Импульс тела

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Следует помнить, что речь идет о теле, которое можно представить как материальную точку. Импульс тела ($р$) называют также количеством движения. Понятие количества движения было введено в физику Рене Декартом (1596—1650). Термин «импульс» появился позже (impulsus в переводе с латинского означает «толчок»). Импульс является векторной величиной (как и скорость) и выражается формулой:

$p↖{→}=mυ↖{→}$

Направление вектора импульса всегда совпадает с направлением скорости.

За единицу импульса в СИ принимают импульс тела массой $1$ кг, движущегося со скоростью $1$ м/с, следовательно, единицей импульса является $1$ кг $·$ м/с.

Если на тело (материальную точку) действует постоянная сила в течение промежутка времени $∆t$, то постоянным будет и ускорение:

$a↖{→}={{υ_2}↖{→}-{υ_1}↖{→}}/{∆t}$

где, ${υ_1}↖{→}$ и ${υ_2}↖{→}$ — начальная и конечная скорости тела. Подставив это значение в выражение второго закона Ньютона, получим:

${m({υ_2}↖{→}-{υ_1}↖{→})}/{∆t}=F↖{→}$

Раскрыв скобки и воспользовавшись выражением для импульса тела, имеем:

${p_2}↖{→}-{p_1}↖{→}=F↖{→}∆t$

Здесь ${p_2}↖{→}-{p_1}↖{→}=∆p↖{→}$ — изменение импульса за время $∆t$. Тогда предыдущее уравнение примет вид:

$∆p↖{→}=F↖{→}∆t$

Выражение $∆p↖{→}=F↖{→}∆t$ представляет собой математическую запись второго закона Ньютона.

Произведение силы на время ее действия называют импульсом силы . Поэтому изменение импульса точки равно изменению импульса силы, действующей на нее.

Выражение $∆p↖{→}=F↖{→}∆t$ называется уравнением движения тела . Следует заметить, что одно и то же действие — изменение импульса точки — может быть получено малой силой за большой промежуток времени и большой силой за малый промежуток времени.

Импульс системы тел. Закон изменения импульса

Импульсом (количеством движения) механической системы называется вектор, равный сумме импульсов всех материальных точек этой системы:

${p_{сист}}↖{→}={p_1}↖{→}+{p_2}↖{→}+...$

Законы изменения и сохранения импульса являются следствием второго и третьего законов Ньютона.

Рассмотрим систему, состоящую из двух тел. Силы ($F_{12}$ и $F_{21}$ на рисунке, с которыми тела системы взаимодействуют между собой, называются внутренними.

Пусть кроме внутренних сил на систему действуют внешние силы ${F_1}↖{→}$ и ${F_2}↖{→}$. Для каждого тела можно записать уравнение $∆p↖{→}=F↖{→}∆t$. Сложив левые и правые части этих уравнений, получим:

${∆p_1}↖{→}+{∆p_2}↖{→}=({F_{12}}↖{→}+{F_{21}}↖{→}+{F_1}↖{→}+{F_2}↖{→})∆t$

Согласно третьему закону Ньютона ${F_{12}}↖{→}=-{F_{21}}↖{→}$.

Следовательно,

${∆p_1}↖{→}+{∆p_2}↖{→}=({F_1}↖{→}+{F_2}↖{→})∆t$

В левой части стоит геометрическая сумма изменений импульсов всех тел системы, равная изменению импульса самой системы — ${∆p_{сист}}↖{→}$.С учетом этого равенство ${∆p_1}↖{→}+{∆p_2}↖{→}=({F_1}↖{→}+{F_2}↖{→})∆t$ можно записать:

${∆p_{сист}}↖{→}=F↖{→}∆t$

где $F↖{→}$ — сумма всех внешних сил, действующих на тело. Полученный результат означает, что импульс системы могут изменить только внешние силы, причем изменение импульса системы направлено так же, как суммарная внешняя сила. В этом суть закона изменения импульса механической системы.

Внутренние силы изменить суммарный импульс системы не могут. Они лишь меняют импульсы отдельных тел системы.

Закон сохранения импульса

Из уравнения ${∆p_{сист}}↖{→}=F↖{→}∆t$ вытекает закон сохранения импульса. Если на систему не действуют никакие внешние силы, то правая часть уравнения ${∆p_{сист}}↖{→}=F↖{→}∆t$ обращается в ноль, что означает неизменность суммарного импульса системы:

${∆p_{сист}}↖{→}=m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=const$

Система, на которую не действуют никакие внешние силы или равнодействующая внешних сил равна нулю, называется замкнутой.

Закон сохранения импульса гласит:

Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Полученный результат справедлив для системы, содержащей произвольное число тел. Если сумма внешних сил не равна нулю, но сумма их проекций на какое-то направление равна нулю, то проекция импульса системы на это направление не меняется. Так, например, система тел на поверхности Земли не может считаться замкнутой из-за силы тяжести, действующей на все тела, однако сумма проекций импульсов на горизонтальное направление может оставаться неизменной (при отсутствии трения), т. к. в этом направлении сила тяжести не действует.

Реактивное движение

Рассмотрим примеры, подтверждающие справедливость закона сохранения импульса.

Возьмем детский резиновый шарик, надуем его и отпустим. Мы увидим, что когда воздух начнет выходить из него в одну сторону, сам шарик полетит в другую. Движение шарика является примером реактивного движения. Объясняется оно законом сохранения импульса: суммарный импульс системы «шарик плюс воздух в нем» до истечения воздуха равен нулю; он должен остаться равным нулю и во время движения; поэтому шарик движется в сторону, противоположную направлению истечения струи, и с такой скоростью, что его импульс по модулю равен импульсу воздушной струи.

Реактивным движением называют движение тела, возникающее при отделении от него с какой- либо скоростью некоторой его части. Вследствие закона сохранения импульса направление движения тела при этом противоположно направлению движения отделившейся части.

На принципе реактивного движения основаны полеты ракет. Современная космическая ракета представляет собой очень сложный летательный аппарат. Масса ракеты складывается из массы рабочего тела (т. е. раскаленных газов, образующихся в результате сгорания топлива и выбрасываемых в виде реактивной струи) и конечной, или, как говорят, «сухой» массы ракеты, остающейся после выброса из ракеты рабочего тела.

Когда реактивная газовая струя с большой скоростью выбрасывается из ракеты, сама ракета устремляется в противоположную сторону. Согласно закону сохранения импульса, импульс $m_{p}υ_p$, приобретаемый ракетой, должен быть равен импульсу $m_{газ}·υ_{газ}$ выброшенных газов:

$m_{p}υ_p=m_{газ}·υ_{газ}$

Отсюда следует, что скорость ракеты

$υ_p=({m_{газ}}/{m_p})·υ_{газ}$

Из этой формулы видно, что скорость ракеты тем больше, чем больше скорость выбрасываемых газов и отношение массы рабочего тела (т. е. массы топлива) к конечной («сухой») массе ракеты.

Формула $υ_p=({m_{газ}}/{m_p})·υ_{газ}$ является приближенной. В ней не учитывается, что по мере сгорания топлива масса летящей ракеты становится все меньше и меньше. Точная формула для скорости ракеты была получена в 1897 г. К. Э. Циолковским и носит его имя.

Работа силы

Термин «работа» был введен в физику в 1826 г. французским ученым Ж. Понселе. Если в обыденной жизни работой называют лишь труд человека, то в физике и, в частности, в механике принято считать, что работу совершает сила. Физическую величину работы обычно обозначают буквой $А$.

Работа силы — это мера действия силы, зависящая от ее модуля и направления, а также от перемещения точки приложения силы. Для постоянной силы и прямолинейного перемещения работа определяется равенством:

$A=F|∆r↖{→}|cosα$

где $F$ — сила, действующая на тело, $∆r↖{→}$ — перемещение, $α$ — угол между силой и перемещением.

Работа силы равна произведению модулей силы и перемещения и косинуса угла между ними, т. е. скалярному произведению векторов $F↖{→}$ и $∆r↖{→}$.

Работа — величина скалярная. Если $α 0$, а если $90°

При действии на тело нескольких сил полная работа (сумма работ всех сил) равна работе результирующей силы.

Единицей работы в СИ является джоуль ($1$ Дж). $1$ Дж — это работа, которую совершает сила в $1$ Н на пути в $1$ м в направлении действия этой силы. Эта единица названа в честь английского ученого Дж. Джоуля (1818-1889): $1$ Дж = $1$ Н $·$ м. Часто применяются также килоджоули и миллиджоули: $1$ кДж $= 1 000$ Дж, $1$ мДж $= 0.001$ Дж.

Работа силы тяжести

Рассмотрим тело, скользящее по наклонной плоскости с углом наклона $α$ и высотой $Н$.

Выразим $∆x$ через $H$ и $α$:

$∆x={H}/{sinα}$

Учитывая, что сила тяжести $F_т=mg$ составляет угол ($90° - α$) с направлением перемещения, используя формулу $∆x={H}/{sin}α$, получим выражение для работы силы тяжести $A_g$:

$A_g=mg·cos(90°-α)·{H}/{sinα}=mgH$

Из этой формулы видно, что работа силы тяжести зависит от высоты и не зависит от угла наклона плоскости.

Отсюда следует, что:

  1. работа силы тяжести не зависит от формы траектории, по которой движется тело, а лишь от начального и конечного положения тела;
  2. при перемещении тела по замкнутой траектории работа силы тяжести равна нулю, т. е. сила тяжести — консервативная сила (консервативными называются силы, обладающие таким свойством).

Работа сил реакции , равна нулю, поскольку сила реакции ($N$) направлена перпендикулярно перемещению $∆x$.

Работа силы трения

Сила трения направлена противоположно перемещению $∆x$ и составляет с ним угол $180°$, поэтому работа силы трения отрицательна:

$A_{тр}=F_{тр}∆x·cos180°=-F_{тр}·∆x$

Так как $F_{тр}=μN, N=mg·cosα, ∆x=l={H}/{sinα},$ то

$A_{тр}=μmgHctgα$

Работа силы упругости

Пусть на нерастянутую пружину длиной $l_0$ действует внешняя сила $F↖{→}$, растягивая ее на $∆l_0=x_0$. В положении $x=x_0F_{упр}=kx_0$. После прекращения действия силы $F↖{→}$ в точке $х_0$ пружина под действием силы $F_{упр}$ сжимается.

Определим работу силы упругости при изменении координаты правого конца пружины от $х_0$ до $х$. Поскольку сила упругости на этом участке изменяется линейно, в законе Гука можно использовать ее среднее значение на этом участке:

$F_{упр.ср.}={kx_0+kx}/{2}={k}/{2}(x_0+x)$

Тогда работа (с учетом того, что направления ${F_{упр.ср.}}↖{→}$ и ${∆x}↖{→}$ совпадают) равна:

$A_{упр}={k}/{2}(x_0+x)(x_0-x)={kx_0^2}/{2}-{kx^2}/{2}$

Можно показать, что вид последней формулы не зависит от угла между ${F_{упр.ср.}}↖{→}$ и ${∆x}↖{→}$. Работа сил упругости зависит лишь от деформаций пружины в начальном и конечном состояниях.

Таким образом, сила упругости, подобно силе тяжести, является консервативной силой.

Мощность силы

Мощность — физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она произведена.

Другими словами, мощность показывает, какая работа совершается за единицу времени (в СИ — за $1$ с).

Мощность определяется формулой:

где $N$ — мощность, $А$ — работа, совершенная за время $∆t$.

Подставив в формулу $N={A}/{∆t}$ вместо работы $A$ ее выражение $A=F|{∆r}↖{→}|cosα$, получим:

$N={F|{∆r}↖{→}|cosα}/{∆t}=Fυcosα$

Мощность равна произведению модулей векторов силы и скорости на косинус угла между этими векторами.

Мощность в системе СИ измеряется в ваттах (Вт). Один ватт ($1$ Вт) — это такая мощность, при которой за $1$ с совершается работа $1$ Дж: $1$ Вт $= 1$ Дж/с.

Эта единица названа в часть английского изобретателя Дж. Ватта (Уатта), построившего первую паровую машину. Сам Дж. Ватт (1736-1819) пользовался другой единицей мощности — лошадиной силой (л. с.), которую он ввел для того, чтобы можно было сравнивать работоспособности паровой машины и лошади: $1$ л.с. $= 735.5$ Вт.

В технике часто применяются более крупные единицы мощности — киловатт и мегаватт: $1$ кВт $= 1000$ Вт, $1$ МВт $= 1000000$ Вт.

Кинетическая энергия. Закон изменения кинетической энергии

Если тело или несколько взаимодействующих между собой тел (система тел) могут совершать работу, то говорят, что они обладают энергией.

Слово «энергия» (от греч. energia — действие, деятельность) нередко употребляется в быту. Так, например, людей, которые могут быстро выполнять работу, называют энергичными, обладающими большой энергией.

Энергия, которой обладает тело вследствие движения, называется кинетической энергией.

Как и в случае определения энергии вообще, о кинетической энергии можно сказать, что кинетическая энергия — это способность движущегося тела совершать работу.

Найдем кинетическую энергию тела массой $m$, движущегося со скоростью $υ$. Поскольку кинетическая энергия — это энергия, обусловленная движением, нулевым состоянием для нее является то состояние, в котором тело покоится. Найдя работу, необходимую для сообщения телу данной скорости, мы найдем его кинетическую энергию.

Для этого подсчитаем работу на участке перемещения $∆r↖{→}$ при совпадении направлений векторов силы $F↖{→}$ и перемещения $∆r↖{→}$. В этом случае работа равна

где $∆x=∆r$

Для движения точки с ускорением $α=const$ выражение для перемещения имеет вид:

$∆x=υ_1t+{at^2}/{2},$

где $υ_1$ — начальная скорость.

Подставив в уравнение $A=F·∆x$ выражение для $∆x$ из $∆x=υ_1t+{at^2}/{2}$ и воспользовавшись вторым законом Ньютона $F=ma$, получим:

$A=ma(υ_1t+{at^2}/{2})={mat}/{2}(2υ_1+at)$

Выразив ускорение через начальную $υ_1$ и конечную $υ_2$ скорости $a={υ_2-υ_1}/{t}$ и подставив в $A=ma(υ_1t+{at^2}/{2})={mat}/{2}(2υ_1+at)$ имеем:

$A={m(υ_2-υ_1)}/{2}·(2υ_1+υ_2-υ_1)$

$A={mυ_2^2}/{2}-{mυ_1^2}/{2}$

Приравняв теперь начальную скорость к нулю: $υ_1=0$, получим выражение для кинетической энергии:

$E_K={mυ}/{2}={p^2}/{2m}$

Таким образом, движущееся тело обладает кинетической энергией. Эта энергия равна работе, которую необходимо совершить, чтобы увеличить скорость тела от нуля до значения $υ$.

Из $E_K={mυ}/{2}={p^2}/{2m}$ следует, что работа силы по перемещению тела из одного положения в другое равна изменению кинетической энергии:

$A=E_{K_2}-E_{K_1}=∆E_K$

Равенство $A=E_{K_2}-E_{K_1}=∆E_K$ выражает теорему об изменении кинетической энергии.

Изменение кинетической энергии тела (материальной точки) за некоторый промежуток времени равно работе, совершенной за это время силой, действующей на тело.

Потенциальная энергия

Потенциальной энергией называется энергия, определяемая взаимным расположением взаимодействующих тел или частей одного и того же тела.

Поскольку энергия определяется как способность тела совершать работу, то потенциальную энергию, естественно, определяют как работу силы, зависящую только от взаимного расположения тел. Таковой является работа силы тяжести $A=mgh_1-mgh_2=mgH$ и работа силы упругости:

$A={kx_0^2}/{2}-{kx^2}/{2}$

Потенциальной энергией тела, взаимодействующего с Землей, называют величину, равную произведению массы $m$ этого тела на ускорение свободного падения $g$ и на высоту $h$ тела над поверхностью Земли:

Потенциальной энергией упруго деформированного тела называют величину, равную половине произведения коэффициента упругости (жесткости) $k$ тела на квадрат деформации $∆l$:

$E_p={1}/{2}k∆l^2$

Работа консервативных сил (тяжести и упругости) с учетом $E_p=mgh$ и $E_p={1}/{2}k∆l^2$ выражается следующим образом:

$A=E_{p_1}-E_{p_2}=-(E_{p_2}-E_{p_1})=-∆E_p$

Эта формула позволяет дать общее определение потенциальной энергии.

Потенциальной энергией системы называется зависящая от положения тел величина, изменение которой при переходе системы из начального состояния в конечное равно работе внутренних консервативных сил системы, взятой с противоположным знаком.

Знак «минус» в правой части уравнения $A=E_{p_1}-E_{p_2}=-(E_{p_2}-E_{p_1})=-∆E_p$ означает, что при совершении работы внутренними силами (например, падение тела на землю под действием силы тяжести в системе «камень — Земля») энергия системы убывает. Работа и изменение потенциальной энергии в системе всегда имеют противоположные знаки.

Поскольку работа определяет лишь изменение потенциальной энергии, то физический смысл в механике имеет только изменение энергии. Поэтому выбор нулевого уровня энергии произволен и определяется исключительно соображениями удобства, например, простотой записи соответствующих уравнений.

Закон изменения и сохранения механической энергии

Полной механической энергией системы называется сумма ее кинетической и потенциальной энергий:

Она определяется положением тел (потенциальная энергия) и их скоростью (кинетическая энергия).

Согласно теореме о кинетической энергии,

$E_k-E_{k_1}=A_p+A_{пр},$

где $А_р$ — работа потенциальных сил, $А_{пр}$ — работа непотенциальных сил.

В свою очередь, работа потенциальных сил равна разности потенциальной энергии тела в начальном $Е_{р_1}$ и конечном $Е_р$ состояниях. Учитывая это, получим выражение для закона изменения механической энергии:

$(E_k+E_p)-(E_{k_1}+E_{p_1})=A_{пр}$

где левая часть равенства — изменение полной механической энергии, а правая — работа непотенциальных сил.

Итак, закон изменения механической энергии гласит:

Изменение механической энергии системы равно работе всех непотенциальных сил.

Механическая система, в которой действуют только потенциальные силы, называется консервативной.

В консервативной системе $А_{пр} = 0$. Отсюда следует закон сохранения механической энергии:

В замкнутой консервативной системе полная механическая энергия сохраняется (не изменяется со временем):

$E_k+E_p=E_{k_1}+E_{p_1}$

Закон сохранения механической энергии выводится из законов механики Ньютона, которые применимы для системы материальных точек (или макрочастиц).

Однако закон сохранения механической энергии справедлив и для системы микрочастиц, где сами законы Ньютона уже не действуют.

Закон сохранения механической энергии является следствием однородности времени.

Однородность времени состоит в том, что при одинаковых начальных условиях протекание физических процессов не зависит от того, в какой момент времени эти условия созданы.

Закон сохранения полной механической энергии означает, что при изменении кинетической энергии в консервативной системе должна меняться и ее потенциальная энергия, так что их сумма остается постоянной. Это означает возможность превращения одного вида энергии в другой.

В соответствии с различными формами движения материи рассматривают различные виды энергии: механическую, внутреннюю (равную сумме кинетической энергии хаотического движения молекул относительно центра масс тела и потенциальной энергии взаимодействия молекул друг с другом), электромагнитную, химическую (которая складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами), ядерную и пр. Из сказанного видно, что деление энергии на разные виды достаточно условно.

Явления природы обычно сопровождаются превращением одного вида энергии в другой. Так, например, трение частей различных механизмов приводит к превращению механической энергии в тепло, т. е. во внутреннюю энергию. В тепловых двигателях, наоборот, происходит превращение внутренней энергии в механическую; в гальванических элементах химическая энергия превращается в электрическую и т. д.

В настоящее время понятие энергии является одним из основных понятий физики. Это понятие неразрывно связано с представлением о превращении одной формы движения в другую.

Вот как в современной физике формулируется понятие энергии:

Энергия — общая количественная мера движения и взаимодействия всех видов материи. Энергия не возникает из ничего и не исчезает, она может только переходить из одной формы в другую. Понятие энергии связывает воедино все явления природы.

Простые механизмы. КПД механизмов

Простыми механизмами называются приспособления, изменяющие величину или направление приложенных к телу сил.

Они применяются для перемещения или подъема больших грузов с помощью небольших усилий. К ним относятся рычаг и его разновидности — блоки (подвижный и неподвижный), ворот, наклонная плоскость и ее разновидности — клин, винт и др.

Рычаг. Правило рычага

Рычаг представляет собой твердое тело, способное вращаться вокруг неподвижной опоры.

Правило рычага гласит:

Рычаг находится в равновесии, если приложенные к нему силы обратно пропорциональны их плечам:

${F_2}/{F_1}={l_1}/{l_2}$

Из формулы ${F_2}/{F_1}={l_1}/{l_2}$, применив к ней свойство пропорции (произведение крайних членов пропорции равно произведению ее средних членов), можно получить такую формулу:

Но $F_1l_1=M_1$ — момент силы, стремящейся повернуть рычаг по часовой стрелке, а $F_2l_2=M_2$ — момент силы, стремящейся повернуть рычаг против часовой стрелки. Таким образом, $M_1=M_2$, что и требовалось доказать.

Рычаг начал применяться людьми в глубокой древности. С его помощью удавалось поднимать тяжелые каменные плиты при постройке пирамид в Древнем Египте. Без рычага это было бы невозможно. Ведь, например, для возведения пирамиды Хеопса, имеющей высоту $147$ м, было использовано более двух миллионов каменных глыб, самая меньшая из которых имела массу $2.5$ тонн!

В наше время рычаги находят широкое применение как на производстве (например, подъемные краны), так и в быту (ножницы, кусачки, весы).

Неподвижный блок

Действие неподвижного блока аналогично действию рычага с равными плечами: $l_1=l_2=r$. Приложенная сила $F_1$ равна нагрузке $F_2$, и условие равновесия имеет вид:

Неподвижный блок применяют, когда нужно изменить направление силы, не меняя ее величину.

Подвижный блок

Подвижный блок действует аналогично рычагу, плечи которого составляют: $l_2={l_1}/{2}=r$. При этом условие равновесия имеет вид:

где $F_1$ — приложенная сила, $F_2$ — нагрузка. Применение подвижного блока дает выигрыш в силе в два раза.

Полиспаст (система блоков)

Обычный полиспаст состоит из $n$ подвижных и $n$ неподвижных блоков. Его применив дает выигрыш в силе в $2n$ раз:

$F_1={F_2}/{2n}$

Степенной полиспаст состоит из п подвижных и одного неподвижного блока. Применение степенного полиспаста дает выигрыш в силе в $2^n$ раз:

$F_1={F_2}/{2^n}$

Винт

Винт представляет собой наклонную плоскость, навитую на ось.

Условие равновесия сил, действующих на винт, имеет вид:

$F_1={F_2h}/{2πr}=F_2tgα, F_1={F_2h}/{2πR}$

где $F_1$ — внешняя сила, приложенная к винту и действующая на расстоянии $R$ от его оси; $F_2$ — сила, действующая в направлении оси винта; $h$ — шаг винта; $r$ — средний радиус резьбы; $α$ — угол наклона резьбы. $R$ — длина рычага (гаечного ключа), вращающего винт с силой $F_1$.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) — отношение полезной работы ко всей затраченной работе.

Коэффициент полезного действия часто выражают в процентах и обозначают греческой буквой $η$ («эта»):

$η={A_п}/{A_3}·100%$

где $А_п$ — полезная работа, $А_3$ — вся затраченная работа.

Полезная работа всегда составляет лишь часть полной работы, которую затрачивает человек, используя тот или иной механизм.

Часть совершенной работы тратится на преодоление сил трения. Поскольку $А_3 > А_п$, КПД всегда меньше $1$ (или $< 100%$).

Поскольку каждую из работ в этом равенстве можно выразить в виде произведения соответствующей силы на пройденный путь, то его можно переписать так: $F_1s_1≈F_2s_2$.

Отсюда следует, что, выигрывая с помощью механизма в силе, мы во столько же раз проигрываем в пути, и наоборот . Этот закон называют золотым правилом механики.

Золотое правило механики является приближенным законом, так как в нем не учитывается работа по преодолению трения и силы тяжести частей используемых приспособлений. Тем не менее оно бывает очень полезным при анализе работы любого простого механизма.

Так, например, благодаря этому правилу сразу можно сказать, что рабочему, изображенному на рисунке, при двукратном выигрыше в силе подъема груза на $10$ см придется опустить противоположный конец рычага на $20$ см.

Столкновение тел. Упругий и неупругий удары

Законы сохранения импульса и механической энергии применяются для решения задачи о движении тел после столкновения: по известным импульсам и энергиям до столкновения определяются значения этих величин после столкновения. Рассмотрим случаи упругого и неупругого ударов.

Абсолютно неупругим называется удар, после которого тела образуют единое тело, движущееся с определенной скоростью. Задача о скорости последнего решается с помощью закона сохранения импульса системы тел с массами $m_1$ и $m_2$ (если речь идет о двух телах) до и после удара:

$m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=(m_1+m_2)υ↖{→}$

Очевидно, что кинетическая энергия тел при неупругом ударе не сохраняется (например, при ${υ_1}↖{→}=-{υ_2}↖{→}$ и $m_1=m_2$ она становится равной нулю после удара).

Абсолютно упругим называется удар, при котором сохраняется не только сумма импульсов, но и сумма кинетических энергий ударяющихся тел.

Для абсолютно упругого удара справедливы уравнения

$m_1{υ_1}↖{→}+m_2{υ_2}↖{→}=m_1{υ"_1}↖{→}+m_2{υ"_2}↖{→};$

${m_{1}υ_1^2}/{2}+{m_{2}υ_2^2}/{2}={m_1(υ"_1)^2}/{2}+{m_2(υ"_2)^2}/{2}$

где $m_1, m_2$ — массы шаров, $υ_1, υ_2$ —скорости шаров до удара, $υ"_1, υ"_2$ —скорости шаров после удара.

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона ) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения ). Импульс тела - векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с) .

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы . Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом:

И зменение импульса тела (количества движения) равно импульсу силы .

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY ). Пусть тело свободно падает с начальной скоростью υ 0 под действием силы тяжести; время падения равно t . Направим ось OY вертикально вниз. Импульс силы тяжести F т = mg за время t равен mgt . Этот импульс равен изменению импульса тела

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения . В этом примере сила оставалась неизменной по модулю на всем интервале времени t . Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы F ср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Выберем на оси времени малый интервал Δt , в течение которого сила F (t ) остается практически неизменной. Импульс силы F (t ) Δt за время Δt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до t разбить на малые интервалы Δt i , а затем просуммировать импульсы силы на всех интервалах Δt i , то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Δt i → 0) эта площадь равна площади, ограниченной графиком F (t ) и осью t . Этот метод определения импульса силы по графику F (t ) является общим и применим для любых законов изменения силы со временем. Математически задача сводится к интегрированию функции F (t ) на интервале .

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t 1 = 0 с до t 2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу F ср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость υ = 30 м/с. Время удара приблизительно равно 8·10 -3 с.

Импульс p , приобретенный мячом в результате удара есть:

Следовательно, средняя сила F ср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов , на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом α к нормали (ось OX ) и отскочил от нее со скоростью под углом β. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью ,после отскока мяч будет иметь скорость . Следовательно, изменение импульса мяча за время отскока равно

В проекциях на ось OX этот результат можно записать в скалярной форме Δp x = -2m υx . Ось OX направлена от стенки (как на рис. 1.16.2), поэтому υx < 0 и Δp x > 0. Следовательно, модуль Δp изменения импульса связан с модулем υ скорости мяча соотношением Δp = 2m υ.

1. Как вам известно, результат действия силы зависит от ее модуля, точки приложения и направления. Действительно, чем больше сила, действующая на тело, тем большее ускорение оно приобретает. От направления силы зависит и направление ускорения. Так, приложив небольшую силу к ручке, мы легко открываем дверь, если ту же силу приложить около петель, на которых висит дверь, то ее можно и не открыть.

Опыты и наблюдения свидетельствуют о том, что результат действия силы (взаимодействия) зависит не только от модуля силы, но и от времени ее действия. Проделаем опыт. К штативу на нити подвесим груз, к которому снизу привязана еще одна нить (рис. 59). Если за нижнюю нить резко дернуть, то она оборвется, а груз останется висеть на верхней нити. Если же теперь медленно потянуть за нижнюю нить, то оборвется верхняя нить.

Импульсом силы называют векторную физическую величину, равную произведению силы на время ее действия Ft .

Единица импульса силы в СИ - ньютон‑секунда (1 Н с ): [Ft ] = 1 Н с.

Вектор импульса силы совпадает по направлению с вектором силы.

2. Вы также знаете, что результат действия силы зависит от массы тела, на которое эта сила действует. Так, чем больше масса тела, тем меньшее ускорение оно приобретает при действии одной и той же силы.

Рассмотрим пример. Представим себе, что на рельсах стоит груженая платформа. С ней сталкивается движущийся с некоторой скоростью вагон. В результате столкновения платформа приобретет ускорение и переместится на некоторое расстояние. Если же движущийся с той же скоростью вагон столкнется с легкой вагонеткой, то она в результате взаимодействия переместится на существенно большее расстояние, чем груженая платформа.

Другой пример. Предположим, что к мишени подлетает пуля со скоростью 2 м/ с. Пуля, вероятнее всего, отскочит от мишени, оставив на ней лишь небольшую вмятину. Если же пуля будет лететь со скоростью 100 м/с, то она пробьет мишень.

Таким образом, результат взаимодействия тел зависит от их массы и скорости движения.

Импульсом тела называют векторную физическую величину, равную произведению массы тела и его скорости.

p = m v .

Единица импульса тела в СИ - килограмм-метр в секунду (1 кг м/с): [p ] = [m ][v ] = 1 кг 1м/ с = 1 кг м/с.

Направление импульса тела совпадает с направлением его скорости.

Импульс - величина относительная, его значение зависит от выбора системы отсчета. Это и понятно, поскольку относительной величиной является скорость.

3. Выясним, как связаны импульс силы и импульс тела.

По второму закону Ньютона:

F = ma .

Подставив в эту формулу выражение для ускорения a = , получим:

F = , или
Ft = mv mv 0 .

В левой части равенства стоит импульс силы; в правой части равенства - разность конечного и начального импульсов тела,т. е. изменение импульса тела.

Таким образом,

импульс силы равен изменению импульса тела.

Ft = D(m v ).

Это иная формулировка второго закона Ньютона. Именно так сформулировал его Ньютон.

4. Предположим, что сталкиваются два шарика движущиеся по столу. Любые взаимодействующие тела, в данном случае шарики, образуют систему . Между телами системы действуют силы: сила действия F 1 и сила противодействия F 2 . При этом сила действия F 1 по третьему закону Ньютона равна силе противодействия F 2 и направлена противоположно ей: F 1 = –F 2 .

Силы, с которыми тела системы взаимодействуют между собой, называют внутренними силами.

Помимо внутренних сил, на тела системы действуют внешние силы. Так, взаимодействующие шарики притягиваются к Земле, на них действует сила реакции опоры. Эти силы являются в данном случае внешними силами. Во время движения на шарики действуют сила сопротивления воздуха и сила трения. Они тоже являются внешними силами по отношению к системе, которая в данном случае состоит из двух шариков.

Внешними силами называют силы, которые действуют на тела системы со стороны других тел.

Будем рассматривать такую систему тел, на которую не действуют внешние силы.

Замкнутой системой называют систему тел, взаимодействующих между собой и не взаимодействующих с другими телами.

В замкнутой системе действуют только внутренние силы.

5. Рассмотрим взаимодействие двух тел, составляющих замкнутую систему. Масса первого тела m 1 , его скорость до взаимодействия v 01 , после взаимодействия v 1 . Масса второго тела m 2 , его скорость до взаимодействия v 02 , после взаимодействия v 2 .

Силы, с которыми взаимодействуют тела, по третьему закону:F 1 = –F 2 . Время действия сил одно и то же, поэтому

F 1 t = –F 2 t .

Для каждого тела запишем второй закон Ньютона:

F 1 t = m 1 v 1 – m 1 v 01 , F 2 t = m 2 v 2 – m 2 v 02 .

Поскольку левые части равенств равны, то равны и их правые части, т. е.

m 1 v 1 m 1 v 01 = –(m 2 v 2 – m 2 v 02).

Преобразовав это равенство, получим:

m 1 v 01 + m 1 v 02 = m 2 v 1 + m 2 v 2 .

В левой части равенства стоит сумма импульсов тел до взаимодействия, в правой - сумма импульсов тел после взаимодействия. Как видно из этого равенства, импульс каждого тела при взаимодействии изменился, а сумма импульсов осталась неизменной.

Геометрическая сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы.

В этом состоит закон сохранения импульса .

6. Замкнутая система тел - это модель реальной системы. В природе нет таких систем, на которые не действовали бы внешние силы. Однако в ряде случаев системы взаимодействующих тел можно рассматривать как замкнутые. Это возможно в следующих случаях: внутренние силы много больше внешних сил, время взаимодействия мало, внешние силы компенсируют друг друга. Кроме того, может быть равна нулю проекция внешних сил на какое‑либо направление и тогда закон сохранения импульса выполняется для проекций импульсов взаимодействующих тел на это направление.

7. Пример решения задачи

Две железнодорожные платформы движутся навстречу друг другу со скоростями 0,3 и 0,2 м/с. Массы платформ соответственно равны 16 и 48 т. С какой скоростью и в каком направлении будут двигаться платформы после автосцепки?

Дано :

СИ

Решение

v 01 = 0,3 м/с

v 02 = 0,2 м/с

m 1 = 16 т

m 2 = 48 т

v 1 = v 2 = v

v 02 =

v 02 =

1,6104кг

4,8104кг

Изобразим на рисунке направление движения платформ до и после взаимодействия (рис. 60).

Силы тяжести, действующие на платформы, и силы реакции опоры коммпенсируют друг друга. Систему из двух платформ можно считать замкнутой

vx ?

и применить к ней закон сохранения импульса.

m 1 v 01 + m 2 v 02 = (m 1 + m 2)v .

В проекциях на ось X можно записать:

m 1 v 01x + m 2 v 02x = (m 1 + m 2)v x .

Так как v 01x = v 01 ; v 02x = –v 02 ; v x = –v , то m 1 v 01 – m 2 v 02 = –(m 1 + m 2)v.

Откуда v = – .

v = – = 0,75 м/с.

После сцепки платформы будут двигаться в ту сторону, в которую до взаимодействия двигалась платформа с большей массой.

Ответ: v = 0,75 м/с; направлена в сторону движения тележки с большей массой.

Вопросы для самопроверки

1. Что называют импульсом тела?

2. Что называют импульсом силы?

3. Как связаны импульс силы и изменение импульса тела?

4. Какую систему тел называют замкнутой?

5. Сформулируйте закон сохранения импульса.

6. Каковы границы применимости закона сохранения импульса?

Задание 17

1. Чему равен импульс тела массой 5 кг, движущегося со скоростью 20 м/с?

2. Определите изменение импульса тела массой 3 кг за 5 с под действием силы 20 Н.

3. Определите импульс автомобиля массой 1,5 т, движущегося со скоростью 20 м/с в системе отсчета, связанной: а) с неподвижным относительно Земли автомобилем; б) с автомобилем, движущимся в ту же сторону с такой же скоростью; в) с автомобилем, движущимся с такой же скоростью, но в противоположную сторону.

4. Мальчик массой 50 кг спрыгнул с неподвижной лодки массой 100 кг, расположенной в воде около берега. С какой скоростью отъехала лодка от берега, если скорость мальчика направлена горизонтально и равна 1 м/с?

5. Снаряд массой 5 кг, летевший горизонтально, разрывался на два осколка. Какова скорость снаряда, если осколок массой 2 кг при разрыве приобрел скорость 50 м/с, а второй массой 3 кг - 40 м/с? Скорости осколков направлены горизонтально.

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Определение имеет вид:

Энциклопедичный YouTube

    1 / 5

    ✪ Импульс, момент импульса, энергия. Законы сохранения |

    ✪ Импульс тела Закон сохранения импульса

    ✪ Импульс тела

    ✪ Момент импульса

    ✪ Физика. Законы сохранения в механике: Импульс. Центр онлайн-обучения «Фоксфорд»

    Субтитры

История появления термина

Формальное определение импульса

Импульсом называется сохраняющаяся физическая величина, связанная с однородностью пространства (инвариант относительно трансляций).

Импульс электромагнитного поля

Электромагнитное поле, как и любой другой материальный объект, обладает импульсом, который легко можно найти, проинтегрировав вектор Пойнтинга по объёму :

p = 1 c 2 ∫ S d V = 1 c 2 ∫ [ E × H ] d V {\displaystyle \mathbf {p} ={\frac {1}{c^{2}}}\int \mathbf {S} dV={\frac {1}{c^{2}}}\int [\mathbf {E} \times \mathbf {H} ]dV} (в системе СИ).

Существованием импульса у электромагнитного поля объясняется, например, такое явление, как давление электромагнитного излучения .

Импульс в квантовой механике

Формальное определение

Модуль импульса обратно пропорционален длине волны λ {\displaystyle \lambda } :), модуль импульса равен p = m v {\displaystyle p=mv} (где m {\displaystyle m} - масса частицы), и

λ = h p = h m v {\displaystyle \lambda ={\frac {h}{p}}={\frac {h}{mv}}} .

Следовательно, длина волны де Бройля тем меньше, чем больше модуль импульса.

В векторном виде это записывается как:

p → = h 2 π k → = ℏ k → , {\displaystyle {\vec {p}}={\frac {h}{2\pi }}{\vec {k}}=\hbar {\vec {k}},} p → = ρ v → {\displaystyle {\vec {p}}=\rho {\vec {v}}} .