При испарении жидкость покидают молекулы, кинетическая энергия которых больше их средней кинетической энергии. Поэтому среднее значение кинетической энергии остающихся молекул жидкости уменьшается. А это означает понижение температуры испаряющейся жидкости. Вот почему вы чувствуете, что в жаркий летний день становится прохладно сразу после купания. Испарение воды с поверхности тела приводит к охлаждению его. Известно также, что в мокрой одежде холоднее, чем в сухой, особенно при ветре. Очень сильное охлаждение получается, если испарение происходит быстро. При быстром испарении эфира при атмосферном давлении может произойти охлаждение ниже О °С. Это можно обнаружить так. В вогнутое очковое стекло надо налить немного эфира и поставить его на стол, смоченный водой. При быстром испарении эфира (испарение ускоряют продуванием воздуха над эфиром) стеклышко примерзает к поверхности стола. Охлаждением при испарении летучих жидкостей пользуются врачи, когда нужно заморозить кожу больного, чтобы сделать ее нечувствительной к боли.

В жарких странах для охлаждения воды ее обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, охлаждая воду в сосуде.

Если лишить жидкость возможности испаряться, то охлаждение ее будет происходить гораздо медленнее. Вспомните, как долго остывает жирный суп. Слой жира на его поверхности мешает выходу быстрых молекул воды. Жидкость почти не испаряется, и ее температура падает медленно (сам жир испаряется крайне медленно, так как его большие молекулы более прочно сцеплены друг с другом, чем молекулы воды).

Испарение твердых тел

Испаряются не только жидкости, но и твердые тела. Молекулы, которые расположены у поверхности твердого тела и имеют достаточную кинетическую энергию, способны покинуть тело. Процесс перехода вещества из твердого состояния непосредственно в газообразное называется сублимацией или возгонкой.

Например, нафталин или камфара испаряются при комнатной температуре и нормальном давлении, минуя жидкое состояние. Точно так же испаряются кристаллы брома или иода, особенно если их подогреть. Испаряется также лед. Если влажное белье развесить на морозе, то вода замерзает, а затем лед испаряется, и белье высыхает.

При испарении жидкостей они охлаждаются, так как жидкость покидают наиболее быстрые молекулы.

§ 6.2. Равновесие между жидкостью и паром

Самое интересное состояние газа - это насыщенный пар. Он находится в равновесии с жидкостью.

Насыщенный пар

Количество жидкости в открытом сосуде вследствие испарения непрерывно уменьшается. Но если сосуд плотно закрыт, то этого не происходит, что можно объяснить следующим образом.

В первый момент, после того как мы нальем жидкость в сосуд и закроем его, жидкость будет испаряться и плотность пара над жидкостью будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в результате хаотического теплового движения обратно в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В открытом сосуде картина иная: покинувшие жидкость молекулы могут не возвращаться в жидкость.

В закрытом сосуде в конце концов устанавливается равновесное состояние: число молекул, покидающих поверхность жидкости, становится равным числу молекул пара, возвращающихся за то же время в жидкость. Такое равновесие называется динамическим или подвижным. При динамическом равновесии между жидкостью и ее паром одновременно происходит и испарение жидкости, и конденсация пара, и оба процесса в среднем компенсируют друг друга (рис. 6.2).

Пар, находящийся в динамическом равновесии со своей жидкостью, называется насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара. Если воздух из сосуда с жидкостью откачан, то над поверхностью жидкости будет находиться только ее насыщенный пар.

Насыщенный пар имеет при данной температуре наибольшее количество молекул в единице объема (а значит, и наибольшую плотность) и оказывает наибольшее давление.

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

При вылете из жидкости молекулы преодолевают силы притяжения со стороны оставшихся молекул, т. е. совершают работу против этих сил. Не все молекулы жидкости могут совершить необходимую работу, а только те из них, которые обладают достаточной для этого кинетической энергией, достаточной скоростью.

Но если из жидкости выходят при испарении наиболее быстрые молекулы, то средняя скорость остальных молекул жидкости становится меньше, - следовательно, и средняя кинетическая энергия остающихся в жидкости молекул уменьшается. Это означает, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому, если нет притока энергии к жидкости извне, испаряющаяся жидкость охлаждается.

Охлаждение жидкости при испарении можно наблюдать на опыте. Для этого нужно обмотать шарик термометра ватой (или кусочком материи) и полить ее эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии от шарика термометра, вследствие чего температура последнего понижается. Если эфиром смочить руку, то мы будем ощущать охлаждение руки.

Выходя из воды даже в жаркий день, мы чувствуем холод. Вода, испаряясь с поверхности нашего тела, отнимает от него некоторое количество теплоты.

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно и температура воды поддерживается постоянной за счет количества теплоты, поступающего из окружающего воздуха. Значит, чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Так, чтобы испарить воду массой 1 кг при температуре 35°С, требуется 2,4 10 6 Дж, а для испарения эфира массой 1 кг, взятого при той же температуре (35 °С),- 0,4 10 6 Дж энергии.

Испарение имеет большое значение в жизни животных. Затруднение испарения нарушает теплоотдачу и может вызвать перегревание тела.

Мы говорили, что процесс перехода молекул из пара в жидкость называют конденсацией. Конденсация пара сопровождается выделением энергии. Летним вечером, когда воздух становится холоднее, выпадает роса. Это водяной пар, находившийся в воздухе, при охлаждении воздуха оседает на траве и листьях в виде маленьких капелек воды.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних, более холодных слоях воздуха облака, состоящие из мельчайших капелек воды.

Вопросы.

  1. Какую работу совершают молекулы, выходящие из жидкости при испарении?
  2. Как объяснить понижение температуры жидкости при ее испарении?
  3. Как можно на опыте показать охлаждение жидкости при испарении?
  4. Как можно объяснить, что при одних и тех же условиях одни жидкости испаряются быстрее , другие - медленнее?
  5. При каких условиях происходит конденсация пара?
  6. Какие явления природы объясняются конденсацией пара?

Упражнения.

  1. В какую погоду скорее просыхают лужи от дождя: в тихую или ветреную? в теплую или холодную? Как это можно объяснить?
  2. Почему горячий чай остывает скорее, если на него дуют?
  3. Выступающий в жару на теле пот охлаждает тело. Почему?
  4. Почему в сухом воздухе переносить жару легче, чем в сыром?
  5. Чтобы получить прохладную воду в летнюю жару, ее наливают в сосуды, изготовленные из слабообожженной глины, сквозь которую вода медленно просачивается. Вода в таких сосудах холоднее окружающего воздуха. Почему?
  6. Небольшое количество воды находится в стакане и такое же количество воды находится в блюдце. Где быстрее вода испарится? Почему?
  7. На стекло или доску кисточкой наносят мазки различных жидкостей: эфира, спирта, воды и масла. Наблюдая за мазками, замечают, что жидкости испаряются с разной скоростью. Проделайте такой опыт и объясните его.
  8. Для чего летом после дождей или полива приствольные круги плодовых деревьев покрывают слоем перегноя, навоза или торфа?

Как и в любой другой жидкости, есть , энергия которых позволяет им преодолеть межмолекулярное притяжение. Эти молекулы с силой разгоняются и вылетают на поверхность. Поэтому если стакан с водой накрыть бумажной салфеткой, то через некоторое время она станет немного влажной. Но испарение воды в разных условиях протекает с различной интенсивностью. Ключевыми физическими характеристиками, влияющими на скорость протекания данного процесса и его длительность, являются плотность вещества, температура, площадь поверхности, наличие .Чем больше плотность вещества, тем ближе друг к другу расположены молекулы. А значит, им сложнее преодолеть межмолекулярное притяжение, и они в гораздо меньшем количестве вылетают на поверхность. Если поместить две жидкости с разной плотностью (к примеру, воду и метиловый ) в одинаковые условия, то быстрее испарится та, плотность которой меньше. Плотность воды равна 0,99 г/см3, а плотность метилового - 0,79 г/см3. Следовательно, метанол испарится быстрее. Не менее важным фактором, влияющим на скорость испарения воды, является температура. Как уже говорилось, испарение при любой температуре, но с ее увеличением скорость движения молекул растет, и они в большем количестве покидать жидкость. Поэтому горящая вода испаряется быстрее, чем холодная.Интенсивность испарения воды зависит также и от площади ее поверхности. Вода, налитая в бутылку с узким горлышком будет испаряться , т.к. вылетевшие молекулы будут оседать на сужающихся вверху стенках бутылки и скатываться обратно. А молекулы воды, находящейся в блюдце, беспрепятственно будут покидать жидкость.Процесс испарения значительно ускорится, если над поверхностью, с которой происходит испарение, перемещаются воздушные потоки. Дело в том, что помимо выхода молекул из жидкости происходит их возвращение обратно. И чем сильнее циркуляция воздуха, тем меньше молекул, опускаясь, попадут обратно в воду. А значит, объем ее будет стремительно уменьшаться.

Источники:

  • испарение воды

Различные свойства воды на протяжении многих лет интересуют ученых. Вода может находиться в различных состояниях – твёрдом, жидком и газообразном. При обычной средней температуре вода имеет вид жидкости. Ее можно пить, поливать ею растения. Вода может растекаться и занимать определенные поверхности и принимать форму тех сосудов, в которых она находится. Так почему же вода жидкая?

Вода имеет особую структуру, благодаря которой принимает вид жидкости. Она может литься, течь и капать. В кристаллах твердых веществ имеется строго упорядоченная структура. В газообразных веществах структура выражена как полный хаос. Вода же – промежуточная структура между и газообразным веществом. Частицы в структуре воды расположены на небольших расстояниях друг от друга и относительно упорядоченно. Но поскольку частицы со временем удаляются друг от друга, то и порядок структуры быстро исчезает.

Силы межатомного и межмолекулярного воздействия задают между частицами среднее расстояние. Молекулы воды состоят из атомов кислорода и водорода, где атомы кислорода одной молекулы притягиваются к атомам водорода другой молекулы. Образуется водородных связей, которая и придает воде определенные свойства текучести, при этом структура самой воды практически идентична структуре кристалла. С помощью многочисленных опытов то, что вода сама задает себе структуру в свободном объеме.

При соединении воды с твердыми поверхностями, структура воды начинает объединяться со структурой поверхности. Так как структура граничащего слоя воды остается без изменений, то начинают меняться его физико- . Меняется вязкость воды. Появляется возможность растворять вещества с определенной структурой и свойствами. Вода изначально представляет собой прозрачную бесцветную жидкость. Физические свойства воды можно называть аномальными, так как она имеет довольно высокую температуру кипения и замерзания.

У воды имеется поверхностное натяжение. Например, она имеет аномально высокие температуры замерзания и кипения, а также поверхностное натяжение. Удельные испарения и плавления у воды значительно выше, чем у каких-либо других веществ. Удивительная особенность в том, что плотность воды выше, чем плотность льда, что позволяет льду плавать на поверхности воды. Все эти чудесные свойства воды, как жидкости, снова объясняются существованием в ней тех водородных связей, которыми связаны молекулы.

Строение молекулы воды из трех атомов в геометрической проекции тетраэдра приводит к возникновению очень сильного взаимного притяжения молекул воды друг к другу. Всё дело в водородных связях молекул, ведь каждая молекула может образовать четыре абсолютно одинаковые водородные связи с другими молекулами воды. Этот факт и объясняет то, что вода – жидкая.

Не секрет, что пресной воды на


При любой температуре молекулы жидкости частично покидают ее поверхность. Происходит испарение жидкости.
Испарение
Повседневные наблюдения показывают, что количество воды, спирта, эфира, бензина, керосина и любой другой жидкости, содержащейся в открытом сосуде, постепенно уменьшается, а с течением времени жидкость и вовсе может исчезнуть. Например, хорошо закупоренный пузырек с чернилами может стоять в шкафу сколь угодно долго, и количество чернил в нем не меняется. Если же пузырек оставить открытым, то, заглянув в него через достаточно продолжительное время, мы увидим, что жидкости в нем нет.
В действительности жидкости бесследно не исчезают - они испаряются, т. е. превращаются в пар.
Те же наблюдения позволяют установить, что испарение происходит с поверхности жидкости при любой температуре. Скорость испарения тем больше, чем больше площадь свободной поверхности жидкости, выше ее температура и чем быстрее удаляются образовавшиеся над жидкостью пары. Поэтому чтобы белье быстрее высохло, его распрямляют, а не вешают скомканным. Белье быстрее высыхает при более высокой температуре воздуха и на ветру. Испарение также ускоряется при уменьшении внешнего давления, вернее при уменьшении давления водяных паров, содержащихся в окружающей среде.
Скорость испарения различных жидкостей различна. Эфир испаряется быстрее бензина, а бензин быстрее спирта. Все эти три жидкости, называемые летучими, испаряются быстрее воды. Поэтому их следует содержать в хорошо закрывающихся сосудах. Ртуть - очень медленно испаряющаяся жидкость.
Молекулярная картина испарения
Молекулы жидкости участвуют в хаотическом движении. При этом чем выше температура жидкости, тем интенсивнее движутся молекулы, тем больше их кинетическая энергия. Но средняя кинетическая энергия молекул имеет при заданной температуре определенное значение. У каждой молекулы энергия в данный момент может оказаться как меньше, так и больше средней. Кинетическая энергия некоторых молекул в какой-то момент может стать столь большой, что они окажутся способными вылететь из жидкости, преодолев силы притяжения остальных молекул (рис. 6.1). В этом и состоит процесс испарения.

Молекулярно-кинетическая теория позволяет объяснить условия, ускоряющие процесс испарения. Чем больше площадь свободной поверхности жидкости, тем больше число вылетающих молекул, тем быстрее происходит испарение.
Чем выше температура жидкости, тем большее число молекул обладает достаточной для вылета из жидкости кинетической энер-
Конденсация пара
Вылетевшая с поверхности жидкости молекула принимает участие в хаотическом тепловом движении молекул пара. Беспорядочно двигаясь, она может навсегда удалиться от поверхности жидкости в открытом сосуде, но может и вернуться снова в жидкость. Этот процесс превращения пара в жидкость, обратный процессу испарения, называют конденсацией (от позднелатинского слова condensatio - уплотнение, сгущение). Если поток воздуха над сосудом (ветер) уносит с собой образовавшиеся пары жидкости, то жидкость испаряется быстрее, так как уменьшаются шансы молекулы пара вновь вернуться в жидкость.
Охлаждение при испарении
При испарении жидкость покидают молекулы, кинетическая энергия которых больше их средней кинетической энергии. Поэтому среднее значение кинетической энергии остающихся молекул жидкости уменьшается. А это означает понижение температуры испаряющейся жидкости. Вот почему вы чувствуете, что в жаркий летний день становится прохладно сразу после купания. Испарение воды с поверхности тела приводит к охлаждению его. Известно также, что в мокрой одежде холоднее, чем в сухой, особенно при ветре. Очень сильное охлаждение получается, если испарение происходит быстро. При быстром испарении эфира при атмосферном давлении может произойти охлаждение ниже О °С. Это можно обнаружить так. В вогнутое очковое стекло надо налить немного эфира и поставить его на стол, смоченный водой. При быстром испарении эфира (испарение ускоряют продуванием воздуха над эфиром) стеклышко примерзает к поверхности стола. Охлаждением при испарении летучих жидкостей пользуются врачи, когда нужно заморозить кожу больного, чтобы сделать ее нечувствительной к боли.
В жарких странах для охлаждения воды ее обычно содержат в пористых глиняных сосудах. Вода, просачивающаяся через поры сосуда, испаряется, охлаждая воду в сосуде.
Если лишить жидкость возможности испаряться, то охлаждение ее будет происходить гораздо медленнее. Вспомните, как долго остывает жирный суп. Слой жира на его поверхности мешает выходу быстрых молекул воды. Жидкость почти не испаряется, и ее температура падает медленно (сам жир испаряется крайне медленно, так как его большие молекулы более прочно сцеплены друг с другом, чем молекулы воды).
Испарение твердых тел
Испаряются не только жидкости, но и твердые тела. Молекулы, которые расположены у поверхности твердого тела и имеют достаточную кинетическую энергию, способны покинуть тело. Процесс перехода вещества из твердого состояния непосредственно в газообразное называется сублимаци- е й или возгонкой.
Например, нафталин или камфара испаряются при комнатной температуре и нормальном давлении, минуя жидкое состояние. Точно так же испаряются кристаллы брома или иода, особенно если их подогреть. Испаряется также лед. Ес-ли влажное белье развесить на морозе, то вода замерзает, а затем лед испаряется, и белье высыхает.
При испарении жидкостей они охлаждаются, так
как жидкость покидают наиболее быстрые молекулы.