ВОЗНИКНОВЕНИЕ ЖИЗНИ И КАТАСТРОФЫ

Согласно наиболее разработанной в наше время гипотезе академика А.И. Опарина, выдвинутой впервые в 1924 г., жизнь возникла в определенный момент эволюции Земли как планеты. В тот период в насыщенной водяными парами атмосфере находились кислородные производные углеводородов, аммиак, циан и другие первичные органические соединения, обладающие высокой химической энергией и способные к дальнейшим превращениям. Их появление было возможно лишь при очень высоких температурах. По мере охлаждения Земли температура ее верхних слоев понизилась до 100°. С этого момента на земную поверхность устремились горячие ливни, образовавшие первородный кипящий океан. Вместе с водой упали на Землю и первичные органические вещества. В океане продолжался процесс взаимного присоединения этих веществ, приводивший к появлению все более крупных и сложных частиц. В результате, после того как подобные превращения длились многие тысячи лет, в первичной водной оболочке Земли возникли коллоидные растворы, из которых образовались сгустки студенистых кусков органических веществ, свободно плававших по поверхности океана. Эти сгустки геля в какой-то степени представляли собой первичные организмы (сложная структура, способность к поглощению веществ из внешней среды).

В результате последовавшей затем длительной и сложной эволюции, обусловившей совершенствование физико-химической структуры гелей, из них образовались уже настоящие первичные организмы со всеми присущими им функциями.

Гипотеза академика А.И. Опарина, как и большинство других, предполагает длительное эволюционное развитие органического вещества, прежде чем оно приобрело особенности живой материи. Но могла ли появиться жизнь в одно мгновение?

Существует гипотеза, ныне мало упоминаемая, которая связывает возникновение жизни на Земле с гигантской катастрофой - грандиозным столкновением сил космоса с силами Земли. Такое столкновение, блестяще иллюстрируя законы диалектического развития природы через борьбу противоположностей, прервало безжизненную эволюцию земной коры и внесло в нее те элементы и противоречия, которые, может быть, только и могли породить жизнь. Гипотеза эта принадлежит одному из величайших ученых современности - Владимиру Ивановичу Вернадскому.

Он считал, что наука способна определить условия, при которых зарождение жизни представляется единственно возможным. Любая жизнь является неразрывной частью живого вещества, составляющего особую часть нашей планеты - биосферу. Любой организм существует, только взаимодействуя с ней.

Говоря о развитии биосферы, необходимо учитывать принцип Реди, установленный еще в XVII в.,- «Omne vivume vivo» (все живое происходит от живого). В.И. Вернадский отмечает, что этот принцип не имеет абсолютного значения. Это лишь эмпирическое обобщение, основанное на нашем знании современных физико-химических условий. Когда-то в прошлом (а возможно, и в будущем) при наличии физико-химических явлений, не учитывающихся в настоящее время, принцип Реди мог быть нарушен. Вернадский проводит аналогию между принципом Реди и законом постоянства вещества, который гласит: вещество постоянно в своей массе, не исчезает и не возникает вновь в пределах физико-химических явлений, нам известных. Это реальное эмпирическое обобщение непрерывно проверялось опытным путем. Закон остался незыблемым, и после открытия радиоактивности в рамках обычных химических и геохимических процессов. Так и принцип Реди не указывает на невозможность самопроизвольного возникновения жизни (абигенеза), он только определяет область и условия, в пределах которых абигенеза нет. Самопроизвольного возникновения жизни - согласно принципу Реди - в биосфере нет и не было за время, когда жизнь уже существовала, раз возникнув.

По мнению Вернадского, в биосфере можно различать два типа составляющего ее вещества: косное и живое. Косное вещество, состоящее из минералов, остается по химическому составу и физическому состоянию неизменным за все время существования земной коры. «Нет новых минералов, появившихся в земной коре в течение геологического времени, если не считать ими созданий человеческой техники» [Вернадский В.И. Об условиях возникновения жизни на Земле.- Изв. АН СССР, 1931, № 5, с. 643 (далее цитир. указ. ст.)] . Иное дело - живое вещество, в целом и в отдельных формах постоянно меняющееся в эволюционном процессе. За редким исключением все виды живого претерпели большие изменения со времени своего возникновения. «Живой мир биосферы палеозоя (550-230 млн. лет назад) и живой мир биосферы нашего времени резко различны, мир косной материи один и тот же» . Таким образом, «говоря о появлении на нашей планете жизни, мы в действительности говорим только об образовании на ней биосферы» (с. 644).

Но сохранение в неизменном виде косной части биосферы - минералов может быть только в том случае, если связанная с ней теснейшим образом живая часть биосферы остается в каких-то своих особенностях постоянной.

Какие же это особенности? По-видимому, те, которые могут влиять на образование минералов: средний химический состав биосферы, средняя масса живой части биосферы. Живая часть биосферы неизменно должна была составлять определенную долю массы всей биосферы. Только при этом условии не нарушается постоянство химических процессов того грандиозного явления, называемого корой выветривания, в котором выражается химическое действие жизни. Следовательно, с момента образования биосферы жизнь уже должна была состоять из многих различных форм, имеющих разнообразные геохимические функции, создающие кору выветривания. «Функции жизни в биосфере - биохимические функции - неизменны в течение геологического времени, и ни одна из них не появилась вновь в ходе геологического времени. Они непрерывно существуют одновременно» (с. 645).

  1. Газовая функция, в результате которой все газы биосферы теснейшим образом связаны с жизнью. Они создаются биогенным путем и им же уничтожаются (N 2 - О 2 - СО 2 - СН 4 - Н 2 - NH 3 - H 2 S).
  2. Кислородная функция - образование свободного кислорода (из СО 2 и Н 2 О и т.п.).
  3. Окислительная функция - окисление более бедных кислородом соединений, происходящее в биосфере.
  4. Кальциевая функция - выделение кальция в виде чистых солей (простых и сложных), углекислых, щавелевокислых, фосфорнокислых.
  5. Восстановительные функции - создание из сульфатов соединений типа H 2 S, FeS 2 .
  6. Концентрационная функция, определяющая переход некоторых элементов из обычного для них рассеянного состояния в скопления под действием живых организмов, что известно для таких элементов, как углерод, кальций, азот, железо, марганец и др.
  7. Функция сгорания органических соединений (разложение организмов после смерти с выделением Н 2 О, СО 2 и N 2).
  8. Функция восстановительного разложения органических соединений, дающая H 2 S, CH 4 , Н 2 .
  9. Функция метаболизма и дыхания организмов, связанная с поглощением О 2 и Н 2 О, выделением СО 2 и миграцией органических соединений.

Перечисленные функции биосферы могут осуществляться бактериями, водорослями, мхами, простейшими одноклеточными организмами. Важно отметить, что нет организма, который один мог бы исполнять все эти геохимические функции, исключено также, чтобы в ходе геологического времени происходила смена организмов, замещавших друг друга в исполнении какой-либо одной биогеохимической функции, без изменения ее самой. «Лишь со времени выступления в биосфере цивилизованного человечества один организм оказался способным одновременно вызывать разнообразные химические процессы, но он достигает этого разумом и техникой, а не физиологической работой своего организма» ,- отмечает В.И. Вернадский (с. 647). При появлении на Земле жизни должна была возникнуть сразу вся совокупность одноклеточных организмов, выполняющих разные биогеохимические функции. Или же жизнь, начавшись с одной простейшей формы, так быстро раздробилась на формы, имеющие разные геохимические функции, что этот период при всем своем геохимическом своеобразии не оставил никаких следов в земной коре. Приведенные выше суждения о начале биосферы исключают абигенез, занос из космоса морфологически единого организма или появление одной какой-либо водоросли, бактерии, из которых эволюционным путем зародились миллионы видов растений и животных. По мнению ученого, должен был одновременно появиться сложный комплекс живых форм, развернувшийся затем в современную живую природу.

В.И. Вернадский подчеркивает, что все живое вещество обладает «диссимметрией» - свойством, благодаря которому во всех связанных с жизнью проявлениях существуют только оси простой симметрии, но эти оси необычны, ибо отсутствует равенство правых и левых сторон.

Этой особенностью живое вещество отличается от вещества кристаллического с осями простой симметрии. В живом веществе преобладает лишь одна сторона - правая или левая. Впервые это явление было изучено Л. Пастером. Как в строении вещества, так и в физиологических проявлениях живые организмы обладают резко выраженной диссимметрией с преобладанием правых явлений. Правый характер диссимметрии живых организмов выражается рядом явлений, начиная с правого вращения плоскости поляризации при прохождении луча света через биологические препараты и кончая усваиванием организмами правых антиподов кристаллических веществ и инертным отношением организмов к левым антиподам и т.д.

Однако имеются данные о существовании не только правых, но и левых форм жизни. Так, например, среди раковин моллюсков с правой диссимметрией известны, хотя и чрезвычайно редки, левые формы.

Дальнейшим шагом в развитии эмпирического обобщения Л. Пастера явился принцип, установленный П. Кюри: «диссимметрия может возникнуть только под влиянием причины, обладающей такой же диссимметрией» (с. 639). Еще до принципа Кюри Пастер пришел к выводу, что абигенез мог произойти только в диссимметричной правой среде. Он считал, что именно в этом направлении надо вести опыты по синтезу живых организмов из неорганических соединений.

Таким образом, живое вещество биосферы глубоко отличается от веществ других геосфер. Лишь живое вещество диссимметрично и может образоваться только путем размножения из такого же диссимметричного вещества. Поскольку все неорганические процессы и образования на Земле обладают обычной симметрией, диссимметричные процессы, послужившие причиной появления жизни, следует искать вне Земли (достаточно напомнить хотя бы о спиральной форме туманностей).

Итак, согласно гипотезе В.И. Вернадского, жизнь на Земле могла зародиться лишь при соблюдении следующих основных условий.

1. При образовании биосферы на земной коре происходили физико-химические явления и процессы, которые сейчас в ней отсутствуют, но которые были необходимы для самопроизвольного возникновения жизни. Однако к ним не могут относиться обычные физические, химические и геохимические процессы.

2. Жизнь не могла возникнуть и длительно существовать как один какой-либо вид организмов, из которого в дальнейшем обычным эволюционным путем появились все остальные. Имеющиеся данные о постоянстве биогеохимических функций живого вещества в биосфере заставляют предполагать одновременное или почти одновременное образование группы простейших одноклеточных организмов. Эти простейшие организмы могли выполнять различные биогеохимические функции и сформировали биосферу. Из них впоследствии путем эволюции возникли все остальные организмы, существовавшие в дальнейшем только в пределах биосферы.

3. В соответствии с выводами, сделанными Пастером, и принципом Кюри этот необычный процесс, не укладывающийся в рамки обычных физико-химических явлений, должен обладать правой диссимметрией.

Какое же уникальное явление в истории Земли удовлетворяло бы всем поставленным условиям и служило бы причиной зарождения жизни на земной поверхности? По мнению В.И. Вернадского, им могла быть грандиозная космическая катастрофа, например, отделение Луны от Земли и возникновение впадины Тихого океана. Вернадский указывает, что в результате этого земная кора приобрела своеобразную диссимметрию.

Сейчас известно, что Луна образовалась не путем отрыва ее от Земли. Но значит ли это, что в истории нашей планеты гигантские катастрофы отсутствовали? Выше мы писали, что согласно теории происхождения планет, разработанной О.Ю. Шмидтом, Земля образовалась путем аккумуляции рассеянных в межзвездной среде частиц и тел различных размеров.

Падавшие астероиды по химическому составу могли несколько отличаться от среднего состава Земли и приводить к образованию неоднородностей в ее теле. Возможно, что именно вследствие таких первичных неоднородно стей возникла известная всем геологам диссимметрия в строении нашей планеты. Таким образом, в результате падения в область Тихого океана крупного астероида создались условия, необходимые для соблюдения принципов Реди и Кюри. Последние данные палеонтологии указывают на необычайную древность зарождения жизни - более 3 млрд. лет назад. Следовательно, время возникновения жизни и окончания формирования Земли как планеты (4,5-3,5 млрд. лет) примерно совпадает. Геологические данные показывают, что диссимметрия нашей планеты с разделением, на Атлантический и Тихоокеанский сегменты также возникла очень давно. Она существует, по крайней мере, с рифейской эры, т.е. 1,5 млрд. лет.

Сейчас, когда стало доказанным огромное влияние процессов, происходящих в космосе, на эволюцию жизни на Земле, когда образование ее мы объясняем путем аккумуляции астероидов, а наклон оси вращения Земли связываем с падением одного из наиболее крупных космических пришельцев, гипотеза Вернадского становится более актуальной. Быть может, недалеко то время, когда к ней придется еще вернуться, и проблема образования Земли и возникновения жизни будет выражена лаконичной формулой - жизнь на Земле возникла одновременно с образованием планеты.

МАГНИТНАЯ БРОНЯ ЗЕМЛИ

Обнаружение с помощью спутников радиационных поясов вокруг Земли в корне изменило наше представление о значении магнитного поля в эволюции органической жизни.

Солнце, в недрах которого царит температура порядка 13 000 000° С, а на поверхности - около 6000° С, каждую секунду излучает 3,8·10 26 Дж энергии. На Землю попадает лишь одна двухмиллиардная доля энергии Солнца, но ее достаточно для возникновения и развития жизни. Солнце посылает на Землю два типа излучения: электромагнитные волны длиной от миллионных долей миллиметра до десятков километров и потоки заряженных частиц - корпускул, движущихся со скоростью около 1000 км/с и через одни-двое суток достигающих Земли. Часть космического излучения приходит из-за пределов Солнечной системы.

От большей части космического излучения жители Земли надежно защищены сложной системой различных физических оболочек, через которые проникает только видимый свет, небольшая доля прилегающих к нему ультрафиолетовых и инфракрасных лучей и узкий участок радиоволн. На подступах к Земле задерживаются и корпускулы, представляющие главным образом ядра водорода (протоны) и ядра гелия (альфа-частицы), а также незначительное количество ядер тяжелых элементов.

Спасительным экраном прежде всего является земная атмосфера. Однако, задерживая одну часть космической радиации, земная атмосфера достаточно свободно пропускает другую. Существенно помогает атмосфере магнитное поле Земли, вызвавшее образование ионосферы и двух поясов заряженных частиц вокруг Земли. Внутренний экваториальный пояс с наибольшей плотностью частиц расположен на расстоянии около 3600 км от поверхности планеты. Он опоясывает Землю кольцом от 35° ю.ш. до 35° с.ш. Внешний пояс, состоящий в основном из электронов, распространяется до широт 65°. Положение в пространстве, объем и плотность частиц в нем сильно меняются, расстояние от Земли колеблется в пределах 25-50 тыс. км. Главное защитное свойство этих поясов в том, что они выполняют роль ловушек для идущих от Солнца частиц с большими энергиями. Магнитное поле, отклоняя их от направления на Землю, вовлекает в кругооборот вокруг планеты. Замечено, что если двигаться от экватора к полюсу, то число попадающих на Землю заряженных частиц несколько возрастает (примерно на 10%). В стратосфере широтный эффект в несколько раз больше, чем на уровне моря. На верхней границе атмосферы интенсивность космических лучей в районе экватора в 5 раз меньше, чем в полярных областях. В этом сказывается отсутствие постоянных поясов заряженных частиц над полярными областями. Однако это увеличение интенсивности корпускулярного потока в приполярных районах сравнительно невелико и не представляет опасности для жизни.

Благодаря магнитному полю наша планета окружена ионосферой - слоем разреженного ионизированного газа на высотах от 70 до 500 км. В этом слое текут мощные электрические токи. Ионосфера и расположенный ниже слой озона поглощают ультрафиолетовое и рентгеновское излучение Солнца, которые, дойдя до поверхности, могли бы уничтожить на ней жизнь. У ионосферы есть еще одно замечательное свойство. Подобно зеркалу, она отражает радиоволны и делает, таким образом, возможной радиосвязь на Земле на большие расстояния.

Интенсивность космического излучения, достигающего поверхности планеты, зависит как от интенсивности солнечного излучения, так и от напряженности магнитного поля Земли и вследствие этого от экранирующего влияния ионосферы и слоев заряженных частиц.

Хотя Земля находится на расстоянии около 150 млн. км от Солнца и защищена атмосферой, ионосферой и поясами заряженных частиц, мы очень тонко чувствуем, что происходит на Солнце. Каждые 11 лет потоки солнечных газов взмывают на сотни тысяч километров вверх, устремляясь в межзвездное пространство. Такая активность продолжается 2-3 года, а затем затухает. В период максимума солнечной активности на Земле наблюдаются яркие полярные сияния, длительное (до 10 дней) нарушение в полярных районах радиосвязи, разыгрываются магнитные бури, в земле начинают течь электрические токи такой силы, что нередко приборы телефонных и телеграфных станций приходят в негодность. Нередко после солнечных вспышек в околоземные пространства вторгаются потоки заряженных частиц очень больших энергий, представляющие оторвавшиеся «куски» солнечной атмосферы. А.Л. Чижевский и его последователи установили, что органическая жизнь на Земле очень чутко реагирует на 11-летний цикл солнечной активности. Периодичность эпидемических заболеваний, их начало, развитие и окончание ритмически следуют за цикличностью нашего дневного светила. Солнце оказывается великим дирижером земных жизненных процессов.

Вполне вероятно, что имеются и более крупные циклы изменения солнечной активности, воздействие которых на органическую жизнь Земли может быть еще сильнее. Однако отсутствие необходимых количественных изменений за длительный срок не позволяет говорить об этом уверенно.

Магнитное поле Земли по своей величине очень мало. Оно в сотни раз слабее, чем поле между подковами обычного школьного магнита. Однако земное поле занимает огромный объем, простираясь на десятки тысяч километров от поверхности Земли. А так как энергия магнитного поля пропорциональна объему, то влияние земного поля на процессы в окрестностях планеты очень велико. Если бы поле исчезло, Земля лишилась бы защиты от заряженных частиц, испускаемых Солнцем и захватываемых в магнитные ловушки. Земной шар подвергся бы бомбардировке космическими частицами огромных энергий. Нам не удалось бы увидеть незабываемые по красоте полярные сияния, так как они происходили бы на освещенной Солнцем стороне Земли вместо окутанных полярной ночью областей, куда отклоняются пути частиц под влиянием магнитного поля.

А есть ли у нас полная уверенность в том, что магнитное поле Земли постоянно существовало в течение всего периода ее жизни как планеты? Однозначно ответить на этот вопрос сейчас нельзя. Чтобы несколько приблизиться к его разрешению, рассмотрим изменение напряженности магнитного поля во времени. В последние годы возникла новая отрасль науки - археомагнетизм, занимающийся изучением величины и направления остаточной намагниченности, замеренной в образцах, взятых из печей (обожженных кирпичей и гончарной посуды). Во всех случаях, когда температура обжига достигала 800° С, т.е. превышала точку Кюри, имевшиеся в обожженной глине зерна магнитных минералов приобретали очень устойчивую во времени термоостаточную намагниченность. В 60-х годах геофизики Е. Телье и С.П. Бурлацкая исследовали термонамагниченность обожженных человеком образцов глины (время обжига установлено по археологическим данным). Это позволило построить кривую изменения напряженности геомагнитного поля за последние 5000-6000 лет. От наших дней в глубь веков магнитное поле плавно нарастает, достигая максимума примерно в начале новой эры. В тот период оно было в 1,5 раза больше современного. Затем поле начинает убывать вплоть до IV тыс. до н.э. Величина магнитного поля 5000-6000 лет назад была в 2 раза меньше, чем в настоящее время. Если двигаться еще дальше по шкале времени, то поле вновь начнет возрастать, хотя как отмечает С.П. Бурлацкая, для уверенных выводов данных недостаточно. Таким образом, нет сомнений в том, что основная дипольная часть магнитного поля Земли испытывает колебания, вероятно имеющие периодический характер» Возможный период изменений поля превышает 6000 лет. Следует отметить, что если максимальные значения поля заморены точно, то минимальные величины напряженности поля неизвестны.

С помощью палеомагнетизма удалось установить одно интересное физическое явление, сопровождающееся резким и значительным по величине уменьшением напряженности магнитного поля. Изучение магнитных свойств геологического разреза горных пород показало, что в процессе осадконакопления северный и южный магнитные полюсы менялись местами (происходила инверсия знако-магнитного поля). В некоторых геологических периодах было по нескольку инверсий магнитного поля. Не менее девяти инверсий поля произошло в последний плиоцен-четвертичный отрезок геологического времени, длившийся 11 млн. лет. Последняя инверсия магнитного поля на нашей планете отмечена в начале четвертичного периода, т.е. 500-800 тыс. лет назад. Считают, что в среднем поле одного знака существует не менее 500 тыс. лет.

В момент инверсии величина поля уменьшается до 0,3 от нормальной, а если учесть предшествующий уменьшению некоторый «скачок» его величины, то общая амплитуда уменьшения поля примерно равна его нормальной величине. Процесс инверсии магнитного поля Земли изучен лишь в первом приближении. Не исключено, что в период минимальных значений поля в отдельные промежутки напряженность магнитного поля на Земле была меньше 0,3 от нормального.

Легко понять, что органической жизнью нашей планеты наступление инверсии магнитного поля воспринималось как грандиозная катастрофа. Ведь уменьшение напряженности магнитного поля в 3 раза должно вызвать пропорциональное увеличение уровня космической радиации на Земле. Уменьшение напряженности поля происходило на протяжении отрезка времени, измеряемого столетиями, в течение которых животному миру было необычайно трудно приспособиться к резкому увеличению космической радиации.

Недавно канадский ученый-геолог Я. Крейн предположил, что причиной массового вымирания организмов было не влияние радиации, а непосредственно снижение напряженности магнитного поля в процессе изменения его полярности.

Крейн обосновывает свою догадку экспериментами, во время которых живые организмы помещались в искусственное магнитное поле с меньшей, чем у Земли, напряженностью. После 72-часового пребывания в таком поле способность бактерий к размножению уменьшалась в 15 раз; нарушались двигательные рефлексы у ленточных червей и моллюсков; снижалась нейромоторная активность у птиц; у мышей нарушался обмен веществ. При более длительном пребывании появлялись изменения в тканях и возникало бесплодие.

По мнению Крейна, влияние магнитного поля на организм может быть усилено климатическими изменениями, ветрами, снижением температуры плюс потоком космических лучей; и судя по древним окаменелостям, общий результат всех этих влияний на некоторые живые организмы может быть катастрофическим.

В эволюции органического мира эпохи инверсии, возможно, представляли своеобразное «сито», сквозь которое происходил естественный отбор всего живого на Земле.

ИСЧЕЗНОВЕНИЕ ДИНОЗАВРОВ

Французский ученый Ж. Кювье, основоположник палеонтологии - науки об организмах, живших на Земле в геологическом прошлом, в трактате «Рассуждение о переворотах на поверхности земного шара» (1830) изложил свои представления с связи смены фауны и флоры в истории Земли с великими геологическими переворотами, уничтожавшими живые организмы. Идеи Кювье вошли в историю науки как теория катастроф.

Ошибочность идей Кювье была очевидна для многих передовых биологов еще до появления учения Ч. Дарвина, но после того как в геологии восторжествовали эволюционные идеи Ч. Лайеля, а в биологии - Ч. Дарвина, теория катастроф сохранилась лишь в истории науки.

Как известно, согласно учению Ч. Дарвина, эволюция животного мира и растений определяется естественным отбором. Он устраняет одни генетические комбинации и способствует развитию других, более ценных с точки зрения приспособляемости. Однако объяснение эволюции Живого вещества только лишь как результата естественного отбора встречает ряд трудностей. Так, например, растения, являющиеся по сравнению с животными более пассивными организмами, должны были бы сравнительно слабо развиваться. На самом же деле цветковые растения, наиболее молодые и высокоразвитые, насчитывают гораздо большее число видов, чем млекопитающие. Возможно, этим объясняется в последние годы возврат некоторых палеонтологов к теории катастроф для того, чтобы объяснить причину резкого изменения форм организмов, населявших Землю в ее геологическом прошлом. Наиболее последовательно эти идеи в палеонтологии выражает немецкий ученый О. Шиндевольф. Он считает, что катастрофическое вымирание значительных групп организмов произошло в конце пермского периода (230-250 млн. лет назад). В то время исчезло около 24 групп (отрядов) различных представителей фауны, и в дальнейшем на протяжении 10 млн. лет имело место значительное ее обеднение.

Еще больше изменились фауна и флора в конце мезозойской эры, когда вымирание охватило не только морские группы, но и господствовавшую группу наземных четвероногих - динозавров.

Эти резкие скачки в палеонтологической летописи О. Шиндевольф связывает не с геологическими изменениями, происходившими на поверхности Земли, а с внезапными внешними факторами - мощными взрывами солнечной или космической радиации. Взрывы вызывали вымирание одних групп организмов и ускорение темпов возникновения мутаций в других. Возможный катастрофический характер отдельных периодов развития флоры и фауны предполагается и некоторыми другими советскими и зарубежными исследователями.

Следует сразу же оговориться, что большинство палеонтологов, не отрицая влияния крупных изменений физико-географических условий на развитие жизни, считают, что катастрофические факторы не играли существенной роли в процессе эволюции. Они остаются целиком на позициях дарвинской концепции вымирания как нормального процесса, представляющего результат естественного отбора и неизменно сопутствующего эволюции. Наиболее убедительно эта точка зрения аргументирована советским ученым Л.Ш. Давиташвили. Дело в том, что нельзя считать доказанным положение об одновременном, геологически мгновенном исчезновении групп организмов. Вместе с тем даже те ученые-палеонтологи, которые отрицают внезапное катастрофическое вымирание определенных видов животных в прошлом, признают, что в конкретных условиях могли очень быстро вымирать систематические группы.

Вот уже в течение многих десятков лет исследователи самых разных специальностей - геологи, палеонтологи, биологи, астрономы - ищут причины гибели динозавров и многих других пресмыкающихся, происшедшей в позднем мелу, примерно 80 млн. лет назад.

Одной из отличительных особенностей динозавров было то, что многие из них ходили на двух ногах. Так называемые птеродактили могли летать. Тиранозавры (длиной 14 м) считаются самыми крупными из всех плотоядных животных, живших когда-либо на суше.

Крупнейший среди динозавров, передвигавшихся на четырех ногах, травоядный ящер диплодок достигал в длину (от головы до конца хвоста) 25 м. Это животное имело необыкновенно маленькую головку, длинную шею, массивное туловище, очень длинный хвост и столбовидные ноги. Для гиганта, помимо обычного головного и спинного мозга, природа предусмотрела еще один мозг, располагавшийся в области таза и по своему объему в несколько раз превосходивший головной.

В конце мезозойской эры все эти разнообразные и в большинстве своем прекрасно приспособленные к окружающей среде животные вымерли. Одновременно с ними вымер и ряд других морских и наземных животных.

Ученые по-разному оценивали это явление. Но основной причиной гибели считали изменение климатических условий, а частности значительное похолодание. «Зная восприимчивость рептилий к изменениям температуры, - писал выдающийся русский зоолог М.А. Мензбир,- причину вымирания можно было бы искать в резком или Даже постепенном, но значительном понижении температуры; однако флора не дает на это указаний ни в Европе, ни в Америке» [Мензбир М.А. Очерки истории фауны Европейской части СССР. М., 1934, с. 51] . Интересные соображения по этому поводу высказал один из крупнейших русских геологов академик А.П. Павлов: «Конечно, климатические изменения имели большое влияние на судьбы органического населения какого-нибудь древнего континента или его части. Но ведь климаты Земли не изменялись внезапно и повсеместно... В большинстве случаев животные и растения могли при ухудшении климата мигрировать в другие широты... и если в некоторых случаях это было невозможно, в известном районе могло иметь место вымирание, но оно должно было иметь местный, а не повсеместный на Земле характер и не могло быть причиной полного исчезновения какой-нибудь из широко распространенных групп. Еще труднее применить это объяснение к вымиранию широко распространенных групп морских животных, на судьбы которых изменения рельефа поверхности суши едва ли могли оказывать фатальное влияние» [Павлов А.П. Очерк истории геологических знаний. М., 1916, с. 48] .

Существовало предположение, что гибель травоядных динозавров в конце мела была обусловлена сменой типа растительности, в частности расцветом двудольных покрытосемянных, сильно обогативших атмосферу кислородом и вызвавших снижение в атмосфере свободной углекислоты. Однако и эта причина вымирания всего лишь одной группы животных едва ли могла иметь действие, так как смена растительности произошла еще в начале позднего мела, а резкое вымирание динозавров - лишь в конце его.

Совершенно очевидно, что причину гибели следует искать не в действии того или иного фактора, а в резких изменениях обстановки в целом.

Вымирание ряда групп по времени приходится на ларамийскую органическую фазу. Ларамийский орогенез, совпавший с обширной регрессией моря, должен был чрезвычайно сильно изменить рельеф поверхности земной коры. Это, конечно, повлияло на влажность и общий характер климата, а также на распределение растительности. Для громоздких сухопутных форм рептилий, обитавших, несомненно, на плоском рельефе, быстрое приспособление к новым условиям было трудной задачей, и это обстоятельство, вероятно, оказалось для них роковым,

О. Шиндевольф и ряд других ученых ставят под сомнение совпадение периода ларамийской складчатости с вымиранием живых организмов в конце мезозоя.

Существуют и другие гипотезы, объясняющие этот крупнейший кризис в истории органической жизни Земли. К их числу относится наиболее, на наш взгляд, интересная, выдвинутая еще в 1957 г. советскими учеными В.П. Красовским и И.С. Шкловским. Эта гипотеза предполагает влияние вспышек сверхновых звезд на эволюцию жизни на Земле. Авторы указывают, что каждая вспышка сверхновых дает огромное количество космических лучей с очень высокими энергиями. Солнце, двигающееся вместе с окружающими его планетами в пределах Галактики, могло попадать в такие области космического пространства, где плотность космических лучей была в сотни раз выше, чем в настоящее время. Это происходило тогда, когда сверхновые вспыхивали в непосредственной близости от Солнца. Анализируя частоту их вспышек в пределах Галактики, Красовский и Шкловский приходят к выводу, что примерно один раз в 200 млн. лет в качестве сверхновых вспыхивали ближайшие к Солнцу звезды, находящиеся на расстоянии меньше 8 парсек . Поток жесткого, например рентгеновского, излучения при этом был очень большой интенсивности, превышая обычный уровень космических излучений, достигающих поверхности Земли, в десятки, если не в сотни раз. Такие эпохи длились несколько тысячелетий.

Все это могло иметь серьезные биологические, и прежде всего генетические, последствия. Должна была увеличиться частота мутаций, что, как известно, особенно сказывается на долгоживущих организмах. При вспышках сверхновых вблизи Солнечной системы происходило длительное, продолжавшееся несколько тысячелетий, воздействие на организмы космических лучей с интенсивностью в десятки и сотни раз больше обычной.

В.П. Красовский и И.С. Шкловский предполагают, что с этим процессом связана гибель динозавров в конце мелового периода. Они считают, что увеличение потока космических лучей при вспышках сверхновых иногда могло оказаться и благоприятным фактором для эволюции. Так, не исключено, что пышный расцвет растительности в каменноугольном периоде был обусловлен повышением уровня жесткой радиации космического происхождения. Возможно, этот фактор стимулировал в свое время появление из простых органических соединений сложных комплексов, из которых развивалась жизнь на Земле.

Как уже упоминалось, в конце мелового периода помимо динозавров вымерли еще многие виды живых организмов, например аммониты - моллюски, напоминавшие современных наутилусов и имевшие такую же спирально свернутую раковину. Аммониты, появившиеся еще в позднесилурийскую эпоху (примерно 400 млн. лет назад), быстро развились и во множестве видов были распространены в древних морях. И вот перед их полным исчезновением в меловом периоде, а особенно в позднемеловое время, раковины многих аммонитов приобретают необычные, причудливые формы. Появление «аномальных» раковин можно объяснить ростом мутаций из-за увеличения потока космических лучей, достигавших поверхности Земли. Здесь важно отметить тот факт, что аммониты населяли поверхность моря, т.е. не были защищены от воздействия космической радиации слоем воды. Последнее обстоятельство, напротив, способствовало большей устойчивости в конце мелового периода морских животных по сравнению с наземными. Американский ученый Брамлет считает, что примерно в то же время произошло массовое вымирание фитопланктона - одной из форм микроорганизмов, населявших морскую поверхность и являвшихся продуктом питания для многих крупных животных.

Кратко упомянем и другие гипотезы, объясняющие массовое вымирание некоторых групп живых организмов.

Первая категория этих гипотез исходит из того, что образование гор на поверхности Земли шло относительно быстро, в виде революций. К этим гипотезам относится объяснение причин вымирания, предложенное В.Л. Личковым. По его мнению, в истории развития Земли было шесть геологических циклов, завершавшихся шестью преобразовательными революциями. Каждая такая революция создавала контрастный рельеф земной поверхности, способствовавший интенсивной разрушительной деятельности поверхностных вод и поступлению в пониженные части суши и в моря большого количества солей. Последнее обстоятельство влияло на расцвет растительности и животных организмов. Затем по мере сглаживания рельефа количество веществ, выносимых на низменности и в моря, уменьшалось до тех пор, пока в какой-то мере не становилось минимальным. В этот период происходило массовое вымирание, по выражению Б.Л. Личкова «менее пластичных форм живых существ» . Новые горообразовательные движения приводили к новому расцвету сохранившихся форм жизни.

Упоминавшееся выше исчезновение фитопланктона Брамлет объясняет с позиций, близких к гипотезе Личкова. В конце мелового периода Земля переживала эпоху тектонического покоя, в результате чего рельеф поверхности оказался более сглаженным, чем обычно, и соответственно снос в океан минеральных веществ, нужных для питания морских микроорганизмов, сильно уменьшился.

Однако гипотеза Б.Л. Личкова, как и другие близкие гипотезы, опровергается тем, что у современной геологии нет никаких данных об образовании гор на поверхности Земли в виде переворотов. Напротив, есть достаточно много фактов считать горообразовательные движения длительными, происходившими так медленно, что за это время постепенно перестраивалась и перераспределялась фауна и флора.

Довольно распространенная группа гипотез объясняет вымирание организмов изменением состава земной атмосферы. А.П. Павлов считал, что две великие эпохи вымирания живых организмов (одна в конце палеозойской эры - 200 млн. лет назад и другая в конце мезозойской эры - 70-80 млн. лет назад) хронологически соответствуют двум «великим геологическим революциям» - герцинской и ларамийской. В это время интенсивно проявлялся вулканизм, наземный и подводный, приводивший к изменениям газового состава атмосферы и солевого состава морей. По мнению А.П. Павлова, эти изменения и были главным фактором вымирания.

Наконец, существуют гипотезы, связывающие вымирание больших групп организмов с колебанием уровня Мирового океана, с изменением его солености, с количеством микроэлементов в почве и водах.

В то же время следует учитывать, что летопись жизни на Земле пока является далеко не полной, и в результате события, которые представляются внезапными и катастрофическими, на самом деле могли быть обусловлены постепенными изменениями геолого-географической обстановки и сопровождались появлением организмов; отражавших соответствующие эволюционные процессы.

Вся жизнь на Земле, жизнь всех живых организмов от простых одноклеточных бактерий до сложных биологических видов, жизнь растений, животных и человека происходит в 3-х важных составляющих: на географической поверхности Земли; в водной среде гидросферы планеты; и под бело-голубым куполом - атмосферой Земли.

Основную часть поверхности земного шара занимает мировой океан, где на материковые и безводные части приходится менее 1/3 всей поверхности Земли. Поверхность Земли состоит из земной коры, её подводной части и материковой, водной части, а также атмосферой, создающей голубой купол, обволакивающий земной шар.

Интересно, что атмосфера Земли является важной составной частью происхождения и поддержания жизни на планете, а также является и защитной оболочкой планеты. В атмосфере происходит формирование погоды на Земле, она регулирует процесс круговорота воды в природе, атмосфера защищает Землю от космических лучей и повышает температуру поверхности Земли, формируя "парниковый эффект".

Введение

1. Основные оболочки земли

3. Геотермический режим земли

Заключение

Список использованных источников


Введение

Геология - наука о строении и истории развития Земли. Основные объекты исследований - горные породы, в которых запечатлена геологическая летопись Земли, а также современные физические процессы и механизмы, действующие как на ее поверхности, так и в недрах, изучение которых позволяет понять, каким образом происходило развитие нашей планеты в прошлом.

Земля постоянно изменяется. Некоторые изменения происходят внезапно и весьма бурно (например, вулканические извержения, землетрясения или крупные наводнения), но чаще всего - медленно (за столетие сносится или накапливается слой осадков мощностью не более 30 см). Такие перемены не заметны на протяжении жизни одного человека, но накоплены некоторые сведения об изменениях за продолжительный срок, а при помощи регулярных точных измерений фиксируются даже незначительные движения земной коры.

История Земли началась одновременно с развитием Солнечной системы примерно 4,6 млрд. лет назад. Однако для геологической летописи характерны фрагментарность и неполнота, т.к. многие древние породы были разрушены или перекрыты более молодыми осадками. Пробелы должны восполняться посредством корреляции с событиями, происходившими в других местах и о которых имеется больше данных, а также методом аналогий и выдвижением гипотез. Относительный возраст пород определяется на основании комплексов содержащихся в них ископаемых остатков, а отложений, в которых такие остатки отсутствуют, - по взаимному расположению тех и других. Кроме того, абсолютный возраст почти всех пород может быть установлен геохимическими методами.

В настоящей работе рассмотрены основные оболочки земли, ее состав и физическое строение.


1. Основные оболочки земли

Земля имеет 6 оболочек: атмосферу, гидросферу, биосферу, литосферу, пиросферу и центросферу.

Атмосфера - внешняя газовая оболочка Земли. Ее нижняя граница проходит по литосфере и гидросфере, а верхняя - на высоте 1000 км. В атмосфере различают тропосферу (двигающийся слой), стратосферу (слой над тропосферой) и ионосферу (верхний слой).

Средняя высота тропосферы - 10 км. Ее масса составляет 75% всей массы атмосферы. Воздух тропосферы перемещается как в горизонтальном, так и в вертикальном направлениях.

Над тропосферой на 80 км поднимается стратосфера. Ее воздух, перемещающийся лишь в горизонтальном направлении, образует слои.

Еще выше простирается ионосфера, получившая свое название в связи с тем, что ее воздух постоянно ионизируется под воздействием ультрафиолетовых и космических лучей.

Гидросфера занимает 71% поверхности Земли. Ее средняя соленость составляет 35 г/л. Температура океанической поверхности - от 3 до 32°С, плотность - около 1. Солнечный свет проникает на глубину 200 м, а ультрафиолетовые лучи - на глубину до 800 м.

Биосфера, или сфера жизни, сливается с атмосферой, гидросферой и литосферой. Ее верхняя граница достигает верхних слоев тропосферы, нижняя - проходит по дну океанских впадин. Биосфера подразделяется на сферу растений (свыше 500 000 видов) и сферу животных (свыше 1 000 000 видов).

Литосфера - каменная оболочка Земли - толщиной от 40 до 100 км. Она включает материки, острова и дно океанов. Средняя высота материков над уровнем океана: Антарктиды - 2200 м, Азии - 960 м, Африки - 750 м, Северной Америки - 720 м, Южной Америки - 590 м, Европы - 340 м, Австралии - 340 м.

Под литосферой расположена пиросфера - огненная оболочка Земли. Ее температура повышается примерно на 1°С на каждые 33 м глубины. Породы на значительных глубинах вследствие высоких температур и большого давления, вероятно, находятся в расплавленном состоянии.

Центросфера, или ядро Земли, расположена на глубине 1800 км. По мнению большинства ученых, она состоит из железа и никеля. Давление здесь достигает 300000000000 Па (3000000 атмосфер), температура - нескольких тысяч градусов. В каком состоянии находится ядро, пока неизвестно.

Огненная сфера Земли продолжает охлаждаться. Твердая оболочкой утолщается, огненная - сгущается. В свое время это привело к формированию твердых каменных глыб - материков. Однако влияние огненной сферы на жизнь планеты Земля все еще очень велико. Неоднократно менялись очертания материков и океанов, климат, состав атмосферы.

Экзогенные и эндогенные процессы беспрерывно изменяют твердую поверхность нашей планеты, что, в свою очередь, активно влияет на биосферу Земли.

2. Состав и физическое строение земли

Геофизические данные и результаты изучения глубинных включений свидетельствуют о том, что наша планета состоит из нескольких оболочек с различными физическими свойствами, изменение которых отражает как смену химического состава вещества с глубиной, так и изменение его агрегатного состояния как функции давления.

Самая верхняя оболочка Земли - земная кора - под континентами имеет среднюю толщину около 40 км (25-70 км), а под океанами - всего 5-10 км (без слоя воды, составляющего в среднем 4,5 км). За нижнюю кромку земной коры принимается поверхность Мохоровичича - сейсмический раздел, на котором скачкообразно увеличивается скорость распространения продольных упругих волн с глубиной от 6,5-7,5 до 8-9 км/с, что соответствует увеличению плотности вещества от 2,8-3,0 до 3,3 г/см3.

От поверхности Мохоровичича до глубины 2900 км простирается мантия Земли; верхняя наименее плотная зона толщиной 400 км выделяется как верхняя мантия. Интервал от 2900 до 5150 км занят внешним ядром, а от этого уровня до центра Земли, т.е. от 5150 до 6371 км, находится внутреннее ядро.

Земное ядро интересовало ученых с момента его открытия в 1936 году. Получить его изображение было чрезвычайно трудно из-за относительно малого числа сейсмических волн, достигавших его и возвращавшихся к поверхности. Кроме того, экстремальные температуры и давления ядра долгое время трудно было воспроизвести в лаборатории. Новые исследования способны обеспечить более детальную картину центра нашей планеты. Земное ядро разделяется на 2 отдельные области: жидкую (внешнее ядро) и твердую (внутреннее), переход между которыми лежит на глубине 5 156 км.

Железо - единственный элемент, который близко соответствует сейсмическим свойствам земного ядра и достаточно обильно распространен во Вселенной, чтобы представить в ядре планеты приблизительно 35% ее массы. По современным данным, внешнее ядро представляет собой вращающиеся потоки расплавленного железа и никеля, хорошо проводящие электричество. Именно с ним связывают происхождение земного магнитного поля, считая, что, подобно гигантскому генератору, электрические токи, текущие в жидком ядре, создают глобальное магнитное поле. Слой мантии, находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре выше, чем в мантии. Местами этот слой порождает огромные, направленные к поверхности Земли тепломассопотоки - плюмы.

Внутреннее твердое ядро не связано с мантией. Полагают, что его твердое состояние, несмотря на высокую температуру, обеспечивается гигантским давлением в центре Земли. Высказываются предположения о том, что в ядре помимо железоникелевых сплавов должны присутствовать и более легкие элементы, такие как кремний и сера, а возможно, кремний и кислород. Вопрос о состоянии ядра Земли до сих пор остается дискуссионным. По мере удаления от поверхности увеличивается сжатие, которому подвергается вещество. Расчеты показывают, что в земном ядре давление может достигать 3 млн. атм. При этом многие вещества как бы металлизируются - переходят в металлическое состояние. Существовала даже гипотеза, что ядро Земли состоит из металлического водорода.

Внешнее ядро также является металлическим (существенно железным), но в отличие от внутреннего ядра металл находится здесь в жидком состоянии и не пропускает поперечные упругие волны. Конвективные течения в металлическом внешнем ядре являются причиной формирования магнитного поля Земли.

Мантия Земли состоит из силикатов: соединений кремния и кислорода с Mg, Fe, Ca. В верхней мантии преобладают перидотиты - горные породы, состоящие преимущественно из двух минералов: оливина (Fe,Mg) 2SiO4 и пироксена (Ca, Na) (Fe,Mg,Al) (Si,Al) 2O6. Эти породы содержат относительно мало (< 45 мас. %) кремнезема (SiO2) и обогащены магнием и железом. Поэтому их называют ультраосновными и ультрамафическими. Выше поверхности Мохоровичича в пределах континентальной земной коры преобладают силикатные магматические породы основного и кислого составов. Основные породы содержат 45-53 мас. % SiO2. Кроме оливина и пироксена в состав основных пород входит Ca-Na полевой шпат - плагиоклаз CaAl2Si2O8 - NaAlSi3O8. Кислые магматические породы предельно обогащены кремнеземом, содержание которого возрастает до 65-75 мас. %. Они состоят из кварца SiO2, плагиоклаза и K-Na полевого шпата (K,Na) AlSi3O8. Наиболее распространенной интрузивной породой основного состава является габбро, а вулканической породой - базальт. Среди кислых интрузивных пород чаще всего встречается гранит, a вулканическим аналогом гранита является риолит.

Таким образом, верхняя мантия состоит из ультраосновных и ультрамафических пород, а земная кора образована главным образом основными и кислыми магматическими породами: габбро, гранитами и их вулканическими аналогами, которые по сравнению с перидотитами верхней мантии содержат меньше магния и железа и вместе с тем обогащены кремнеземом, алюминием и щелочными металлами.

Под континентами основные породы сосредоточены в нижней части коры, а кислые породы - в верхней ее части. Под океанами тонкая земная кора почти целиком состоит из габбро и базальтов. Твердо установлено, что основные породы, которые по разным оценкам составляют от 75 до 25% массы континентальной коры и почти всю океаническую кору, были выплавлены из верхней мантии в процессе магматической деятельности. Кислые породы обычно рассматривают как продукт повторного частичного плавления основных пород в пределах континентальной земной коры. Перидотиты из самой верхней части мантии обеднены легкоплавкими компонентами, перемещенными в ходе магматических процессов в земную кору. Особенно "истощена" верхняя мантия под континентами, где возникла наиболее толстая земная кора.

земля оболочка атмосфера биосфера


3. Геотермический режим земли

Геотермический режим мёрзлых толщ - определяется условиями теплообмена на границах мёрзлого массива. Основные формы геотермического режима - периодические колебания температуры (годовые, многолетние, вековые и т.д.), характер которых обусловлен изменением температур на поверхности и потоком тепла из недр Земли. При распространении температурных колебаний от поверхности вглубь пород их период остаётся неизменным, а амплитуда экспоненциально убывает с глубиной. Пропорционально возрастанию глубины экстремальные температуры запаздывают на отрезок времени, называемый сдвигом фаз. При равных амплитудах колебаний температур отношение глубин их затухания пропорционально корню квадратному из отношений периодов.

Специфика геотермического режима мёрзлых толщ определяется наличием фазовых переходов "вода-лёд", сопровождаемых выделением или поглощением тепла и изменением теплофизических свойств пород. Затраты тепла на фазовые переходы замедляют продвижение изотермы 0°С, обуславливают тепловую инерцию мёрзлых толщ. В верхней части разреза мёрзлой толщи выделяется слой годовых колебаний температур. В подошве этого слоя температура соответствует среднегодовой температуре за многолетний (5-10 лет) период. Мощность слоя годовых колебаний температур изменяется в среднем от 3-5 до 20-25 м в зависимости от среднегодовой температуры и теплофизических свойств пород.

Температурное поле пород ниже слоя годовых колебаний формируется под воздействием теплового потока из недр Земли и температурных колебаний на поверхности с периодом более 1 года. Влияние на него оказывают геологическое строение, теплофизические характеристики пород и перенос тепла подземными водами, контактирующими с многолетнемёрзлыми толщами.

При деградации многолетнемёрзлых пород наиболее низкая температура отмечается глубже подошвы слоя годовых колебаний, это вызвано повышением среднегодовой температуры. При аградационном развитии температурное поле отражает охлаждение мёрзлой толщи с поверхности, что выражается в увеличении температурного градиента.

Динамика нижней границы мёрзлой толщи зависит от соотношения тепловых потоков в мёрзлой и талой зоне. Их неравенство обусловлено длиннопериодными колебаниями температур на поверхности, которые проникают на глубину, превышающую мощность мёрзлой толщи. От особенностей геотермического режима и его изменений под воздействием горных выработок и других инженерных сооружений существенно зависят инженерно-геологические и гидрогеологические условия разработки месторождений. Изучение геотермического режима и прогноз его изменения проводится в ходе геокриологической съёмки.


Заключение

Индивидуальное лицо планеты, подобно облику живого существа, во многом определяется внутренними факторами, возникающими в ее глубоких недрах. Изучать эти недра очень трудно, так как материалы, из которых состоит Земля, непрозрачны и плотны, поэтому объем прямых данных о веществе глубинных зон весьма ограничен.

Существует много остроумных и интересных методов изучения нашей планеты, но основная информация о ее внутреннем строении получена в результате исследований сейсмических волн, возникающих при землетрясениях и мощных взрывах. Каждый час в различных точках Земли регистрируется около 10 колебаний земной поверхности. При этом возникают сейсмические волны двух типов: продольные и поперечные. В твердом веществе могут распространяться оба типа волн, а вот в жидкостях - только продольные.

Смещения земной поверхности регистрируются сейсмографами, установленными по всему земному шару. Наблюдения скорости, с которой волны проходят сквозь Землю, позволяют геофизикам определить плотность и твердость пород на глубинах, недоступных прямым исследованиям. Сопоставление плотностей, известных по сейсмическим данным и полученным в ходе лабораторных экспериментов с горными породами (где моделируются температура и давление, соответствующие определенной глубине Земли), позволяет сделать вывод о вещественном составе земных недр. Новейшие данные геофизики и эксперименты, связанные с исследованием структурных превращений минералов, позволили смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли.





Зації життя. Основними структурними елементами тут виступають біогеоценози, оточуюче їх середовище, тобто географічна оболонка Землі (атмосфера, ґрунт, гідросфера, сонячна радіація, космічне випромінювання та ін.), антропогенний вплив. У загальному вигляді В.І. Вернадський основними структурними компонентами біосфери назвав живу, косну і біокосну речовину з їх унікальними життєво важливими функці ...


Не на этом ли пути можно обнаружить мостик между неживой и живой природой. Решающее слов в этом вопросе принадлежит различным будущим биохимическим и генетическим исследованиям. Таким образом, основные гипотезы о происхождении жизни на Земле можно разделить на 3 группы: 1) религиозная гипотеза о "божественном" происхождения жизни; 2) "панспермия" - жизнь возникла в космосе и затем была занесена...

25 мг. Витамин U способствует заживлению язв желудка и двенадцатиперстной кишки. Содержится в петрушке, соке свежей белокочанной капусты. 1.1.6. Прочие вещества пищевых продуктов. Кроме рассмотренных основных веществ пищевые продукты содержат органические кислоты, эфирные масла, гликозиды, алкалоиды, дубильные вещества, красящие вещества и фитонциды. Органические кислоты содержатся в...

Еще и менее важные ортодоксальные школы, как, например, грамматическая, медицинская и другие, отмеченные в сочинении Мадхавачарьи. К числу неортодоксальных систем относятся главным образом три основные школы - материалистическая (типа чарвака), буддийская (вайбхашика, саутрантика, йогочара и мадьямака) и джайнская. Их называют неортодоксальными потому, что они не признают авторитета вед. 1) ...

Введение

1. Гипотезы происхождения Земли и их обоснование

2. Формирование внутренних оболочек Земли в процессе ее геологической эволюции

2.1 Основные этапы эволюции Земли

2.2 Внутренние оболочки Земли

3.1 Гидросфера

3.2 Атмосфера

Заключение

Архей и протерозой - две наиболее крупные эры, в течение которых начала формироваться жизнь на уровне микроорганизмов. Эти две эры объединяют в «надэру» - криптозой (время скрытой жизни). Первые многоклеточные организмы появились в самом конце протерозоя около 600 млн. лет назад.

Примерно 570 млн. лет назад, когда на Земле практически сформировались благоприятные условия для жизни, началось бурное развитие живых организмов. С этого момента наступило «время явной жизни» - фанерозой. Этот отрезок геологической истории подразделяют на 3 эры - палеозой, мезозой и кайнозой. Последняя эра, с точки зрения гео- и биологии, продолжается до сих пор. Следует отметить, что появление и развитие жизни на земле привело к значительному изменению твердой оболочки Земли (литосферы), гидросферы и атмосферы, а возникновение разумной жизни (человека) за короткий временной интервал вызвало глобальные изменения в эволюции планеты. Мезозойская эра характеризуется активным проявлением магматической деятельности, интенсивным процессом горообразования. В этой эре господствовали динозавры.

Различия в составе горных пород от одной эпохи к другой, в свою очередь, обусловлены резкими изменениями природно-климатических и физических условий на планете. Установлено, что климат на Земле многократно менялся, потепления сменялись резкими похолоданиями, происходили поднятия и опускания суши. Случались и крупные космические катастрофы: столкновения с метеоритами, кометами и астероидами. На Земле обнаружено большое число метеоритных кратеров крупных размеров. Самый крупный из них на полуострове Юкатан имеет диаметр более 100 км; его возраст- 65 млн. лет - практически совпадает с окончанием мелового и началом палеогенового периода. Многие палеонтологи именно с этой крупнейшей катастрофой связывают вымирание динозавров.

Изменения климата и температуры во многом обусловлены астрономическими факторами: наклоном земной оси (многократно менялся), возмущениями планет-гигантов, активностью Солнца, движением Солнечной системы вокруг Галактики. Согласно одной из гипотез резкие изменения климата происходят раз в 210- 215 млн. лет (галактический год), когда Солнечная система, обращаясь вокруг центра Галактики, проходит через газопылевое облако. Это способствует ослаблению солнечного излучения и, как следствие, похолоданию на планете. В эти моменты на Земле наступают ледниковые эпохи – появляются и растут полярные шапки. Последняя ледниковая эпоха началась примерно 5 млн. лет назад и продолжается до сих пор. Ледниковая эпоха характеризуется периодическими колебаниями температуры (раз в 50 тысяч лет). При похолоданиях (ледниковый период) ледники могут распространяться от полюсов к экватору до 30- 40 градусов. Сейчас мы живем в «межледниковый» период ледниковой эпохи. Наследство ледниковой эпохи - зона вечной мерзлоты (в России свыше половины ее территории).

2.2 Внутренние оболочки Земли

В настоящее время, как известно, Земля имеет ядро, состоящее в основном из железа и никеля. Вещества, содержащие более легкие элементы (кремний, магний и другие), постепенно «всплывали», образуя мантию и кору Земли. Самые легкие элементы вошли в состав океанов и первичной атмосферы Земли. Материалы, слагающие твердую Землю, непрозрачны и плотны. Поэтому их исследования возможны лишь до глубин, составляющих ничтожную часть радиуса Земли. Самые глубокие пробуренные скважины и имеющиеся в настоящее время проекты ограничены глубинами 10- 15 км, что составляет немногим более 0,1% от радиуса. Поэтому сведения о глубоких недрах Земли получают, используя лишь косвенные методы. К ним относятся сейсмический, гравитационный, магнитный, электрический, электромагнитный, термический, ядерный и другие методы . Наиболее надежным из них является сейсмический. Он основан на наблюдении сейсмических волн, возникающих в твердой Земле при землетрясениях. Сейсмические волны дают возможность составить представление о внутреннем строении Земли и об изменении физических свойств вещества земных недр с глубиной.

Сейсмические волны бывают двух типов: продольные и поперечные. В продольных волнах частицы сдвигаются вдоль направления, в поперечных – перпендикулярно к этому направлению. Скорость продольных волн больше, чем поперечных. Когда сейсмическая волна встречает какую-либо границу раздела, происходит ее отражение и преломление. Наблюдая сейсмические колебания можно определить глубину границ, на которых происходит изменение свойств пород, и величину самих изменений.

Поперечные волны не могут распространяться в жидкой среде, поэтому наличие поперечных волн говорит о том, что литосфера является твердой вплоть до больших глубин. Однако, начиная с глубины 3000 км, поперечные волны распространяться не могут. Отсюда вывод: внутренняя часть литосферы образует ядро, которое находится в расплавленном состоянии. Кроме того само ядро еще делится на две зоны: внутреннее твердое ядро и жидкое внешнее (слой между 2900 и 5100 км).

Твердая оболочка Земли тоже неоднородна – в ней имеется резкая поверхность раздела на глубине около 40 км. Эта граница называется поверхностью Мохоровичича. Область выше поверхности Мохоровича называется корой, ниже мантией.

Мантия распространяется до глубины 2900 км. Она подразделяется на 3 слоя: верхний, промежуточный и нижний. Верхний слой – астеносфера, характеризуется относительно малой вязкостью вещества. В астеносфере находятся очаги вулканов. Понижение температуры плавления вещества астеносферы приводит к образованию магмы, которая по трещинам и каналам земной коры может изливаться на поверхность Земли. Промежуточный и нижний слои находятся в твердом, кристаллическом состоянии.

Верхний слой Земли называют земной корой и подразделяется на несколько слоев. Самые верхние слои земной коры состоят преимущественно из пластов осадочных горных пород, образовавшихся путем осаждения различных мелких частиц, главным образом в морях и океанах. В этих пластах захоронены остатки животных и растений, населявших в прошлом земной шар. Общая мощность (толщина) осадочных пород не превышает 15- 20 км.

Различие скорости распространения сейсмических волн на континентах и на дне океана позволило сделать вывод о том, что на Земле существуют два главных типа земной коры: континентальный и океанический.

Мощность коры континентального типа в среднем 30- 40 км, под многими горами достигает местами 80 км. Обычно ниже осадочных пород выделяют два главных слоя: верхний – «гранитный», близкий по физическим свойствам и составу к граниту и нижний, состоящий из более тяжелых пород - «базальтовый» (предполагается, что он состоит главным образом из базальта). Толщина каждого из этих слоев в среднем 15- 20 км. Однако, во многих местах не удается установить границу между гранитным и базальтовым слоями.

Океаническая кора гораздо тоньше (5- 8 км). По составу и свойствам она близка к веществу нижней части базальтового слоя континентов. Но этот тип коры свойствен только глубоким участкам дна океанов, не менее 4 тыс. м. На дне океанов есть области, где кора имеет строение континентального или промежуточного типа.

3. Возникновение атмосферы и гидросферы Земли и их роль в появлении жизни

3.1 Гидросфера

земля планета оболочка атмосфера гидросфера

Гидросфера – это совокупность всех водных объектов Земли (океанов, морей, озер, рек, подземных вод, болот, ледников, снежного покрова).

Большая часть воды сосредоточена в океане, значительно меньше - в континентальной речной сети и подземных водах. Также большие запасы воды имеются в атмосфере, в виде облаков и водяного пара. Свыше 96% объёма гидросферы составляют моря и океаны, около 2% - подземные воды, около 2% - льды и снега, около 0,02% - поверхностные воды суши. Часть воды находится в твёрдом состоянии в виде ледников, снежного покрова и в вечной мерзлоте, представляя собой криосферу . Основная масса льдарасполагается насуше - главнымобразом, в Антарктиде иГренландии. Общая масса егооколо 2,42*10 22 г. Если быэтот лед растаял, то уровень Мирового океана повысился бы примернона 60 м. При этом 10 % суши оказалось бы затопленной морем.

Поверхностные воды занимают сравнительно малую долю в общей массе гидросферы.

История образования гидросферы

Считается, что при разогреве Земли, кора вместе с гидросферой и атмосферой образовались в результате вулканической деятельности – выброса лавы, пара и газов из внутренних частей мантии. Именно в виде пара часть воды поступила в атмосферу.

Значение гидросферы

Гидросфера находится в постоянном взаимодействии с атмосферой, земной корой и биосферой. Циркуляция воды в гидросфере и ее большая теплоемкость уравнивают климатические условия на различных широтах. Гидросфера поставляет водяной пар в атмосферу водяной пар благодаря инфракрасному поглощению создает значительный парниковый эффект, поднимающий среднюю температуру поверхности Земли примерно на 40 °С. Гидросфера влияет на климат и другими путями. Она запасает большие количества тепла летом и постепенно отдает их зимой, смягчая сезонные колебания температуры на континентах. Она переносит, кроме того, тепло из экваториальных районов в умеренные и даже полярные широты.

Поверхностные воды играют важнейшую роль в жизни нашей планеты, являясь основным источником водоснабжения, орошения и обводнения.

Наличие гидросферы сыграло решающую роль в возникно­вении жизни на Земле. Мы знаем сейчас, что жизнь зародилась в океанах, и прошли миллиарды лет, прежде чем стала обитаемой суша.

3.2 Атмосфера

Атмосфера представляет собой газовую оболочку, окружающую Землю и вращающуюся с ней как единое целое. Атмосфера состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H 2 O) и углекислого газа (CO 2). Содержание азота по объему составляет 78,08 %, кислорода – 20,95% , в меньшем количестве содержаться аргон, углекислота, водород, гелий, неон и некоторые другие газы. В нижней части атмосферы содержится также водяной пар (до 3% в тропиках), на высоте 20-25 км имеется слой озона, хотя его количество невелико, но роль его очень значительна.

История образования атмосферы.

Атмосфера образовалась, главным образом, из газов, выделенных литосферой после формирования планеты. На протяжении миллиардов лет атмосфера Земли претерпела значительную эволюцию под влиянием многочисленных физико-химических и биологических процессов: диссипация газов в космическое пространство, вулканическая деятельность, диссоциация (расщепление) молекул в результате солнечного ультрафиолетового излучения, химические реакции между компонентами атмосферы и горными породами, дыхание и обмен веществ живых организмов. Так современный состав атмосферы значительно отличается от первичного, который имел место 4,5 млрд лет назад, когда сформировалась кора. Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфер (570-200 млн. л. до н.э.). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углеводородами, аммиаком, водяным паром). Так образовалась вторичная атмосфера (200 млн. л.н.- наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

· постоянная утечка водорода в межпланетное пространство;

· химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

С появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа, состав атмосферы начал меняться. Первоначальнокислород расходовался на окисление восстановленных соединений - углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончанию данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Так, в периоды угленакопления содержание кислорода в атмосфере заметно превышало современный уровень. Содержание углекислого газа могло повышаться в периоды интенсивной вулканической деятельности. В последнее время на эволюцию атмосферы стал оказывать влияние и человек. Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива.

Строение атмосферы.

Атмосфера имеет слоистое строение. Выделяют тропосферу, стратосферу, мезосферу и термосферу. На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % отобщей массы атмосферы.

Тропосфера- нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8 - 10 км, в умеренных широтах до 10 - 12 км, на экваторе - 16 - 18 км. В тропосфере сосредоточено примерно 80-90% всей массы атмосферы и почти все водяные пары. В тропосфере протекают физические процессы, которые обусловливают ту или иную погоду. В тропосфере осуществляются все превращения водяного пара. В ней образуются облака и формируются осадки, циклоны и антициклоны, очень сильно развито турбулентное и конвективное перемешивание.

Над тропосферой находится стратосфера. Стратосфера характеризуется постоянством или ростом температуры с высотой и исключительной сухостью воздуха, почти нет водяного пара. Процессы в стратосфере практически не влияют на погоду. Стратосфера располагается на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8°С (верхний слой стратосферы). Достигнув на высоте около 40 км значения около 0°С, температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой. Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере.

Важный компонент стратосферы и мезосферы - О 3 , образующийся в результате фотохимических реакций наиболее интенсивно на высоте ~ 30 км. Общая масса О 3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни УФ-излучения Солнца.

Следующийслой, лежащий над стратосферой, это мезосфера. Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура воздуха до высоты 75-85 км понижается до −88 °С. Верхней границей мезосферы является мезопауза, где расположен температурный минимум, выше температура вновь начинает расти. Далее начинается новый слой, который называется термосферой. Температура в ней быстро растет, достигая 1000 – 2000 °С на высоте 400 км. Выше 400 км температура почти не меняется с высотой. Температура и плотность воздуха очень сильно зависят от времени суток и года, а также от солнечной активности. В годы максимума солнечной активности температура и плотность воздуха в термосфере значительно выше, чем в годы минимума.

Далее расположена экзосфера. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация). Далееэкзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

Значение атмосферы.

Атмосфера снабжает нас необходимым для дыхания кислородом. Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

Озон, находящийся в верхней атмосфере, служит своеоб­разным щитом, охраняющим нас от действия ультрафиолето­вого излучения Солнца. Без этого щита развитие жизни на суше в ее современных формах вряд ли было бы возможно.

Заключение

Планета Земля образовалась примерно 4,6 млрд. лет назад и прошла несколько этапов эволюции. В течение этих периодов поверхность планеты постоянно изменялась: происходило формирование рельефа планеты, появилась водная оболочка – гидросфера, газовая оболочка – атмосфера. Возникновение гидросферы и атмосферы явилось началом возникновения жизни на планете. Так именно в водной среде зародились первые живые организмы, появление атмосферы способствовало их выходу на сушу. И на сегодняшний день на Земле постоянно происходят землетрясения, извержения вулканов, поверхность Земли постоянно подвержена влиянию не только внутренних процессов, но и внешних (эрозия под действием ветра, воды, ледников и т.п.), также огромное влияние оказывает и деятельность человека - это говорит о том, что наша планета продолжает эволюционировать, и через несколько тысяч лет и более ее облик и состояние может масштабно измениться.

Список литературы

1. Кожевников Н.М., Краснодембский Е.Г., Ляпцев А.В.,Тульверт В.Ф. Концепции современного естествознания. – СПб.: Изд-во СПбГУЭФ, 1999.

2. Кириллин В.А. Страницы истории науки и техники. – М.: Наука, 1989.

3. Левитан Е.П. Эволюционирующая Вселенная. М.: Просвещение, 1993.

4. Бакулин П.И., Кононович Э.В., Мороз В.И. Курс общей астрономии. – М.: Наука, 1997.

5. http://ru.wikipedia.org


Кириллин В.А. Страницы истории науки и техники. – М.: Наука, 1989. – С.367.

Кожевников Н.М., Краснодембский Е.Г., Ляпцев А.В.,Тульверт В.Ф. Концепции современного естествознания. – СПб.: Изд-во СПбГУЭФ, 1999. – С.141.

Крупнейшим обобщением в комплексе наук о Земле (геология, география, геохимия, биология) стало учение о биосфере, созданное русским ученым В. И. Вернадским. Начав свою научную деятельность (как геолог) с изучения осадочных пород земной коры, В. И. Вернадский выявил огромную роль живых организмов в сложных геохимических процессах нашей планеты. В 1926 г. вышла его книга «Биосфера». В этом произведении глубоко анализируются сложные взаимоотношения живых организмов и неживой природы Земли. Его работа несколько опередила время. Лишь во второй половине ХХ в., на фоне обострения экологических проблем, его учение о биосфере получило широкое распространение.

Важным элементом учения В. И. Вернадского о биосфере является идея тесной зависимости биосферы от деятельности человека и сохранности ее в результате разумного отношения человека к природе. Ученый писал:

Человечество, взятое в целом, становится мощной геологической силой. Перед ним, перед его мыслью и трудом становится вопрос о перестройке биосферы в интересах свободно мыслящего человечества как единого целого. Это новое состояние биосферы, к которому мы, не замечая этого, приближаемся, и есть ноосфера. 1

В настоящее время учение о биосфере представляет собой важнейшую часть экологии, непосредственно связанную с проблемами регулирования взаимодействия человека и природы.

Впервые термин «биосфера» был употреблен Ж. Б. Ламарком в начале XIX в. Позднее он был упомянут в работе австрийского геолога Э. Зюсса в 1875 г. Однако это понятие не было детально разработано названными учеными, а использовано вскользь для обозначения области жизни на Земле. Лишь в работах В. И. Вернадского оно анализируется детально и тщательно и под ним понимается «оболочка жизни» на нашей планете.

Биосферой называют совокупность всех живых организмов нашей планеты и те области геологических оболочек Земли, которые заселены живыми существами и подвергались в течение геологической истории их воздействию.

Границы биосферы. Живые организмы неравномерно распространены в геологических оболочках Земли: литосфере, гидросфере и атмосфере (рис. 1). Поэтому биосфера сейчас включает верхнюю часть литосферы, всю гидросферу и нижнюю часть атмосферы.

Рис. 1. Область распространения организмов в биосфере: 1 - уровень озонового слоя, задерживающего жесткое ультрафиолетовое излучение; 2 - граница снегов; 3 - почва; 4 - животные, обитающие в пещерах; 5 - бактерии в нефтяных скважинах

Литосфера это верхняя твердая оболочка Земли. Ее толщина колеблется в пределах 50–200 км. Распространение жизни в ней ограниченно и резко уменьшается с глубиной. Подавляющее количество видов сосредоточено в верхнем слое, имеющем толщину в несколько десятков сантиметров. Некоторые виды проникают в глубину на несколько метров или десятков метров (роющие животные - кроты, черви; бактерии; корни растений). Наибольшая глубина, на которой были обнаружены некоторые виды бактерий, составляет 3–4 км (в подземных водах и нефтеносных горизонтах). Распространению жизни в глубь литосферы препятствуют различные факторы. Проникновение растений невозможно из-за отсутствия света. Для всех форм жизни существенными препонами служат и возрастающие с глубиной плотность среды и температура. В среднем температурный прирост составляет около 3 °С на каждые 100 м. Именно поэтому нижней границей распространения жизни в литосфере считают трехкилометровую глубину, (где температура достигает около +100 °С).

Гидросфера - водная оболочка Земли, представляет собой совокупность океанов, морей, озер и рек. В отличие от литосферы и атмосферы она полностью освоена живыми организмами. Даже на дне Мирового океана, на глубинах около 12 км, были обнаружены разнообразные виды живых существ (животные, бактерии). Однако основная масса видов обитает в гидросфере в пределах 150–200 м от поверхности. Это связано с тем, что до такой глубины проникает свет. А следовательно, в более низких горизонтах невозможно существование растений и многих видов, зависящих в питании от растений. Распространение организмов на больших глубинах обеспечивается за счет постоянного «дождя» экскрементов, остатков мертвых организмов, падающих из верхних слоев, а также хищничества. Гидробионты обитают как в пресной, так и в соленой воде и по месту обитания делятся на 3 группы:

1) планктон - организмы, живущие на поверхности водоемов и пассивно передвигающиеся за счет движения воды;

2) нектон - активно передвигающиеся в толще воды;

3) бентос - организмы, обитающие на дне водоемов или зарывающиеся в ил.

Атмосфера - газовая оболочка Земли, имеющая определенный химический состав: около 78 % азота, 21 - кислорода, 1 - аргона и 0,03 % углекислого газа. В биосферу входят лишь самые нижние слои атмосферы. Жизнь в них не может существовать без непосредственной связи с литосферой и гидросферой. Крупные древесные растения достигают нескольких десятков метров в высоту, располагая вверх свои кроны. На сотни метров поднимаются летающие животные - насекомые, птицы, летучие мыши. Некоторые виды хищных птиц поднимаются на 3–5 км над поверхностью Земли, высматривая свою добычу. Наконец, восходящими воздушными потоками пассивно заносятся на десятки километров вверх бактерии, споры растений, грибов, семена. Однако все перечисленные летающие организмы или занесенные бактерии лишь временно находятся в атмосфере. Нет организмов, постоянно живущих в воздухе.

Верхней границей биосферы принято считать озоновый слой, располагающийся на высоте от 30 до 50 км над поверхностью Земли. Он защищает все живое на нашей планете от мощного ультрафиолетового солнечного излучения, в значительной мере поглощая эти лучи. Выше озонового слоя существование жизни невозможно.

Таким образом, основная часть видов живых организмов сосредоточена на границах атмосферы и литосферы, атмосферы и гидросферы, образуя относительно «тонкую пленку жизни» на поверхности нашей планеты.

Строение и функционирование биосферы. Биосфера - это глобальная экологическая система , состоящая из множества экосистем более низкого ранга, биогеоценозов, взаимодействием которых друг с другом и обусловлена ее целостность. Действительно, биогеоценозы существуют не изолированно - между ними существуют непосредственные связи и отношения. Например, в водные биогеоценозы ветром, дождями, талыми водами выносятся из наземных экосистем минеральные и органические вещества. Может происходить перемещение организмов из одного биогеоценоза в другой (например, сезонные миграции животных). И наконец, всех объединяет атмосфера Земли, служащая общим резервуаром для живых существ. В нее поступают кислород (выделяемый растениями в процессе фотосинтеза) и углекислый газ (образуемый в процессе дыхания аэробных организмов). Из атмосферы же растения всех экосистем черпают углекислый газ, необходимый им в процессе фотосинтеза, а все дышащие организмы получают кислород.

Существование биосферы базируется на непрерывно осуществляющемся круговороте веществ, энергетической основой которого является солнечный свет (рис. 2).


Рис. 2. Схема биогеохимической цикличности в биосфере. Справа на схеме разрез дерново-подзолистой почвы под хвойным лесом

Круговорот веществ в природе между живой и неживой материей - одна из наиболее характерных особенностей биосферы. Биологический круговорот - это биогенная миграция атомов из окружающей среды в организмы и из организмов в окружающую среду. Биомасса выполняет и другие функции:

1) газовая - постоянный газообмен с внешней средой за счет дыхания живых организмов и фотосинтеза растений;

2) концентрационная - постоянная биогенная миграция атомов в живые организмы, а после их отмирания - в неживую природу;

3) окислительно-восстановительная - обмен веществом и энергией с внешней средой. При диссимиляции окисляются органические вещества, при ассимиляции используется энергия АТФ;

4) биохимическая - химические превращения веществ, составляющие основу жизнедеятельности организма.