МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВПО «ВГТУ», ВГТУ)

Факультет радиотехники и электроники

Кафедра высшей математики и физико-математического моделирования


КУРСОВАЯ РАБОТА

по дисциплине: Математика

Тема: «Методы аппроксимации функций»


Разработал студент группы КП-121

И.С. Кононученко

Руководитель Кострюков С.А


ЗАДАНИЕ на курсовую работу


Тема: «Методы аппроксимации функций».

Студент группы КП-121 Кононученко Илья Сергеевич

1. Методы аппроксимации функций.

1.1. Непрерывная аппроксимация.

2. Точечная аппроксимация.

3. Интерполяционный полином Лагранжа.

4. Интерполяционный полином Ньютона.

5. Погрешность глобальной интерполяции.

6. Метод наименьших квадратов.

7. Подбор эмпирических формул.

8. Кусочно-постоянная интерполяция

9. Кусочно-линейная интерполяция.

2. Практическая часть.

2.1. Построить интерполяционный многочлен для функции f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена.

2.2. Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ??(х)=Ах2+Вх+С. Найти х, для которого f(x)=10.



1. Методы аппроксимации функций

1.1 Непрерывная аппроксимация

1.2 Точечная аппроксимация

4 Интерполяционный полином Ньютона

8 Кусочно-постоянная интерполяция

9 Кусочно-линейная интерполяция

Практическая часть

2.1 Построить интерполяционный многочлен для функции f(x)=lnx-по узлам х=2; 4; 6; 8; 10; 12. Вычислить приближенное значение логарифма от 5,75. Получить оценку погрешности остаточного члена

2.2 Функцию f(x), заданную таблицей, аппроксимировать линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С. Найти х, для которого f(x)=10

Список литературы


1.МЕТОДЫ АППРОКСИМАЦИИ ФУНКЦИЙ


1.1Непрерывная аппроксимация


Если исходная функция f(x) задана аналитическим выражением, то при построении аппроксимирующей функции возможно требовать минимальности отклонения одной функции от другой на некотором непрерывном множестве точек, например, на отрезке. Такой вид аппроксимации называется непрерывным или интегральным.

Теоретически для наилучшего приближения целесообразно требовать, чтобы во всех точках некоторого отрезка отклонения аппроксимирующей функции от функции f(x) было по абсолютной величине меньше заданной величины:

В этом случае говорят, что функция равномерно приближает функцию f(x) с точностью e на интервале. Практическое получение равномерного приближения представляет большие трудности, и поэтому этот способ применяется главным образом в теоретических исследованиях.

Наиболее употребительным является так называемое среднеквадратичное приближение, для которого наименьшее значение имеет величина

Потребовав обращения в нуль частных производных от М по параметрам, определяющим функцию, получают уравнения, позволяющие найти наилучшие значения этих параметров.


2 Точечная аппроксимация


Аппроксимация, при которой приближение строится на заданном дискретном множестве точек, называется точечной.

Для получения точечного среднеквадратичного приближения функции y=f(x), заданной таблично, аппроксимирующую функцию строят из условия минимума величины

где yi - значения функции f(x) в точках xi.

Основная сфера применения среднеквадратичного приближения - обработка экспериментальных данных (построение эмпирических формул).

Другим видом точечной аппроксимации является интерполирование, при котором аппроксимирующая функция принимает в заданных точках xi, те же значения yi , что и функция f(x), т.е. .


Рисунок 1

В этом случае, близость интерполирующей функции к заданной функции состоит в том, что их значения совпадают на заданной системе точек.

На рис. 1 показаны качественные графики интерполяционной функции (сплошная линия) и результаты среднеквадратичного приближения (пунктирная линия). Точками отмечены табличные значения функции f(x).


3 Интерполяционный полином Лагранжа


Лагранж предложил строить интерполяционный полином в виде разложения



где li(x) - базисные функции.

Для того, чтобы полином удовлетворял условиям Лагранжа, т.е. был бы интерполяционным, базисные функции li(x) должны обладать следующими свойствами:

) быть полином степени n

) удовлетворять условию

Лагранж показал, что функции, обладающие указанными свойствами, должны иметь следующий вид


С учетом этого выражения интерполяционный полином Лагранжа может быть записан в виде

В отличие от интерполяционного полинома в канонической форме для вычисления значений полинома Лагранжа не требуется предварительно определять коэффициенты полинома путем решения системы уравнений. Однако для каждого значения аргумента x полином Лагранжа приходится пересчитывать вновь, коэффициенты же канонического полинома вычисляются только один раз. Поэтому практическое применение полинома Лагранжа оправдано только в том случае, когда интерполяционная функция вычисляется в сравнительно небольшом количестве точек x.

Интерполяционный полином Лагранжа оказывается очень удобным для приближенного вычисления определенных интегралов. Если, например, некоторую функцию заменить интерполяционным полином Лагранжа, то определенный интеграл от нее может быть вычислен следующим образом



Значения интегралов от не зависят от f(x) и могут быть легко вычислены аналитически.


1.4 Интерполяционный полином Ньютона


Рассмотрим еще одну форму записи интерполяционного полинома


Требования совпадения значений полинома с заданными значения функции в узловых точках Ni(xi)=yi, i=0,1,…,n приводит к системе линейных уравнений с треугольной матрицей для неизвестных коэффициентов:



решить которую не составляет труда.

Интерполяционный полином называется полиномом Ньютона. Интересная особенность полинома Ньютона состоит в том, что каждая частичная сумма его первых (m+1) слагаемых представляет собой интерполяционный полином степени m, построенный по первым (m+1) табличным данным.


5 Погрешность глобальной интерполяции


Ошибка приближения функции f(x) интерполяционным полиномом n-й степени Ln(x) в точке x определяется разностью



Можно показать, что погрешность Rn(x) определяется следующим выражением


Здесь - производная (n+1) порядка функции f(x) в некоторой точке, а функция определена как

Если максимальное значение производной f (n+1)(x) равно



то для погрешности интерполяции следует оценка



Конкретная величина погрешности в точке x зависит, очевидно, от значения функции в этой точке. Качественный характер зависимости показан на рис. 2.


Рисунок 2

Вследствие описанного поведения погрешности, глобальная интерполяция в некоторых случаях может давать совершенно неудовлетворительный результат. Из рисунка видно, что погрешность интерполяции тем выше, чем ближе точка x лежит к концам отрезка. За пределами отрезка интерполяции (т.е. при экстраполяции) быстро растет, поэтому погрешность возрастает существенно.


1.6 Метод наименьших квадратов


Пусть для исходных данных xi, fi, i=1,…,N (нумерацию лучше начинать с единицы), выбран вид эмпирической зависимости: y=?(a0,a1,…,am) с неизвестными коэффициентами a0,a1,…,am . Запишем сумму квадратов отклонений между вычисленными по эмпирической формуле и заданными опытными данными:


S(a0,a1,…,am)=(?(x1,a0,a1,…,am)-fi)2


Параметры a0,a1,…,am будем находить из условия минимума функции S(a0,a1,…,am). В этом состоит метод наименьших квадратов (МНК).

Известно, что в точке минимума все частные производные от S по равны нулю:

Рассмотрим применение МНК для частного случая, широко используемого на практике. В качестве эмпирической функции рассмотрим полином

?(x)=a0+a1x+a2x2+…+amxm


Формула (1) для определения суммы квадратов отклонений примет вид:

S(a0,a1,…,am)=(a0+a1x+a2x2+…+amxm-fi)2 (2)


Вычислим производные

Приравнивая эти выражения к нулю и собирая коэффициенты при неизвестных a0,a1,…,am , получим следующую систему линейных уравнений

Данная система уравнений называется нормальной. Решая эту систему линейных уравнений, получаем коэффициенты.

В случае полинома первого порядка m=1, т.е. , система нормальных уравнений примет вид


При m=2 имеем:

Как правило, выбирают несколько эмпирических зависимостей. По МНК находят коэффициенты этих зависимостей и среди них находят наилучшую по минимальной сумме отклонений.


1.7 Подбор эмпирических формул


При интерполировании функций мы использовали условие равенства значений интерполяционного полинома и данной функции в узлах интерполяции. Если же исходные данные получены в результате опытных измерений, то требование точного совпадения не нужно, так как данные не получены точно. В этих случаях можно требовать лишь приближенного выполнения условий интерполяции. Это условие означает, что интерполирующая функция F(x) проходит не точно через заданные точки, а в некоторой их окрестности, так, например, как это показано на рис.

аппроксимация полином интерполяция формула

Рисунок 3


Тогда говорят о подборе эмпирических формул. Построение эмпирической формулы состоит из двух этапов подбора вида этой формулы, содержащей неизвестные параметры a0,a1,…,am, и определение наилучших в некотором смысле этих параметров. Вид формулы иногда известен из физических соображений (для упругой среды связь между напряжением и деформацией) или выбираются из геометрических соображений: экспериментальные точки наносятся на график и примерно угадывается общий вид зависимости путем сравнения полученной кривой с графиками известных функций. Успех здесь в значительной степени определяется опытом и интуицией исследователя.

Для практики важен случай аппроксимации функции многочленами, т.е. F(x)=a0+a1x+a2x2+…+amxm .

После того, как выбран вид эмпирической зависимости степень близости к эмпирическим данным определяется, используя минимум суммы квадратов отклонений вычисленных и экспериментальных данных.


1.8 Кусочно-постоянная интерполяция


На каждом отрезке интерполяционный многочлен равен константе, а именно левому или правому значению функции.

Для левой кусочно-линейной интерполяции

F(x)= fi-1, если xi-1 ?x

Для правой кусочно-линейной интерполяции F(x)= fi-1, если xi-1

Легко понять, что условия интерполяция выполняются. Построенная функция является разрывной, что ограничивает ее применение. Для левой кусочно-линейной интерполяции имеем графическое представление


Рисунок 4


1.9 Кусочно-линейная интерполяция


На каждом интервале функция является линейной Fi(x)=kix+li. Значения коэффициентов находятся из выполнения условий интерполяции в концах отрезка: Fi(xi-1)=fi-1, Fi(xi-1)=fi . Получаем систему уравнений: kixi-1+ li= fi-1, kixi+ li= fi , откуда находим ki=li= fi- kixi .

Следовательно, функцию F(x) можно записать в виде:


F(x)= x+ fi- kixi , если, т.е.

Или F(x)=ki ·(x-xi-1)+fi-1, ki = (fi - fi-1) / (xi - xi-1), xi-1 ? x ? xi, i=1,2,...,N-1


При использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение x, а затем подставить его в формулу.

Итоговая функция будет непрерывной, но производная будет разрывной в каждом узле интерполяции. Погрешность такой интерполяции будет меньше, чем в случае кусочно-постоянной интерполяции. Иллюстрация кусочно-линейной интерполяции приведена на рисунке


Рисунок 5


2. ПРАКТИЧЕСКАЯ ЧАСТЬ


2.1 Построим интерполяционный многочлен для функции


f(x)=lnx- по узлам х=2; 4; 6; 8; 10; 12.


Формула для вычисления данного многочлена выглядит следующим образом:



где n- количество узлов.

Рассчитаем значения базисных полиномов.

Формула для расчета базисных полиномов:



Запишем значения узлов функции:

Вычислим значения функций f(x) в соответствующих узлах:

f(x0)==0.6931471805599453-1.5=-0.8068528194400547(x1)= =1.386294361119891-1.25=0.136294361119891(x2)= =1.791759469228055-1.1666666666666667=0.625092802561388(x3)= =2,079441541679835-1.125=0.954441541679835(x4)= =2.302585092994045-1.1=1.202585092994045(x5)= =2.484906649788-1.083333333333333=1.401573316454667


Рассчитаем значения соответствующих базисных полиномов:



Запишем формулу вычисления многочлена f(x)=lnx- по полученным данным:

L(x)=f(x0)·l0(x)+ f(x1)·l1(x)+ f(x2)·l2(x)+ f(x3)·l3(x)+ f(x4)·l4(x)+ f(x5)·l5(x).

Подставим в формулу полученные значения:

L(x)=((- 0.8068528194400547) ·(x-4)(x-6)(x-8)(x-10)(x-12)+ +0.136294361119891·5(x-2)(x-6)(x-8)(x-10)(x-12)- 0.625092802561388·10·

· (x-2)(x-4)(x-8)(x-10)(x-12)+ 0.954441541679835·10(x-2)(x-4)(x-6)(x-10)(x-12)-1.202585092994045·5(x-2)(x-4)(x-6)(x-8)(x-12)+ 1.401573316454667·

·(x-2)(x-4)(x-6)(x-8)(x-10)=0,000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+1.50294940468648·x-2.886362165898854

Рисунок 6

L(x)= 0.000443792912875·x5-0.001895922201567·x4+

032520620421826·x3-0.289410042490318·x2+

50294940468648·x-2.886362165898854

Из рисунка видно, что графики функций совпадают.

Вычислим приближенное значение логарифма от 5,75 с точностью до 0,001.

Воспользуемся разложением



Пользуясь формулой



посчитаем приближенное значение логарифма:

Получим оценку погрешности остаточного члена:

Формула нахождения остаточного члена в других точках:

Rn(x)=f(x)-Ln(x).

Подставим значения и вычислим остаточный член:

Rn(x)= -0.234721044665224-(-0.149875603361276)= 0.0122

Для абсолютной погрешности интерполяционной формулы Лагранжа можно получить следующую оценку:


0122374?9.9512361


Из оценки следует, что выбирая достаточно большое число точек разбиения можно получить результат с необходимой точностью.

Функцию f(x), заданную таблицей аппроксимируем линейной зависимостью ?(х)=Ах+В, квадратичной зависимостью ?(х)=Ах2+Вх+С.


x10151720f(x)371117Решение:

Для решения этой задачи воспользуемся методом наименьших квадратов.

Система нормальных уравнений для линейной зависимости (x)=Ax+B:

Учитывая, что n=4: ;

Решаем систему линейных уравнений:

Следовательно, линейная зависимость будет иметь вид:

Рассмотрим квадратичную зависимость?(х)=Ах2+Вх+С. Система нормальных уравнений имеет вид:


Найдем не подсчитанные суммы:

Следовательно, квадратичная зависимость будет иметь вид:


Рисунок 7

Функция, заданная таблицей.

Линейная зависимость

Квадратичная зависимость


По графику найдем значение х, для которого f(x)=10.

Список литературы


1. Кириллова С.Ю. Вычислительная математика/Кириллова С.Ю. Изд-во Владим. гос. ун-та, 2009. -102с.

2. Справочное пособие по приближенным методам решения задач высшей математики/ Л.И. Бородич, А.И. Герасимович, Н.П. Кеда и др.; под ред. Л.И. Бородич.- М.: Высшая школа, 1986. -189с.

3. Тюканов, А.С. Основы численных методов: учеб. пособие для студентов. Изд-во РГПУ им. А.И. Герцена, 2007. -226с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Математической моделью зависимости одной величины от другой является понятие функции y=f(x) . Аппроксимацией называется получение некой функции, приближенно описывающей какую-то функциональную зависимость f(x), заданную таблицей значений, либо заданную в виде, неудобном для вычислений. При этом эту функцию выбирают такой, чтобы она была максимально удобной для последующих расчетов. Основной подход к решению этой задачи заключается в том, что функция fi(x) выбирается зависящей от нескольких свободных параметров c1, c2, …, cn, значения которых подбираются из некоторого условия близости f(x) и fi(x) . Обоснование способов нахождения удачного вида функциональной зависимости и под- бора параметров составляет задачу теории аппроксимации функций . В зависимости от способа подбора параметров получают различные методы аппроксимации , среди которых наибольшее распространение получили интерполяция и среднеквадратичное приближение . Наиболее простой является линейная аппроксимация , при которой выбирают функцию линейно зависящую от параметров, т. е. в виде обобщенного многочлена: . Интерполяционным многочленом называют алгебраический многочлен степени n-1 , совпадающий с аппроксимируемой функцией в n выбранных точках. Погрешность аппроксимации функции f(x) интерполяционным многочленом степени n-1 , построенным по n точкам, можно оценить, если известна ее производная порядка n. Суть среднеквадратичной аппроксимации заключается в том, что параметры функции подбираются такими, чтобы обеспечить минимум квадрата расстояния между функциямиf(x) и fi (x , c ). Метод наименьших квадратов является частным случаем среднеквадратичной аппроксимации. При использовании метода наименьших квадратов аналогично задаче интерполяции в области значений x , представляющей некоторый интервал [a, b ], где функции f(x) и fi(x) должны быть близки, выбирают систему различных точек (узлов) x1, ..., x m, число которых больше, чем количество искомых параметров. Далее, требуют чтобы сумма квадратов невязок во всех узлах была минимальна.

Интерполяция общего вида

Следует отметить, что ввиду громоздкости многочлены Ньютона и Лагранжа уступают по эффективности расчета многочлену общего вида. Поэтому, когда требуется производить многократные вычисления многочлена, построенного по одной таблице, оказывается выгодно вначале один раз найти коэффициенты с. Коэффициенты находят прямым решением системы с, затем вычисляют его значения по алгоритму Горнера. Недостатком такого вида аппроксимации является необходимость решения системы линейных алгебраических уравнений.

Интерполяционный многочлен Лагранжа

Лагранжем была предложена своя форма записи общего интерполяционного алгебраического многочлена в виде, не требующем решения системы линейных алгебраических уравнений. Следует отметить, что ввиду громоздкости многочлены Ньютона и Лагранжа уступают по эффективности расчета многочлену общего вида.

Интерполяционный многочлен Ньютона

Ньютоном была предложена форма записи общего интерполяционного алгебраического многочлена в виде, не требующем решения системы линейных алгебраических уравнений. Следует отметить, что ввиду громоздкости многочлены Ньютона и Лагранжа уступают по эффективности расчета многочлену общего вида.

Зачем нужна аппроксимация функций В окружающем нас мире все взаимосвя-зано, поэтому одной из наиболее часто встре-чающихся задач является поиск зависимости между различными величинами, что позволяет по значению одной величины определить значение другой. Математической моделью такой зависимости является понятие функции y = f (x).

При расчетах, связанных с обработкой полученных экспериментальных данных, вычислением f (x), разработкой вычислительных методов, встречаются следующие две ситуации: 1. Как установить вид функции y = f (x), если она неизвестна, а известны только некоторые ее значения (полученные из экспериментальных измерений, или из сложных расчетов). 2. Как упростить вычисление известной функции f (x) или ее характеристик, если f (x) имеет слишком сложный вид?

Ответы на эти вопросы дает теория аппроксимации функций, основная задача которой – нахождение функции (x), близкой (аппроксимирующей) к исходной f (x). ыбирают Функцию (x) чтобы такой, она была максимально удобной для расчетов. Основной подход к решению этой задачи заключается в том, что (x) выбирается зависящей от нескольких свободных параметров, значения которых подбираются из некоторого условия близости функций f (x) и (x).

Обоснование способа нахождения вида функциональной зависимости и выбора параметров составляет задачу теории аппроксимации функций. В зависимости от способа выбора параметров получены разные методы аппроксимации. Наиболее распространенными являются: интерполяция и среднеквадратичное приближение, частным случаем которого является метод наименьших квадратов.

Наиболее простой является линейная аппроксимация, при которой выбирают функцию линейно зависящую от параметров ci (i = 1, 2, …, n) в виде многочлена: , (1) {φk (x) } – линейно независимые функции, в качестве которых выбирают элементарные функции (тригонометрические, экспоненты, логарифмические или их комбинации).

Интерполяция это один из способов аппроксимации функций. Суть ее в следующем. Для x на интервале , где функции f и должны быть близки, выбирают систему точек (узлов) x 1

В случае линейной аппроксимации (1) система для нахождения коэффициентов сi линейна и имеет следующий вид: (2) При интерполяции для расчетов наиболее удобны обычные алгебраические многочлены.

Интерполяционным многочленом называют алгебраический многочлен степени (n – 1), совпадающий с аппроксимируемой функцией в выбранных n точках (узлах). Общий вид алгебраического многочлена: (3)

Матрица системы (2) в этом случае имеет вид. (4) Ее определитель отличен от нуля, если точки xi разные. Поэтому задача (2) обязательно имеет решение.

При h 0 порядок погрешности интерполяции алгебраическим многочленом равен количеству выбранных узлов n. Величина может быть сделана малой как за счет увеличения n, так и уменьшения h. В практических расчетах обычно используют многочлены невысокого порядка (n 6), в связи с тем, что с ростом n возрастает погрешность вычисления самого многочлена из-за погрешностей округления.

Многочлены можно записать по-разному: P 1(x) = 1 – 2 x + x 2 = (x – 1)2. В зависимости от решаемых задач применяют различные виды представления многочлена и способы интерполяции. Наиболее часто используют интерполяционные многочлены Лагранжа и Ньютона. Их особенность в том, что не надо находить параметры сi , т. к. эти многочлены записаны через значения таблицы (узлы) { (xi, yi), i = 1, …, n }.

Параметрами этой функции являются: xt – текущая точка, в которой находится неизвестное значение функции по известным узлам; x и y – узлы, т. е. массивы известных значений (рекомендуется передавать по адресу); m – количество узлов (размер массивов x и y); Понятно, что циклы должны быть организованы от 0 и до значения, меньшего указанного, например первый цикл: for (i = 0; i

Src="https://present5.com/presentation/91940964_324663347/image-18.jpg" alt="Линейная и квадратичная интерполяция При интерполяции по заданной таблице (узлам) из m > 3"> Линейная и квадратичная интерполяция При интерполяции по заданной таблице (узлам) из m > 3 точек применяют квадратичную для n = 3 или линейную для n = 2 интерполяцию. В этом случае для приближенного вычисления значения функции f в точке x находят в таблице ближайший к этой точке i-й узел, строят интерполяционный многочлен Ньютона первой или второй степени по следующим формулам.

(1) где xi– 1 ≤ x. Т ≤ xi. За приближенное значение функции f (x. T) принимают N 1(x. T) – линейная интерполяция.

(2) где xi– 1 ≤ x. Т ≤ xi+1. За приближенное значение функции f (xt) принимают N 2(xt) – квадратичная интерполяция.

Параметрами функций в рассмотренных схемах линейной и квадратичной интерполяций являются значения, аналогичные рассмотренным в схеме функции расчета многочлена Ньютона. Результат линейной интерполяции yt = N 1(xt) (приближенное значение функции в точке xt) рассчитывается по формуле (1) и возвращается в точку вызова функции, а результат квадратичной интерполяции yt = N 2(xt) – по формуле (2).

Интерполяционный многочлен Лагранжа (8) Многочлены выбраны так, что во всех узлах, кроме k-го, они равны нулю, а в k-м узле – единице: Из выражения (8) видно, что Ln– 1(xi) = yi.

Параметрами функции являются значения, аналогичные рассмотренным ранее схемам. Рассчитанный согласно формуле (8) результат yt возвращается в точку вызова функции. Текст функции, реализующий предложенный алгоритм, может иметь следующий вид:

double Metod (double xt, double *x, int m) { int i, k; double e, yt = 0; for (k = 0; k

В данном случае массив табличных значений функции y не используется, т. к. функция f (x) реализована в виде функции пользователя: double fun (double x) { return «Вид функции f (x)» ; } Вместо блока yt = yt + e yk в схеме алгоритма используем вычисление yt += e * fun (x[k]);

Общий алгоритм аппроксимации функции В заданиях вид функции f (x) известен для того, чтобы можно было найти нужное количество узлов (значений таблицы) на отрезке и сравнить полученные результаты. Пусть на отрезке задана таблица из m известных узлов. Необходимо аппроксимировать f (x) в n точках, n ≥ m, т. е. найти по небольшому количеству известных значений m нужное количество n неизвестных значений функции.

Аппроксимация функций

Введение

Когда обрабатывается выборка экспериментальных данных, то они, чаще всего, представляются в виде массива, состоящего из пар чисел (x i ,y i ). Поэтому возникает задача аппроксимации дискретной зависимости y(x i ) непрерывной функцией f(x).

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции ) , которая была бы близка заданной.

Функция f(x), в зависимости от специфики задачи, может отвечать различным требованиям.

  • Функция f(x) должна проходить через точки (x i ,y i ), т. е. f(x i )=y i ,i=1...n. В этом случае говорят об интерполяции данных функцией f(x) во внутренних точках между x i , или экстраполяции за пределами интервала, содержащего все x i .
  • Функция f(x) должна некоторым образом (например, в виде определенной аналитической зависимости) приближать y(x i ), не обязательно проходя через точки (x i ,y i ). Такова постановка задачи регрессии , которую во многих случаях также можно назвать сглаживанием данных.
  • Функция f(x) должна приближать экспериментальную зависимость y(x i ), учитывая, к тому же, что данные (x i ,y i ) получены с некоторой погрешностью, выражающей шумовую компоненту измерений. При этом функция f(x), с помощью того или иного алгоритма уменьшает погрешность, присутствующую в данных (x i ,y i ). Такого типа задачи называют задачами фильтрации. Сглаживание - частный случай фильтрации.

Критерии близости функций и могут быть различные.

В том случае, когда приближение строится на дискретном наборе точек, аппроксимацию называют точечной или дискретной.

В том случае, когда аппроксимация проводится на непрерывном множестве точек (отрезке), аппроксимация называется непрерывной или интегральной . Примером такой аппроксимации может служить разложение функции в ряд Тейлора, то есть замена некоторой функции степенным многочленом.

Наиболее часто встречающим видом точечной аппроксимации является интерполяция (в широком смысле).

Пусть задан дискретный набор точек, называемых узлами интерполяции , причем среди этих точек нет совпадающих, а также значения функции в этих точках. Требуется построить функцию , проходящую через все заданные узлы. Таким образом, критерием близости функции является.

В качестве функции обычно выбирается полином, который называют интерполяционным полиномом .

В том случае, когда полином един для всей области интерполяции, говорят, что интерполяция глобальная .

В тех случаях, когда между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции .

Найдя интерполяционный полином, мы можем вычислить значения функции между узлами (провести интерполяцию в узком смысле слова ), а также определить значение функции даже за пределами заданного интервала (провести экстраполяцию ).

Различные виды построения аппроксимирующей зависимости f(x) иллюстрирует рис. 1. На нем исходные данные обозначены кружками, интерполяция отрезками прямых линий - пунктиром, линейная регрессия - наклонной прямой линией, а фильтрация - жирной гладкой кривой.

Рис. 1. Виды построения аппроксимирующей зависимости

Интерполяция и экстраполяция

В огромном количестве численных методов используются алгоритмы интерполяции. Вообще говоря, вычислительная математика - это наука о дискретных представлениях функций. Именно конечный набор значений y(x i ) представляет на компьютерном языке математическую абстрацию - непрерывную функцию y(x). Задача интерполяции функции одной переменной состоит в замене дискретной зависимости y(x i ), т.е. N пар чисел (x i ,y i ), или, по-другому, узлов, некоторой непрерывной функцией y(x). При этом основным условием является то, что функция y(x) должна проходить через точки (x i ,y i ), т. е. y(x i )=y i ,i=1...N, а также возможность вычислить значение y(x) в любой точке, находящейся между узлов.

Рис. 2. Построение интерполирующих и экстраполирующих зависимостей.

Когда искомое значение y(x) вычисляется в точке x, которая находится между каких-либо из узлов x i , говорят об интерполяции , а когда точка x лежит вне границ интервала, включающего все x i - об экстраполяции функции y(x).

На Рис. 2 по множеству точек (x i ,y i ), обозначенных кружками, построена как интерполирующая (при x>100), так и экстраполирующая их функция (при x<100). Интерполяция-экстраполяция показаны на рис. сплошной кривой.

Следует иметь в виду, что точность экстраполяции обычно очень невелика.

Для экстраполяции данных в отдельных версиях пакета применяется функция predict (v, m ,n) . Она формирует вектор предсказанных значений, построенный на m последовательных элементах вектора v .

Параметры функции predict (v, m ,n ) : v - вектор, чьи значения представляют выборки, принятые в равных интервалах, m и n - целые числа.

Таким образом «предсказывающаяся функция» predict (v, m ,n) использует существующие данные, чтобы предсказать новые данные, которые находящиеся за пределами задания. Она использует линейный алгоритм предсказания, который является достаточным, когда функции гладкие или знакопеременные, хотя не обязательно периодические.

Пример ниже иллюстрирует использование линейного предсказания.

7 .1 Локальная интерполяция

7 .1.1. Линейная интерполяция

Простейшим случаем локальной интерполяции является линейная интерполяция, когда в качестве интерполяционной функции выбирается полином первой степени, то есть узловые точки соединяются прямой линией.

Линейная интерполяции представляет искомую зависимость y(x) в виде ломаной линии. Интерполирующая функция у(x) состоит из отрезков прямых, соединяющих точки (x i ,y i ) (см. рис. 3).

Рис.3 Линейная интерполяция

Для построения линейной интерполяции достаточно на каждом из интервалов (x i ,x i+1 ) вычислить уравнение прямой, проходящей через эти две точки:

При кусочно-линейной интерполяции вычисления дополнительных точек выполняются по линейной зависимости. Графически это означает просто соединение узловых точек отрезками прямых. Линейная интерполяция на Mathcad ’е осуществляется с помощью встроенной функции linterp .

linterp (VX , VY , х)

Для заданных векторов VX и VY узловых точек и заданного аргумента х linterp возвращает значение функции при ее линейной интерполяции. При экстраполяции используются отрезки прямых, проведенных через две крайние точки.

Пусть требуется провести линейную интерполяцию функции sin(x ) на интервале , используя пять узлов интерполяции, и вычислить значения функции в четырех точках Xk :

Задаем интервал изменения x и число узловых точек

Определяем шаг изменения x :

Вычисляем координаты узлов и значения функции в них:

Проводим линейную интерполяцию:

Вычислим значение интерполяционной функции в заданных точках и сравним их с точными значениями

Как видно, результаты интерполяции отличаются от точных значений функции незначительно.

7 .1.2. Интерполяция сплайнами

В настоящее время среди методов локальной интерполяции наибольшее распространение получила интерполяция сплайнами (от английского слова spline – гибкая линейка).

В большинстве практических приложений желательно соединить экспериментальные точки (x i ,y i )не ломаной линией, а гладкой кривой. Лучше всего для этих целей подходит интерполяция у(x) квадратичными или кубическими сплайнами, т. е. отрезками квадратичных или кубических парабол (см. рис.4).

При этом строится интерполяционный полином третьей степени, проходящий через все заданные узлы и имеющий непрерывные первую и вторую производные.

Рис.4 Сплайн-интерполяция

На каждом интервале интерполирующая функция является полиномом третьей степени

и удовлетворяет условиям.

Если всего n узлов, то интервалов – . Значит, требуется определить неизвестных коэффициентов полиномов. Условие дает нам n уравнений. Условие непрерывности функции и ее первых двух производных во внутренних узлах интервала дает дополнительно уравнений

Всего имеем различных уравнений. Два недостающих уравнения можно получить, задавая условия на краях интервала. В частности, можно потребовать нулевой кривизны функции на краях интервала, то есть. Задавая различные условия на концах интервала, можно получить разные сплайны.

Для осуществления сплайновой аппроксимации MathCAD предлагает четыре встроенные функции. Три из них служат для получения векторов вторых производных сплайн-функций при различном виде интерполяции:

cspIine(VX, VY) — возвращает вектор VS вторых производных при приближении в опорных точках к кубическому полиному;

pspline(VX, VY) — возвращает вектор VS вторых производных при приближении к опорным точкам к параболической кривой;

lspline(VX, VY) — возвращает вектор VS вторых производных при приближении к опорным точкам прямой.

Наконец, четвертая функция

interp (VS , VX , VY , x)

возвращает значение у(х) для заданных векторов VS, VX, VY и заданного значения х.

Таким образом, сплайн-аппроксимация проводится в два этапа. На первом с помощью одной из функций cspline, pspline или lspline отыскивается вектор вторых производных функции у(х), заданной векторами VX и VY ее значений (абсцисс и ординат). Затем на втором этапе для каждой искомой точки вычисляется значение у(х) с помощью функции interp.

Решим задачу об интерполяции синуса с помощью сплайнов через функцией interp(VS,x,y,z) . Переменные x и y задают координаты узловых точек, z является аргументом функции, VS определяет тип граничных условий на концах интервала.

Определим интерполяционные функции для трех типов кубического сплайна

Вычисляем значения интерполяционных функций в заданных точках и сравниваем результаты с точными значениями

Следует обратить внимание, что результаты интерполяции различными типами кубических сплайнов практически не отличаются во внутренних точках интервала и совпадают с точными значениями функции. Вблизи краев интервала отличие становится более заметным, а при экстраполяции за пределы заданного интервала различные типы сплайнов дают существенно разные результаты. Для большей наглядности результаты представлены на графиках (Рис.5) .

Рис.5 Сравнение сплайн-интерполяция

Аналогично можно убедиться, что первые и вторые производные сплайна непрерывны (Рис.6).

Рис.6 Сравнение производных (1-х и 2-х) сплайн-интерполяция

П роизводные более высоких порядков уже не являются непрерывными.

7.1.3. Интерполяция B-cплайнами

Рис.7 Интерполяция B-cплайнами

Чуть более сложный тип интерполяции – так называемая полиномиальная сплайн-интерполяция, или интерполяция B-сплайнами . В отличие от обычной сплайн-интерполяции, сшивка элементарных B-сплайнов производится не в точках (t i ,x i ), а в других точках, координаты которых обычно предлагается определить пользователю. Таким образом, требование равномерного следования узлов при интерполяции B-сплайнами отсутствует, и ими можно приближать разрозненные данные.

Сплайны могут быть полиномами первой, второй или третьей степени (линейные, квадратичные или кубические). Применяется интерполяция B-сплайнами точно так же, как и обычная сплайн-интерполяция, различие состоит только в определении вспомогательной функции коэффициентов сплайна.

bspline (vx , vy , u , n ) Возвращает вектор, содержащий коэффициенты В- сплайна степени n для данных , которые находяться в векторах vx и vy (с учет ом значений узл ов, которые заданы в u ) . Возвращаемый вектор становится первым аргументом функции interp .

interp (vs , vx , vy , x ) Возвращает B - сплайн интерполированной величины vy в точке x , где vs – результат работы функции bspline .

Аргументы

vx x .

vy y vx .

U - действительный вектор с числом элементов n-1 меньшим, чем в vx (где n - 1, 2, или 3). Элементы u должны быть в порядке возрастания. Элементы содержат значения узлов для интерполяции. Первый элемент в u должен быть меньше чем или равняться первому элементу в vx . Последний элемент в u должен быть больше или равняться последнему элементу в x.

N - целое число, равняются 1, 2, или 3, указывая степень индивидуального кусочно-линейного (n=1) , - квадратичного (n=2) , или кубического (n=3) полиномиал соответственно.

vs - вектор, образованный bspline .

X - значения независимой переменной, по которой Вы хотите интерполировать результаты. Для лучших результатов она должна принадлежать интервалу задания исходных значений х.

B - spline интерполяция позволяет передавать кривую через набор точек. Эта кривая строится на трех смежных точках полиномами градуса степени n и проходит через эти точки. Эти полиномы сопрягаются вместе в узлах так, чтобы сформировать законченную кривую.

7 .2. Глобальная интерполяция

При глобальной интерполяции ищется единый полином для всего интервала. Если среди узлов { x i ,y i } нет совпадающих, то такой полином будет единственным, и его степень не будет превышать n .

Запишем систему уравнений для определения коэффициентов полинома

Определим матрицу коэффициентов системы уравнений

Решим систему уравнений матричным методом

Определим интерполяционный полином

Вычислим значения интерполяционного полинома в заданных точках и сравним их с точными значениями

Коэффициенты интерполяционного полинома следующие:

Для наглядности результаты представлены на графике (Рис.8).

Примечание.

Из-за накопления вычислительной погрешности (ошибок округления) при большом числе узлов (n>10) возможно резкое ухудшение результатов интерполяции. Кроме того, для целого ряда функций глобальная интерполяция полиномом вообще не дает удовлетворительного результата. Рассмотрим в качестве примера две таких функции. Для этих функций точность интерполяции с ростом числа узлов не увеличивается, а уменьшается.

Рис. 8 . Глобальная интерполяция полиномом функции sin (z ).

Следующим примером является функция. Для нее интерполяционный полином строится на интервале [–1;1], используется 9 точек.

Результаты представлены на графике Рис. 9.

Рис. 9 Глобальная интерполяция полиномом функции.

Для функция найдем интерполяционный полином, используя заданные выше точки.

Результаты представлены на графике Рис. 10.

Рис. 10 Глобальная интерполяция полиномом функции.

При увеличении числа узлов интерполяции, результаты интерполирования вблизи концов интервала ухудшаются.

7 .3 Метод наименьших квадратов

Наиболее распространенным методом аппроксимации экспериментальных данных является метод наименьших квадратов. Метод позволяет использовать аппроксимирующие функции произвольного вида и относится к группе глобальных методов. Простейшим вариантом метода наименьших квадратов является аппроксимация прямой линией (полиномом первой степени). Этот вариант метода наименьших квадратов носит также название линейной регрессии.

Критерием близости в методе наименьших квадратов является требование минимальности суммы квадратов отклонений от аппроксимирующей функции до экспериментальных точек:

Таким образом, не требуется, чтобы аппроксимирующая функция проходила через все заданные точки, что особенно важно при аппроксимации данных, заведомо содержащих погрешности.

Важной особенностью метода является то, что аппроксимирующая функция может быть произвольной. Ее вид определяется особенностями решаемой задачи, например, физическими соображениями, если проводится аппроксимация результатов физического эксперимента. Наиболее часто встречаются аппроксимация прямой линией (линейная регрессия), аппроксимация полиномом (полиномиальная регрессия), аппроксимация линейной комбинацией произвольных функций. Кроме того, возможно путем замены переменных свести задачу к линейной (провести линеаризацию). Например, пусть аппроксимирующая функция ищется в виде. Прологарифмируем это выражение и введем обозначения , . Тогда в новых обозначениях задача сводится к отысканию коэффициентов линейной функции.

7 .3.1. Аппроксимация линейной функцией

Применим метод наименьших квадратов для аппроксимации экспериментальных данных.

Данные считываются из файлов datax и datay

При использовании MathCAD имя файла следует заключать в кавычки и записывать его по правилам MS DOS, например, READPRN("c:\mylib\datax.prn").

Определяется количество прочитанных данных (число экспериментальных точек).

В дальнейшем используются встроенные функции slope и intercept для определения коэффициентов линейной регрессии (аппроксимация данных прямой линией).

Функция slope(vx , vy ) определяет угловой коэффициент прямой, а функция intercept(vx , vy ) – точку пересечения графика с вертикальной осью.

Mathcad 2000 предлагает для этих же целей использовать функцию line(vx , vy ) , которая образует вектор (первый элемент - угловой коэффициент прямой, второй - точку пересечения с вертикальной осью).

Аргументы

v x - вектор действительных значений данных в порядке возрастания. Они соответствуют значениям x .

vy - вектор действительных значений данных. Они соответствуют значениям y . Содержит тот же число элементов, что и vx .

Коэффициенты линейной регрессии –

Стандартное отклонение составляет:

Рис. 11. Аппроксимация линейной функцией.

7 .3.2. Аппроксимация полиномами.

Для аппроксимация экспериментальных данных полиномами второй и третьей степени служат встроенные функции regress и уже знакомая нам функция interp . (Очевидно, что если в качестве аппроксимирующей функции брать полином степени на единицу меньше числа точек, то задача сведется к задаче глобальной интерполяции и полученный полином будет точно проходить через все заданные узлы.)

Вводим степени полиномов:

Функция regress(vx , vy , k ) является вспомогательной, она подготавливает данные, необходимые для работы функции interp .

Аргументы

v x - вектор действительных значений данных в порядке возрастания. Они соответствуют значениям x .

vy - вектор действительных значений данных. Они соответствуют значениям y . Содержит тот же число элементов, что и vx ,

k - степень полинома .

Вектор vs содержит, в том числе, и коэффициенты полинома

Функция interp (vs , vx , vy , z ) возвращает полином интерполированной величины vy в точке z , где vs – результат работы функции regress .

Определяя новые функции f2, f3 , мы получаем возможность находить значение полинома в любой заданной точке:

а также коэффициенты:

Стандартные отклонения почти не отличают друг от друга, коэффициент при четвертой степени z невелик, поэтому дальнейшее увеличение степени полинома нецелесообразно и достаточно ограничиться только второй степенью.

Функция regress имеется не во всех версиях Matcad "а. Однако, провести полиномиальную регрессию можно и без использования этой функции. Для этого нужно определить коэффициенты нормальной системы и решить полученную систему уравнений, например, матричным методом.

Теперь попытаемся аппроксимировать экспериментальные данные полиномами степени m и m1, не прибегая к помощи встроенной функции regress .

Вычисляем элементы матрицы коэффициентов нормальной системы

и столбец свободных членов

Находим коэффициенты полинома, решая систему матричным методом,

Определяем аппроксимирующие функции

Коэффициенты полиномов следующие:

Рис. 12. Аппроксимация полиномами 2-й и 3-й степени.

Функция regress создает единственный приближающий полином, коэффициенты которого вычисляются по всей совокупности заданных точек, т. е. глобально. Иногда полезна другая функция полиномиальной регрессии, дающая локальные приближения отрезками полиномов второй степени: loess(VX, VY, span ) — возвращает вектор VS , используемый функцией interp(VS, VX, VY, x) , дающей наилучшее приближение данных (с координатами точек в векторах VX и VY ) отрезками полиномов второй степени. Аргумент span > 0 указывает размер локальной области приближаемых данных (рекомендуемое начальное значение — 0,75). Чем больше span , тем сильнее сказывается сглаживание данных. При больших span эта функция приближается к regress(VX, VY, 2) .

Ниже в примере показано приближение сложной функции со случайным разбросом ее ординат с помощью совокупности отрезков полиномов второй степени (функция loess ) для двух значений параметра span .

По рисунку примера можно отметить, что при малом значении span = 0.05 отслеживаются характерные случайные колебания значений функции, тогда как уже при span = 0.5 кривая регрессии становится практически гладкой. К сожалению, из-за отсутствия простого описания аппроксимирующей функции в виде отрезков полиномов этот вид регрессии получил ограниченное применение.

Проведение многомерной регрессии

MathCAD позволяет выполнять также многомерную регрессию. Самый типичный случай ее — приближение поверхностей в трехмерном пространстве. Их можно характеризовать массивом значений высот z , соответствующих двумерному массиву Мху координат точек (х,у) на горизонтальной плоскости.

Новых функций для этого не задано. Используются уже описанные функции в несколько иной форме:

regress(Mxy, Vz, n ) — возвращает вектор, запрашиваемый функцией interp (VS, Мху, Vz, V) для вычисления многочлена n -й степени, который наилучшим образом приближает точки множества Мху и Vz . Мху — матрица т 2, содержащая координаты х и у. Vz — m -мер-ный вектор, содержащий z -координаты, соответствующие т точкам, указанным в Мху;

Loes(Mxy, Vz, span ) — аналогичен loes(VX, VY, span ), но в многомерном случае;

interp(VS, Мху, Vz, V) — возвращает значение z по заданным векторам VS (создается функциями regress или loess ) и Мху , Vz и V (вектор координат х и у заданной точки, для которой находится z ).

Пример многомерной интерполяции был приведен выше. В целом многомерная регрессия применяется сравнительно редко из-за сложности сбора исходных данных.

7 .3.3. Аппроксимация линейной комбинацией функций

Mathcad предоставляет пользователям встроенную функцию linfit для аппроксимации данных по методу наименьших квадратов линейной комбинацией произвольных функций.

Функция linfit(x , y , F ) имеет три аргумента:

  • вектор x – x –координаты заданных точек,
  • вектор y – y –координаты заданных точек,
  • функция F – содержит набор функций, который будет использоваться для построения линейной комбинации.

Задаем функцию F (аппроксимирующая функция ищется в виде:

Определяем аппроксимирующую функцию:

Вычисляем дисперсию:

Рис. 1 3 . Аппроксимация линейной комбинацией функций

8.3.4.

Теперь построим аппроксимирующую функцию дробно–

рационального типа . Для этого воспользуемся функцией genfit(x , y , v,F ) .

Функция имеет следующие параметры:

  • x, y – векторы, содержащие координаты заданных точек,
  • F – функция, задающая искомую функциональную n –параметрическую зависимость и частные производные этой зависимости по параметрам.
  • v – вектор, задающий начальные приближения для поиска параметров.

Поскольку нулевой элемент функции F содержит искомую функцию, определяем функцию следующим образом:

Вычисляем среднее квадратичное отклонение

Рис. 1 4 . Аппроксимация функцией произвольного вида

на основе genfit .

Функция genfit имеется не во всех реализациях Mathcad "а. Возможно, однако, решить задачу, проведя линеаризацию.

Заданная функциональная зависимость может быть линеаризована

введением переменных и. Тогда .

Определим матрицы коэффициентов нормальной системы.

Находим коэффициенты функции, решая систему матричным методом,

Определяем функцию:

Вычислим стандартное отклонение

Обратите внимание! Мы получили другие коэффициенты! Задача на нахождение минимума нелинейной функции, особенно нескольких переменных, может иметь несколько решений.

Стандартное отклонение больше, чем в случае аппроксимации полиномами, поэтому следует остановить свой выбор на аппроксимации полиномом.

Представим результаты аппроксимации на графиках

Рис. 1 5 . Аппроксимация функцией произвольного вида

на основе genfit .

В тех случаях, когда функциональная зависимость оказывается достаточно сложной, может оказаться, что самый простой способ нахождения коэффициентов – минимизация функционала Ф "в лоб".

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида: