (схема та же, что для умножения).

Примеры.
(-6) : (+3) = -2;
(+8) : (-2) = -4;
(-12) : (-12) = + 1

Положительные и отрицательные числа
Координатная прямая
Проведём прямую. Отметим на ней точку 0 (ноль) и примем эту точку за начало отсчёта.

Укажем стрелкой направление движения по прямой вправо от начала координат. В этом направлении от точки 0 будем откладывать положительные числа.

То есть положительными называют уже известные нам числа, кроме нуля.

Иногда положительные числа записывают со знаком «+». Например, «+8».

Для краткости записи знак «+» перед положительным числом обычно опускают и вместо «+8» пишут просто 8.

Поэтому «+3» и «3» - это одно и тоже число, только по разному обозначенное.

Выберем какой-либо отрезок, длину которого примем за единицу и отложим его несколько раз вправо от точки 0. В конце первого отрезка записывается число 1, в конце второго - число 2 и т.д.

Отложив единичный отрезок влево от начала отсчёта получим отрицательные числа: -1; -2; и т.д.

Отрицательные числа используют для обозначения различных величин, таких как: температура (ниже нуля), расход - то есть отрицательный доход, глубина - отрицательная высота и другие.

Как видно из рисунка, отрицательные числа - это уже известные нам числа, только со знаком «минус»: -8; -5,25 и т.д.

  • Число 0 не является ни положительным, ни отрицательным.

Числовую ось обычно располагают горизонтально или вертикально.

Если координатная прямая расположена вертикально, то направление вверх от начала отсчёта обычно считают положительным, а вниз от начала отсчёта - отрицательным.

Стрелкой указывают положительное направление.


Прямая, на которой отмечено:
. начало отсчёта (точка 0);
. единичный отрезок;
. стрелкой указано положительное направление;
называется координатной прямой или числовой осью.

Противоположные числа на координатной прямой
Отметим на координатной прямой две точки A и B, которые расположены на одинаковом расстоянии от точки 0 справа и слева соответственно.

В таком случае длины отрезков OA и OB одинаковы.

Значит, координаты точек A и B отличаются только знаком.


Также говорят, что точки A и B симметричны относительно начала координат.
Координата точки A положительная «+2», координата точки B имеет знак минус «-2».
A (+2), B (-2).

  • Числа, которые отличаются только знаком, называются противоположными числами. Соответствующие им точки числовой (координатной) оси симметричны относительны начала отсчёта.

Каждое число имеет единственное противоположное ему число . Только число 0 не имеет противоположного, но можно сказать, что оно противоположно самому себе.

Запись «-a» означает число, противоположное «a». Помните, что под буквой может скрываться как положительное число, так и отрицательное число.

Пример:
-3 - число противоположное числу 3.

Записываем в виде выражения:
-3 = -(+3)

Пример:
-(-6) - число противоположное отрицательному числу -6. Значит, -(-6) это положительное число 6.

Записываем в виде выражения:
-(-6) = 6

Сложение отрицательных чисел
Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси.

Сложение небольших по модулю чисел удобно выполнять на координатной прямой, мысленно представляя себе как точка, обозначающая число передвигается по числовой оси.

Возьмём какое-нибудь число, например, 3. Обозначим его на числовой оси точкой A.

Прибавим к числу положительное число 2. Это будет означать, что точку A надо переместить на два единичных отрезка в положительном направлении, то есть вправо . В результате мы получим точку B с координатой 5.
3 + (+ 2) = 5


Для того чтобы к положительному числу, например, к 3 прибавить отрицательное число (- 5), точку A надо переместить на 5 единиц длины в отрицательном направлении, то есть влево .

В этом случае координата точки B равна - 2.

Итак, порядок сложения рациональных чисел с помощью числовой оси будет следующим:
. отметить на координатной прямой точку A с координатой равной первому слагаемому;
. передвинуть её на расстояние, равное модулю второго слагаемого в направлении, которое соответствует знаку перед вторым числом (плюс - передвигаем вправо, минус - влево);
. полученная на оси точка B будет иметь координату, которая будет равна сумме данных чисел.

Пример.
- 2 + (- 6) =

Двигаясь от точки - 2 влево (так как перед 6 стоит знак минус), получим - 8.
- 2 + (- 6) = - 8

Сложение чисел с одинаковыми знаками
Складывать рациональные числа можно проще, если использовать понятие модуля.

Пускай нам нужно сложить числа, которые имеют одинаковые знаки.
Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

Пример.

Пример сложения отрицательных чисел.
(- 3,2) + (- 4,3) = - (3,2 + 4,3) = - 7,5

  • Чтобы сложить числа одного знака надо сложить их модули и поставить перед суммой знак, который был перед слагаемыми.

Сложение чисел с разными знаками
Если числа имеют разные знаки, то действуем несколько по-иному, чем при сложении чисел с одинаковыми знаками.
. Отбрасываем знаки перед числами, то есть берём их модули.
. Из большего модуля вычитаем меньший.
. Перед разностью ставим тот знак, который был у числа с бóльшим модулем.

Пример сложения отрицательного и положительного числа.
0,3 + (- 0,8) = - (0,8 - 0,3) = - 0,5

Пример сложения смешанных чисел.

Чтобы сложить числа разного знака надо:
. из бóльшего модуля вычесть меньший модуль;
. перед полученной разностью поставить знак числа, имеющего больший модуль.

Вычитание отрицательных чисел
Как известно вычитание - это действие, противоположное сложению.
Если a и b - положительные числа, то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a

Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.

  • Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.

Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)

Пример.
6 - 8 = 6 + (- 8) = - 2

Пример.
0 - 2 = 0 + (- 2) = - 2

  • Стоит запомнить выражения ниже.
  • 0 - a = - a
  • a - 0 = a
  • a - a = 0

Правила вычитания отрицательных чисел
Как видно из примеров выше вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.

Разность может быть положительным числом, отрицательным числом или числом ноль.

Примеры вычитания отрицательных и положительных чисел.
. - 3 - (+ 4) = - 3 + (- 4) = - 7
. - 6 - (- 7) = - 6 + (+ 7) = 1
. 5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a

+ (- a) = - a

Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a

- (- a) = + a

Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0

Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n

Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всемичислами в этих скобках.

Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел

Или выучить простое правило.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.

Умножение отрицательных чисел
Используя понятие модуля числа, сформулируем правила умножения положительных и отрицательных чисел.

Умножение чисел с одинаковыми знаками
Первый случай, который может вам встретиться - это умножение чисел с одинаковыми знаками.
Чтобы умножить два числа с одинаковыми знаками надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «+» (при записи ответа знак «плюс» перед первым числом слева можно опускать).

Примеры умножения отрицательных и положительных чисел.
. (- 3) . (- 6) = + 18 = 18
. 2 . 3 = 6

Умножение чисел с разными знаками
Второй возможный случай - это умножение чисел с разными знаками.
Чтобы умножить два числа с разными знаками, надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «-».

Примеры умножения отрицательных и положительных чисел.
. (- 0,3) . 0,5 = - 1,5
. 1,2 . (- 7) = - 8,4

Правила знаков для умножения
Запомнить правило знаков для умножения очень просто. Данное правило совпадает с правилом раскрытия скобок.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.


В «длинных» примерах, в которых есть только действие умножение, знак произведения можно определять по количеству отрицательных множителей.

При чётном числе отрицательных множителей результат будет положительным, а при нечётном количестве - отрицательным.
Пример.
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) =

В примере пять отрицательных множителей. Значит, знак результата будет «минус».
Теперь вычислим произведение модулей, не обращая внимание на знаки.
6 . 3 . 4 . 2 . 12 . 1 = 1728

Конечный результат умножения исходных чисел будет:
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) = - 1728

Умножение на ноль и единицу
Если среди множителей есть число ноль или положительная единица, то умножение выполняется по известным правилам.
. 0 . a = 0
. a . 0 = 0
. a . 1 = a

Примеры:
. 0 . (- 3) = 0
. 0,4 . 1 = 0,4
Особую роль при умножении рациональных чисел играет отрицательная единица (- 1).

  • При умножении на (- 1) число меняется на противоположное.

В буквенном выражении это свойство можно записать:
a . (- 1) = (- 1) . a = - a

При совместном выполнении сложения, вычитания и умножения рациональных чисел сохраняется порядок действий, установленный для положительных чисел и нуля.

Пример умножения отрицательных и положительных чисел.


Деление отрицательных чисел
Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление - это действие, обратное умножению.

Если a и b положительные числа, то разделить число a на число b, значит найти такое число с, которое при умножении на b даёт число a.

Данное определение деления действует для любых рациональных чисел, если делители отличны от нуля.

Поэтому, например, разделить число (- 15) на число 5 - значит, найти такое число, которое при умножении на число 5 даёт число (- 15). Таким числом будет (- 3), так как
(- 3) . 5 = - 15

значит

(- 15) : 5 = - 3

Примеры деления рациональных чисел.
1. 10: 5 = 2, так как 2 . 5 = 10
2. (- 4) : (- 2) = 2, так как 2 . (- 2) = - 4
3. (- 18) : 3 = - 6, так как (- 6) . 3 = - 18
4. 12: (- 4) = - 3, так как (- 3) . (- 4) = 12

Из примеров видно, что частное двух чисел с одинаковыми знаками - число положительное (примеры 1, 2), а частное двух чисел с разными знаками - число отрицательное (примеры 3,4).

Правила деления отрицательных чисел
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

. перед результатом поставить знак «+».

Примеры деления чисел с одинаковыми знаками:
. (- 9) : (- 3) = + 3
. 6: 3 = 2

Чтобы разделить два числа с разными знаками, надо:
. модуль делимого разделить на модуль делителя;
. перед результатом поставить знак «-».

Примеры деления чисел с разными знаками:
. (- 5) : 2 = - 2,5
. 28: (- 2) = - 14
Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби

Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».

Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:

  • Частное от деления нуля на число, отличное от нуля, равно нулю.
  • 0: a = 0, a ≠ 0
  • Делить на ноль НЕЛЬЗЯ!

Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
. а: 1 = a
. а: (- 1) = - a
. а: a = 1

, где а - любое рациональное число.

Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
. если a . b = с; a = с: b; b = с: a;
. если a: b = с; a = с. b; b = a: c

Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.

Пример нахождения неизвестного.
x . (- 5) = 10

x = 10: (- 5)

x = - 2

Знак «минус» в дробях
Разделим число (- 5) на 6 и число 5 на (- 6).

Напоминаем, что черта в записи обыкновенной дроби - это тот же знак деления, и запишем частное каждого из этих действий в виде отрицательной дроби.

Таким образом знак "минус" в дроби может находиться:
. перед дробью;
. в числителе;
. в знаменателе.

  • При записи отрицательных дробей знак «минус» можно ставить перед дробью, переносить его из числителя в знаменатель или из знаменателя в числитель.

Это часто используется при выполнении действий с дробями, облегчая вычисления.

Пример. Обратите внимание, что после вынесения знака «минуса» перед скобкой мы из большего модуля вычитаем меньший по правилам сложения чисел с разными знаками.


Используя описанное свойство переноса знака в дроби, можно действовать, не выясняя, модуль какого из данных дробных чисел больше.


В этой статье мы разберем, как выполняется вычитание отрицательных чисел из произвольных чисел. Здесь мы дадим правило вычитания отрицательных чисел, и рассмотрим примеры применения этого правила.

Навигация по странице.

Правило вычитания отрицательных чисел

Имеет место следующее правило вычитания отрицательных чисел : чтобы из числа a вычесть отрицательное число b , нужно к уменьшаемому a прибавить число −b , противоположное вычитаемому b .

В буквенном виде правило вычитания отрицательного числа b из произвольного числа a выглядит так: a−b=a+(−b) .

Докажем справедливость данного правила вычитания чисел.

Для начала напомним смысл вычитания чисел a и b . Найти разность чисел a и b - это значит найти такое число с , сумма которого с числом b равна a (смотрите связь вычитания со сложением). То есть, если найдено число с такое, что c+b=a , то разность a−b равна c .

Таким образом, чтобы доказать озвученное правило вычитания, достаточно показать, что прибавление к сумме a+(−b) числа b даст число a . Чтобы это показать, обратимся к свойствам действий с действительными числами . В силу сочетательного свойства сложения справедливо равенство (a+(−b))+b=a+((−b)+b) . Так как сумма противоположных чисел равна нулю, то a+((−b)+b)=a+0 , а сумма a+0 равна a , так как прибавление нуля не изменяет число. Таким образом, доказано равенство a−b=a+(−b) , а значит, доказана и справедливость приведенного правила вычитания отрицательных чисел.

Мы доказали данное правило для действительных чисел a и b . Однако, это правило справедливо и для любых рациональных чисел a и b , а также для любых целых чисел a и b , так как действия с рациональными и целыми числами тоже обладают свойствами, которые мы использовали при доказательстве. Отметим, что с помощью разобранного правила можно выполнять вычитание отрицательного числа как из положительного числа, так и из отрицательного числа, а также из нуля.

Осталось рассмотреть, как выполняется вычитание отрицательных чисел с помощью разобранного правила.

Примеры вычитания отрицательных чисел

Рассмотрим примеры вычитания отрицательных чисел . Начнем с решения простого примера, чтобы разобраться со всеми тонкостями процесса, не утруждаясь вычислениями.

Пример.

Отнимите от отрицательного числа −13 отрицательное число −7 .

Решение.

Числом, противоположным вычитаемому −7 , является число 7 . Тогда по правилу вычитания отрицательных чисел имеем (−13)−(−7)=(−13)+7 . Осталось выполнить сложение чисел с разными знаками , получаем (−13)+7=−(13−7)=−6 .

Вот все решение: (−13)−(−7)=(−13)+7=−(13−7)=−6 .

Ответ:

(−13)−(−7)=−6 .

Вычитание дробных отрицательных чисел можно выполнить, осуществив переход к соответствующим обыкновенным дробям , смешанным числам или десятичным дробям . Здесь стоит отталкиваться от того, с какими числами удобнее работать.

Пример.

Выполните вычитание из числа 3,4 отрицательного числа .

Решение.

Применив правило вычитания отрицательных чисел, имеем . Теперь заменим десятичную дробь 3,4 смешанным числом: (смотрите перевод десятичных дробей в обыкновенные дроби), получаем . Осталось выполнить сложение смешанных чисел : .

На этом вычитание отрицательного числа из числа 3,4 завершено. Приведем краткую запись решения: .

Ответ:

.

Пример.

Отнимите отрицательное число −0,(326) от нуля.

Решение.

По правилу вычитания отрицательных чисел имеем 0−(−0,(326))=0+0,(326)=0,(326) . Последний переход справедлив в силу свойства сложения числа с нулем.

Инструкция

Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров с будет четыре типа. Отрицательные числа внутри примера выделяются для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17).

Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак "+" меняется на противоположный, далее из большего (по модулю) числа "6" отнимается меньшее - "3", после чего ответу присваивается знак большего, то есть "-".
2) -3+6=3. Этот можно записать по- ("6-3") или по принципу "из большего отнимать меньшее и присваивать ответу знак большего".
3) -3+(-6)=-3-6=-9. При раскрытии замена действия сложения на вычитание, затем суммируются модули и результату ставиться знак "минус".

Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.
2) -9-3=-12. Элементы примера складываются и получает общий знак "-".
3) -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на "+", далее из большего числа отнимается меньшее и у ответа - знак большего числа.

Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с ответу присваивается знак "минус", если числа с одинаковыми знаками - у результата всегда знак "плюс".1)-4*9=-36; -6:2=-3.
2)6*(-5)=-30; 45:(-5)=-9.
3)-7*(-8)=56; -44:(-11)=4.

Источники:

  • таблица с минусами

Как решать примеры ? С таким вопросом часто обращаются дети к родителям, если уроки требуется сделать дома. Как правильно объяснить ребенку решение примеров на сложение и вычитание многозначных чисел? Попробуем в этом разобраться.

Вам понадобится

  • 1. Учебник по математике.
  • 2. Бумага.
  • 3. Ручка.

Инструкция

Прочитайте пример. Для этого каждое многозначное разбить на классы. Начиная с конца числа, отсчитываем по три цифры и ставим точку (23.867.567). Напомним, что первые три цифры с конца числа к единиц, следующие три - к классу , далее идут миллионы. Читаем число: двадцать три восемьсот шестьдесят семь тысяч шестьдесят семь.

Запишите пример . Обратите внимание, что единицы каждого разряда записываются строго друг под другом: единицы под единицами, десятки под десятками, сотни под сотнями и т.д.

Выполните сложение или вычитание. Начинайте выполнять действие с единиц. Результат записывайте под тем разрядом, действие с которым выполняли. Если получилось число(), то единицы записываем на месте ответа, а число десятков прибавляем к единицам разряда. Если количество единиц какого-либо разряда в уменьшаемом меньше, чем в вычитаемом, занимаем 10 единиц следующего разряда, выполняем действие.

Прочитайте ответ.

Видео по теме

Обратите внимание

Запретите ребенку использование калькулятора даже для проверки решения примера. Сложение проверяется вычитанием, а вычитание - сложением.

Полезный совет

Если ребенок хорошо усвоит приемы письменных вычислений в пределах 1000, то действия с многозначными числами, выполненные по-аналогии, не вызовут затруднений.
Устройте ребенку соревнование: сколько примеров он может решить за 10 минут. Такие тренировки помогут автоматизировать вычислительные приемы.

Умножение - одна из четырех основных математических операций, которая лежит в основе многих более сложных функций. При этом фактически умножение основывается на операции сложения: знание об этом позволяет правильно решить любой пример.

Для понимания сущности операции умножения необходимо принять во внимание, что в ней участвуют три основных компонента. Один из них носит название первого множителя и представляет собой число, которое подвергается операции умножения. По этой причине у него имеется второе, несколько менее распространенное название - «множимое». Второй компонент операции умножения принято называть вторым множителем: он представляет собой число, на которое умножается множимое. Таким образом, оба эти компонента носят название множителей, что подчеркивает их равноправный статус, а также то, что их можно поменять местами: результат умножения от этого не изменится. Наконец, третий компонент операции умножения, получающийся в ее результате, носит название произведения.

Порядок операции умножения

Сущность операции умножения основывается на более простом арифметическом действии - . Фактически умножение представляет собой суммирование первого множителя, или множимого, такое количество раз, которое соответствует второму множителю. Например, для того, чтобы умножить 8 на 4 необходимо 4 раза сложить число 8, получив в результате 32. Этот способ, помимо обеспечения понимания сущности операции умножения, можно использовать для проверки результата, получившегося при вычислении искомого произведения. При этом следует иметь в виду, осуществление проверки обязательно предполагает, что слагаемые, участвующие в суммировании, одинаковы и соответствуют первому множителю.

Решение примеров на умножение

Таким образом, для того, чтобы решить , связанный с необходимостью осуществления умножения, может быть достаточно заданное количество раз сложить необходимое число первых множителей. Такой способ может быть удобен для осуществления практически любых расчетов, связанных с этой операцией. Вместе с тем, в математике достаточно часто встречаются типовые , в которых участвуют стандартные целые однозначные числа. Для того, чтобы облегчить их расчет, была создана так называемая умножения, которая включает в себя полный перечень произведений целых положительных однозначных чисел, то есть чисел от 1 до 9. Таким образом, однажды выучив , можно существенно облегчить себе процесс решения примеров на умножение, основанных на использовании таких чисел. Однако для более сложных вариантов необходимо будет осуществлять эту математическую операцию самостоятельно.

Видео по теме

Источники:

  • Умножение в 2019

Умножение - одна из четырех основных арифметических операций, которая часто встречается как в учебе, так и в повседневной жизни. Как можно быстро перемножить два числа?

Основу самых сложных математических вычислений составляют четыре основных арифметических операции: вычитание, сложение, умножение и деление. При этом, несмотря на свою самостоятельность, эти операции при ближайшем рассмотрении оказываются связанными между собой. Такая связь существует, например, между сложением и умножением.

Операция умножения чисел

В операции умножения участвуют три основных элемента. Первый из них, который обычно называют первым множителем или множимым, представляет собой число, которое будет подвергнуто операции умножения. Второй, который именуют вторым множителем, является числом, на которое будет умножен первый множитель. Наконец, результат осуществленной операции умножения чаще всего носит название произведения.

При этом следует помнить, что сущность операции умножения фактически основывается на сложении: для ее осуществления необходимо сложить между собой определенное количество первых множителей, причем количество слагаемых этой суммы должно быть равно второму множителю. Помимо вычисления самого произведения двух рассматриваемых множителей, этот алгоритм можно использовать также для проверки получившегося результата.

Пример решения задания на умножение

Рассмотрим решения задачи на умножение. Предположим, по условиям задания необходимо вычислить произведение двух чисел, среди которых первый множитель равен 8, а второй 4. В соответствии с определением операции умножения, это фактически означает, что нужно 4 раза сложить цифру 8. В результате получается 32 - это и есть произведение рассматриваемых чисел, то есть результат их умножения.

Кроме того, необходимо помнить, что в отношении операции умножения действует так называемый переместительный закон, который устанавливает, что от изменения мест множителей в первоначальном примере его результат не изменится. Таким образом, можно 8 раз сложить цифру 4, получив в результате то же произведение - 32.

Таблица умножения

Понятно, что решать таким способом большое количество однотипных примеров - довольно утомительное занятие. Для того чтобы облегчить эту задачу, была придумана так называемая умножения. Фактически она представляет собой перечень произведений целых положительных однозначных чисел. Проще говоря, таблица умножения - это совокупность результатов перемножения между собой от 1 до 9. Один раз выучив эту таблицу, можно уже не прибегать к осуществлению умножения всякий раз, когда потребуется решить пример на такие простые числа, а просто вспомнить его результат.

Видео по теме


Сейчас мы разберем положительные и отрицательные числа . Сначала дадим определения, введем обозначения, после чего приведем примеры положительных и отрицательных чисел. Также остановимся на смысловой нагрузке, которую несут в себе положительные и отрицательные числа.

Навигация по странице.

Положительные и отрицательные числа – определения и примеры

Дать определение положительных и отрицательных чисел нам поможет . Для удобства будем считать, что она расположена горизонтально и направлена слева направо.

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными .

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными .

Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.

Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.

Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел . Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330 , да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212... , а отрицательных – числа , −11 , −51,51 и −3,(3) . В качестве примеров положительных иррациональных чисел можно привести число пи, число e , и бесконечную непериодическую десятичную дробь 809,030030003… , а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел .

Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5 , и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.

Определение.

Числа со знаком плюс называют положительными , а со знаком минус – отрицательными .

Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.

Определение.

Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.

Таким образом, нуль как бы отделяет положительные числа от отрицательных.

Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).

Интерпретация положительных и отрицательных чисел

Мы уже достаточно долго описываем положительные и отрицательные числа. Однако неплохо было бы знать, какой смысл они несут в себе? Давайте разберемся с этим вопросом.

Положительные числа можно интерпретировать как приход, как прибавку, как увеличение какой-либо величины и тому подобное. Отрицательные числа, в свою очередь, означают строго противоположное – расход, недостаток, долг, уменьшение какой-либо величины и т.п. Разберемся с этим на примерах.

Можно сказать, что мы обладаем 3 предметами. Здесь положительное число 3 указывает количество находящихся у нас предметов. А как можно интерпретировать отрицательное число −3 ? Например, число −3 может означать, что мы должны кому-нибудь отдать 3 предмета, которых у нас даже нет в наличии. Аналогично можно сказать, что в кассе нам выдали 3,45 тысяч рублей. То есть, число 3,45 связано с нашим приходом. В свою очередь отрицательное число −3,45 будет указывать на уменьшение денег в кассе, выдавшей эти деньги нам. То есть, −3,45 – это расход. Еще пример: повышение температуры на 17,3 градуса можно описать положительным числом +17,3 , а понижение температуры на 2,4 можно описать с помощью отрицательного числа, как изменение температуры на −2,4 градуса.

Положительные и отрицательные числа часто используются для описания значений каких-либо величин в различных измерительных приборах. Самым доступным примером является прибор для измерения температур – термометр - со шкалой, на которой записаны и положительные и отрицательные числа. Часто отрицательные числа изображают синим цветом (он символизирует снег, лед, а при температуре ниже нуля градусов Цельсия начинает замерзать вода), а положительные числа записывают красным цветом (цвет огня, солнца, при температуре выше нуля градусов начинает таять лед). Запись положительных и отрицательных чисел красным и синим цветом используют и в других случаях, когда нужно особо выделить знак чисел.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.