Статистическая значимость

Результаты, полученные с помощью определенной процедуры исследования, называют статистически значимыми , если вероятность их случайного появления очень мала. Эту концепцию можно проиллюстрировать на примере кидания монеты. Предположим, что монету подбросили 30 раз; 17 раз выпал «орел» и 13 раз выпала «решка». Является ли значимым отклонение этого результата от ожидаемого (15 выпадений «орла» и 15 - «решки»), или это отклонение случайно? Чтобы ответить на этот вопрос, можно, например, много раз кидать ту же монету по 30 раз подряд, и при этом отмечать, сколько раз повторится соотношение «орлов» и «решек», равное 17:13. Статистический анализ избавляет нас от этого утомительного процесса. С его помощью после первых 30 киданий монеты можно произвести оценку возможного числа случайных выпадений 17 «орлов» и 13 «решек». Такая оценка называется вероятностным утверждением.

В научной литературе по индустриально-организационной психологии вероятностное утверждение в математической форме обозначается выражением р (вероятность) < (менее) 0,05 (5 %), которое следует читать как «вероятность менее 5 %». В примере с киданием монеты это утверждение будет означать, что если исследователь проведет 100 опытов, каждый раз кидая монету по 30 раз, то он может ожидать случайного выпадения комбинации из 17 «орлов» и 13 «решек» менее, чем в 5 опытах. Этот результат будет сочтен статистически значимым, поскольку в индустриально-организационной психологии уже давно приняты стандарты статистической значимости 0,05 и 0,01 (р < 0,01). Этот факт важен для понимания литературы, но не следует считать, что он говорит о бессмысленности проведения наблюдений, не соответствующих этим стандартам. Так называемые незначимые результаты исследований (наблюдения, которые можно получить случайно более одного или пяти раз из 100) могут быть весьма полезными для выявления тенденций и как руководство к будущим исследованиям.

Необходимо также заметить, что не все психологи соглашаются с традиционными стандартами и процедурами (например, Cohen, 1994; Sauley & Bedeian, 1989). Вопросы, связанные с измерениями, сами по себе являются главной темой работы многих исследователей, изучающих точность методов измерений и предпосылки, которые лежат в основе существующих методов и стандартов, а также разрабатывают новые медики и инструменты. Может быть, когда-нибудь в будущем исследования в этой власти приведут к изменению традиционных стандартов оценки статистической значимости, и эти изменения завоюют всеобщее признание. (Пятое отделение Американской психологической ассоциации объединяет психологов, которые специализируются на изучении оценок, измерений и статистики.)

В отчетах об исследованиях вероятностное утверждение, такое как р < 0,05, связано некоторой статистикой, то есть числом, которое получено в результате проведения определенного набора математических вычислительных процедур. Вероятностное подтверждение получают путем сравнения этой статистики с данными из специальных таблиц, которые публикуются для этой цели. В индустриально-организационных психологических исследованиях часто встречаются такие статистики, как r, F, t, г> (читается «хи квадрат») и R (читается «множественный R»). В каждом случае статистику (одно число), полученную в результате анализа серии наблюдений, можно сравнить числами из опубликованной таблицы. После этого можно сформулировать вероятностное утверждение о вероятности случайного получения этого числа, то есть сделать вывод о значимости наблюдений.

Для понимания исследований, описанных в этой книге, достаточно иметь ясное представление о концепции статистической значимости и необязательно знать, как рассчитываются упомянутые выше статистики. Однако было бы полезно обсудить одно предположение, которое лежит в основе всех этих процедур. Это предположение о том, что все наблюдаемые переменные распределяются приблизительно по нормальному закону. Кроме того, при чтении отчетов об индустриально-организационных психологических исследованиях часто встречаются еще три концепции, которые играют важную роль - во-первых, корреляция и корреляционная связь, во-вторых, детерминант/ предсказывающая переменная и «ANOVA» (дисперсионный анализ), в-третьих, группа статистических методов под общим названием «метаанализ».

Уровень значимости в статистике является важным показателем, отражающим степень уверенности в точности, истинности полученных (прогнозируемых) данных. Понятие широко применяется в различных сферах: от проведения социологических исследований, до статистического тестирования научных гипотез.

Определение

Уровень статистической значимости (или статистически значимый результат) показывает, какова вероятность случайного возникновения исследуемых показателей. Общая статистическая значимость явления выражается коэффициентом р-value (p-уровень). В любом эксперименте или наблюдении существует вероятность, что полученные данные возникли из-за ошибок выборки. Особенно это актуально для социологии.

То есть статистически значимой является величина, чья вероятность случайного возникновения крайне мала либо стремится к крайности. Крайностью в этом контексте считают степень отклонения статистики от нуль-гипотезы (гипотезы, которую проверяют на согласованность с полученными выборочными данными). В научной практике уровень значимости выбирается перед сбором данных и, как правило, его коэффициент составляет 0,05 (5 %). Для систем, где крайне важны точные значения, этот показатель может составлять 0,01 (1 %) и менее.

История вопроса

Понятие уровня значимости было введено британским статистиком и генетиком Рональдом Фишером в 1925 году, когда он разрабатывал методику проверки статистических гипотез. При анализе какого-либо процесса существует определенная вероятность тех либо иных явлений. Трудности возникают при работе с небольшими (либо не очевидными) процентами вероятностей, подпадающими под понятие «погрешность измерений».

При работе со статистическими данными, недостаточно конкретными, чтобы их проверить, ученые сталкивались с проблемой нулевой гипотезы, которая «мешает» оперировать малыми величинами. Фишер предложил для таких систем определить вероятность событий в 5 % (0,05) в качестве удобного выборочного среза, позволяющего отклонить нуль-гипотезу при расчетах.

Введение фиксированного коэффициента

В 1933 году ученые Ежи Нейман и Эгон Пирсон в своих работах рекомендовали заранее (до сбора данных) устанавливать определенный уровень значимости. Примеры использования этих правил хорошо видны во время проведения выборов. Предположим, есть два кандидата, один из которых очень популярен, а второй – малоизвестен. Очевидно, что первый кандидат выборы выиграет, а шансы второго стремятся к нулю. Стремятся – но не равны: всегда есть вероятность форс-мажорных обстоятельств, сенсационной информации, неожиданных решений, которые могут изменить прогнозируемые результаты выборов.

Нейман и Пирсон согласились, что предложенный Фишером уровень значимости 0,05 (обозначаемый символом α) наиболее удобен. Однако сам Фишер в 1956 году выступил против фиксации этого значения. Он считал, что уровень α должен устанавливаться в соответствии с конкретными обстоятельствами. Например, в физике частиц он составляет 0,01.

Значение p-уровня

Термин р-value впервые использован в работах Браунли в 1960 году. P-уровень (p-значение) является показателем, находящимся в обратной зависимости от истинности результатов. Наивысший коэффициент р-value соответствует наименьшему уровню доверия к произведенной выборке зависимости между переменными.

Данное значение отражает вероятность ошибок, связанных с интерпретацией результатов. Предположим, p-уровень = 0,05 (1/20). Он показывает пятипроцентную вероятность того, что найденная в выборке связь между переменными – всего лишь случайная особенность проведенной выборки. То есть, если эта зависимость отсутствует, то при многократных подобных экспериментах в среднем в каждом двадцатом исследовании можно ожидать такую ​​же либо большую зависимость между переменными. Часто p-уровень рассматривается в качестве «допустимой границы» уровня ошибок.

Кстати, р-value может не отражать реальную зависимость между переменными, а лишь показывает некое среднее значение в пределах допущений. В частности, окончательный анализ данных будет также зависеть от выбранных значений данного коэффициента. При p-уровне = 0,05 будут одни результаты, а при коэффициенте, равном 0,01, другие.

Проверка статистических гипотез

Уровень статистической значимости особенно важен при проверке выдвигаемых гипотез. Например, при расчетах двустороннего теста область отторжения разделяют поровну на обоих концах выборочного распределения (относительно нулевой координаты) и высчитывают истинность полученных данных.

Предположим, при мониторинге некоего процесса (явления) выяснилось, что новая статистическая информация свидетельствует о небольших изменениях относительно предыдущих значений. При этом расхождения в результатах малы, не очевидны, но важны для исследования. Перед специалистом встает дилемма: изменения реально происходят или это ошибки выборки (неточность измерений)?

В этом случае применяют либо отвергают нулевую гипотезу (списывают все на погрешность, или признают изменение системы как свершившийся факт). Процесс решения задачи базируется на соотношении общей статистической значимости (р-value) и уровня значимости (α). Если р-уровень < α, значит, нулевую гипотезу отвергают. Чем меньше р-value, тем более значимой является тестовая статистика.

Используемые значения

Уровень значимости зависит от анализируемого материала. На практике используют следующие фиксированные значения:

  • α = 0,1 (или 10 %);
  • α = 0,05 (или 5 %);
  • α = 0,01 (или 1 %);
  • α = 0,001 (или 0,1 %).

Чем более точными требуются расчеты, тем меньший коэффициент α используется. Естественно, что статистические прогнозы в физике, химии, фармацевтике, генетике требуют большей точности, чем в политологии, социологии.

Пороги значимости в конкретных областях

В высокоточных областях, таких как физика частиц и производственная деятельность, статистическая значимость часто выражается как соотношение среднеквадратического отклонения (обозначается коэффициентом сигма – σ) относительно нормального распределения вероятностей (распределение Гаусса). σ – это статистический показатель, определяющий рассеивание значений некой величины относительно математических ожиданий. Используется для составления графиков вероятности событий.

В зависимости от области знаний, коэффициент σ сильно разнится. Например, при прогнозировании существования бозона Хиггса параметр σ равен пяти (σ=5), что соответствует значению р-value=1/3,5 млн. При исследованиях геномов уровень значимости может составлять 5×10 -8 , что не являются редкостью для этой области.

Эффективность

Необходимо учитывать, что коэффициенты α и р-value не являются точными характеристиками. Каким бы ни был уровень значимости в статистике исследуемого явления, он не является безусловным основанием для принятия гипотезы. Например, чем меньше значение α, тем больше шанс, что устанавливаемая гипотеза значима. Однако существует риск ошибиться, что уменьшает статистическую мощность (значимость) исследования.

Исследователи, которые зацикливаются исключительно на статистически значимых результатах, могут получить ошибочные выводы. При этом перепроверить их работу затруднительно, так как ими применяются допущения (коими фактически и являются значения α и р-value). Поэтому рекомендуется всегда, наряду с вычислением статистической значимости, определять другой показатель – величину статистического эффекта. Величина эффекта – это количественная мера силы эффекта.

Задание 3. Пяти дошкольникам предъявляют тест. Фиксируется время решения каждого задания. Будут ли найдены статистически значимые различия между временем решения первых трёх заданий теста?

№ испытуемых

Справочный материал

Данное задание основано на теории дисперсионного анализа. В общем случае, задачей дисперсионного анализа является выявление тех факторов, которые оказывают существенное влияние на результат эксперимента. Дисперсионный анализ может применяться для сравнения средних нескольких выборок, если число выборок больше двух. Для этой цели служит однофакторный дисперсионный анализ.

В целях решения поставленных задач принимается следующее. Если дисперсии полученных значений параметра оптимизации в случае влияния факторов отличаются от дисперсий результатов в случае отсутствия влияния факторов, то такой фактор признается значимым.

Как видно из формулировки задачи, здесь используются методы проверки статистических гипотез, а именно – задача проверки двух эмпирических дисперсий. Следовательно, дисперсионный анализ базируется на проверке дисперсий по критерию Фишера. В данном задании необходимо проверить являются ли статистически значимыми различия между временем решения первых трёх заданий теста каждым из шести дошкольников.

Нулевой (основной) называют выдвинутую гипотезу H о. Сущность е сводится к предположению, что разница между сравниваемыми параметрами равна нулю (отсюда и название гипотезы – нулевая) и что наблюдаемые различия имеют случайный характер.

Конкурирующей (альтернативной) называют гипотезу H 1 , которая противоречит нулевой.

Решение:

Методом дисперсионного анализа при уровне значимости α = 0,05 проверим нулевую гипотезу (H о) о существовании статистически значимых различий между временем решения первых трёх заданий теста у шести дошкольников.

Рассмотрим таблицу условия задания, в которой найдем среднее время решения каждого из трех заданий теста

№ испытуемых

Уровни фактора

Время решения первого задания теста (в сек.).

Время решения второго задания теста (в сек.).

Время решения третьего задания теста (в сек.).

Групповая средняя

Находим общую среднюю:

Для того, чтобы учесть значимость временных различий каждого теста, общая выборочная дисперсия разбивается на две части, первая из которых называется факторной , а вторая – остаточной

Рассчитаем общую сумму квадратов отклонений вариант от общей средней по формуле

или , где р – число измерений времени решений заданий теста, q – количество испытуемых. Для этого составим таблицу квадратов вариант

№ испытуемых

Уровни фактора

Время решения первого задания теста (в сек.).

Время решения второго задания теста (в сек.).

Время решения третьего задания теста (в сек.).

Рассмотрим типичный пример применения статистических методов в медицине. Создатели препарата предполагают, что он увеличивает диурез пропорционально принятой дозе. Для проверки этого предположения они назначают пяти добровольцам разные дозы препарата.

По результатам наблюдений строят график зависимости диуреза от дозы (рис. 1.2А). Зависимость видна невооруженным глазом. Исследователи поздравляют друг друга с открытием, а мир - с новым диуретиком.

На самом деле данные позволяют достоверно утверждать лишь то, что зависимость диуреза от дозы наблюдалась у этих пяти добровольцев. То, что эта зависимость проявится у всех людей, которые будут принимать препарат, - не более чем предполо-
зЯ

с

жение. Нельзя сказать, что оно беспочвенно - иначе, зачем ставить эксперименты?

Но вот препарат поступил в продажу. Все больше людей принимают его в надежде увеличить свой диурез. И что же мы видим? Мы видим рис 1.2Б, который свидетельствует об отсутствии какой либо связи между дозой препарата и диурезом. Черными кружками отмечены данные первоначального исследования. Статистика располагает методами, позволяющими оценить вероятность получения столь «непредставительной», более того, сбивающей с толку выборки. Оказывается в отсутствие связи между диурезом и дозой препарата полученная «зависимость» наблюдалась бы примерно в 5 из 1000 экспериментов. Итак, в данном случае исследователям просто не повезло. Если бы они применили даже самые совершенные статистические методы, это все равно не спасло бы их от ошибки.

Этот вымышленный, но совсем не далекий от реальности пример, мы привели не для того, чтобы указать на бесполез
ность статистики. Он говорит о другом, о вероятностном характере ее выводов. В результате применения статистического метода мы получаем не истину в последней инстанции, а всего лишь оценку вероятности того или иного предположения. Кроме того, каждый статистический метод основан на собственной математической модели и результаты его правильны настолько насколько эта модель соответствует действительности.

Еще по теме ДОСТОВЕРНОСТЬ И СТАТИСТИЧЕСКАЯ ЗНАЧИМОСТЬ:

  1. Статистически значимые отличия показателей качества жизни
  2. Статистическая совокупность. Учетные признаки. Понятие о сплошных и выборочных исследованиях. Требования к статистической совокупности и использованию учетно-отчетных документов
  3. РЕФЕРАТ. ИССЛЕДОВАНИЕ ДОСТОВЕРНОСТИ ПОКАЗАНИЙ ТОНОМЕТРА ДЛЯ ИЗМЕРЕНИЯ ВНУТРИГЛАЗНОГО ДАВЛЕНИЯ ЧЕРЕЗ ВЕКО2018, 2018

Исследование обычно начинается с некоторого предположения, требую-щего проверки с привлечением фактов. Это предположение — гипотеза — формулируется в отношении связи явлений или свойств в некоторой сово-купности объектов.

Для проверки подобных предположений на фактах необходимо измерить соответствующие свойства у их носителей. Но невозможно измерить тревож-ность у всех женщин и мужчин, как невозможно измерить агрессивность у всех подростков. Поэтому при проведении исследования ограничиваются лишь относительно небольшой группой представителей соответствующих совокупностей людей.

Генеральная совокупность — это все множество объектов, в отношении ко-торого формулируется исследовательская гипотеза.

Например, все мужчины; или все женщины; или все жители какого-либо города. Генеральные совокупности, в отно-шении которых исследователь собирается сделать выводы по результатам ис-следования, могут быть по численности и более скромными, например, все первоклассники данной школы.

Таким образом, генеральная совокупность — это хотя и не бесконечное по численности, но, как правило, недоступное для сплошного исследования мно-жество потенциальных испытуемых.

Выборка или выборочная совокупность — это ограниченная по численности группа объектов (в психоло-гии — испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выбор-ке свойств генеральной совокупности называется выборочным исследованием. Практически все психологические исследования являются выборочными, а их выводы распространяются на генеральные совокупности.

Таким образом, после того, как сформулирована гипотеза и определены соответствующие генеральные совокупности, перед исследователем возни-кает проблема организации выборки. Выборка должна быть такой, чтобы была обоснована генерализация выводов выборочного исследования — обобщение, распространение их на генеральную совокупность. Основные критерии обо-снованности выводов исследования это репрезентативность выборки и ста-тистическая достоверность (эмпирических) результатов.

Репрезентативность выборки — иными словами, ее представительность — это способность выборки представлять изучаемые явления достаточно пол-но — с точки зрения их изменчивости в генеральной совокупности.

Конечно, полное представление об изучаемом явлении, во всем его диапа-зоне и нюансах изменчивости, может дать только генеральная совокупность. Поэтому репрезентативность всегда ограничена в той мере, в какой ограни-чена выборка. И именно репрезентативность выборки является основным кри-терием при определении границ генерализации выводов исследования. Тем не менее, существуют приемы, позволяющие получить достаточную для ис-следователя репрезентативность выборки (Эти приемы изучаются в курсе «Экспериментальная психология»).


Первый и основной прием — это простой случайный (рандомизированный) отбор. Он предполагает обеспечение таких условий, чтобы каждый член генеральной совокупности имел равные с другими шансы попасть в выборку. Слу-чайный отбор обеспечивает возможность попадания в выборку самых разных представителей генеральной совокупности. При этом принимаются специ-альные меры, исключающие появление какой-либо закономерности при отборе. И это позволяет надеяться на то, что в конечном итоге в выборке изу-чаемое свойство будет представлено если и не во всем, то в максимально воз-можном его многообразии.

Второй способ обеспечения репрезентативности — это стратифицирован-ный случайный отбор, или отбор по свойствам генеральной совокупности. Он предполагает предварительное определение тех качеств, которые могут вли-ять на изменчивость изучаемого свойства (это может быть пол, уровень дохо-да или образования и т. д.). Затем определяется процентное соотношение чис-ленности различающихся по этих качествам групп (страт) в генеральной совокупности и обеспечивается идентичное процентное соотношение соот-ветствующих групп в выборке. Далее в каждую подгруппу выборки испытуе-мые подбираются по принципу простого случайного отбора.

Статистическая достоверность , или статистическая значимость, результа-тов исследования определяется при помощи методов статистического выво-да.

Застрахованы ли мы от принятия ошибок при принятии решений, при тех или иных выводах из результатов исследования? Конечно, нет. Ведь наши решения опираются на результаты исследования выборочной совокупности, а также на уровень наших психологических знаний. Полностью мы не застрахованы от ошибок. В статистике такие ошибки считаются допустимыми, если они имеют место не чаще чем в одном случае из 1000 (вероятность ошибки α=0,001 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,999); в одном случае из 100 (вероятность ошибки α=0,01 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,99) или в пяти случаях из 100 (вероятность ошибки α=0,05 или сопряженная с этим величина доверительная вероятность правильного вывода р=0,95). Именно на двух последних уровнях и принято принимать решения в психологии.

Иногда, говоря о статистической достоверности, используют понятие «уровень значимости» (обозначается как α). Численные значения р и α дополняют друг друга до 1,000 — полный набор событий: либо мы сделали правильный вывод, либо мы ошиблись. Эти уровни не рассчитываются, они заданы. Уровень значимости можно понимать как некую «красную» линию», пересечение которой позволит говорить о данном событии как о неслучайном. В каждом грамотном научном отчете или публикации сделанные выводы должны сопровождаться указанием значений р или α, при которых сделаны выводы.

Методы статистического вывода подробно рассматриваются в курсе «Математической статистики». Сейчас лишь отметим, что они предъявляют определенные требования к численности, или объему выборки.

К сожалению, строгих рекомендаций по предварительному определению требуемого объема выборки не существует. Более того, ответ на вопрос о не-обходимой и достаточной ее численности исследователь обычно получает слишком поздно — только после анализа данных уже обследованной выбор-ки. Тем не менее, можно сформулировать наиболее общие рекомендации:

1. Наибольший объем выборки необходим при разработке диагностичес-кой методики — от 200 до 1000-2500 человек.

2. Если необходимо сравнивать 2 выборки, их общая численность должна быть не менее 50 человек; численность сравниваемых выборок должна быть приблизительно одинаковой.

3. Если изучается взаимосвязь между какими-либо свойствами, то объем выборки должен быть не меньше 30-35 человек.

4. Чем больше изменчивость изучаемого свойства , тем больше должен быть объем выборки. Поэтому изменчивость можно уменьшить, увеличивая однородность выборки, например, по полу, возрасту и т. д. При этом, естественно, уменьшаются возможности генерализации выводов.

Зависимые и независимые выборки. Обычна ситуация исследования, когда интересующее исследователя свойство изучается на двух или более выборках с целью их дальнейшего сравнения. Эти выборки могут находиться в различ-ных соотношениях — в зависимости от процедуры их организации. Независи-мые выборки характеризуются тем, что вероятность отбора любого испытуе-мого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки.

В общем случае зависимые выборки предполагают попарный подбор ис-пытуемых в сравниваемые выборки, а независимые выборки — независимый отбор испытуемых.

Следует отметить, что случаи «частично зависимых» (или «частично неза-висимых») выборок недопустимы: это непредсказуемым образом нарушает их репрезентативность.

В заключение отметим, что можно выделить две парадигмы психологи-ческого исследования.

Так называемая R-методология предполагает изучение изменчивости некоторого свойства (психологического) под влиянием неко-торого воздействия, фактора либо другого свойства. Выборкой является мно-жество испытуемых.

Другой подход, Q-методология, предполагает исследо-вание изменчивости субъекта (единичного) под влиянием различных стимулов (условий, ситуаций и т. д.). Ей соответствует ситуация, когда выборкой явля-ется множество стимулов.