Что делать, если в процессе решения задачи из ЕГЭ или на вступительном экзамене по математике вы получили многочлен, который не получается разложить на множители стандартными методами, которыми вы научились в школе? В этой статье репетитор по математике расскажет об одном эффективном способе, изучение которого находится за рамками школьной программы, но с помощью которого разложить многочлен на множители не составит особого труда. Дочитайте эту статью до конца и посмотрите приложенный видеоурок. Знания, которые вы получите, помогут вам на экзамене.

Разложение многочлена на множители методом деления


С том случае, если вы получили многочлен больше второй степени и смогли угадать значение переменной, при которой этот многочлен становится равным нулю (например, это значение равно ), знайте! Этот многочлен можно без остатка разделить на .

Например, легко видеть, что многочлен четвёртой степени обращается в нуль при . Значит его без остатка можно разделить на , получив при этом многочлен третей степени (меньше на единицу). То есть представить в виде:

где A , B , C и D — некоторые числа. Раскроем скобки:

Поскольку коэффициенты при одинаковых степенях должны быть одинаковы, то получаем:

Итак, получили:

Идём дальше. Достаточно перебрать несколько небольших целых чисел, что увидеть, что многочлен третьей степени вновь делится на . При этом получается многочлена второй степени (меньше на единицу). Тогда переходим к новой записи:

где E , F и G — некоторые числа. Вновь раскрываем скобки и приходим к следующему выражению:

Опять из условия равенства коэффициентов при одинаковых степенях получаем:

Тогда получаем:

То есть исходный многочлен может быть разложен на множители следующим образом:

В принципе, при желании, используя формулу разность квадратов, результат можно представить также в следующем виде:

Вот такой простой и эффективный способ разложения многочленов на множители. Запомните его, он может вам пригодиться на экзамене или олимпиаде по математике. Проверьте, научились ли вы пользоваться этим методом. Попробуйте решить следующее задание самостоятельно.

Разложите многочлен на множители :

Свои ответы пишите в комментариях.

Материал подготовил , Сергей Валерьевич

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению. Разложение на множители является полезным навыком для решения основных алгебраических задач, и становится практически необходимым при работе с квадратными уравнениями и другими многочленами. Разложение на множители используется для упрощения алгебраических уравнений, чтобы облегчить их решение. Разложение на множители может помочь вам исключить определенные возможные ответы быстрее, чем вы это сделаете, решая уравнение вручную.

Шаги

Разложение на множители чисел и основных алгебраических выражений

  1. Разложение на множители чисел. Концепция разложения на множители проста, но на практике разложение на множители может оказаться непростой задачей (если дано сложное уравнение). Поэтому для начала рассмотрим концепцию разложения на множители на примере чисел, продолжим с простыми уравнениями, а затем перейдем к сложным уравнениям. Множители данного числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 12 являются числа: 1, 12, 2, 6, 3, 4, так как 1*12=12, 2*6=12, 3*4=12.

    • Аналогично, вы можете рассматривать множители числа как его делители, то есть числа, на которые делится данное число.
    • Найдите все множители числа 60. Мы часто используем число 60 (например, 60 минут в часе, 60 секунд в минуте и т.д.) и у этого числа довольно большое количество множителей.
      • Множители 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60.
  2. Запомните: члены выражения, содержащие коэффициент (число) и переменную, также могут быть разложены на множители. Для этого найдите множители коэффициента при переменной. Зная, как разложить на множители члены уравнений, можно легко упростить данное уравнение.

    • Например, член 12x может быть записан в виде произведения 12 и х. Вы также можете записать 12x как 3(4x), 2(6x) и т.д., разложив число 12 на наиболее подходящие вам множители.
      • Вы можете раскладывать 12x несколько раз подряд. Другими словами, вы не должны останавливаться на 3(4x) или 2(6x); продолжите разложение: 3(2(2x)) или 2(3(2x)) (очевидно, что 3(4x)=3(2(2x)) и т.д.)
  3. Примените распределительное свойство умножения для разложения на множители алгебраических уравнений. Зная, как разложить на множители числа и члены выражения (коэффициенты с переменными), вы можете упростить несложные алгебраические уравнения, найдя общий множитель числа и члена выражения. Обычно для упрощения уравнения необходимо найти наибольший общий делитель (НОД). Такое упрощение возможно благодаря распределительному свойству умножения: для любых чисел а, b, с верно равенство a(b+c) = ab+ac.

    • Пример. Разложите на множители уравнение 12х + 6. Во-первых, найдите НОД 12x и 6. 6 является наибольшим числом, которое делит и 12x, и 6, поэтому вы можете разложить данное уравнение на: 6(2x+1).
    • Этот процесс также верен для уравнений, в которых есть отрицательные и дробные члены. Например, х/2+4 может быть разложено на 1/2(х+8); например, -7x+(-21) может быть разложено на -7(х+3).

    Разложение на множители квадратных уравнений

    1. Убедитесь, что уравнение дано в квадратичной форме (ax 2 + bx + c = 0). Квадратные уравнения имеют вид: ax 2 + bx + c = 0, где а, b, с - числовые коэффициенты отличные от 0. Если вам дано уравнение с одной переменной (х) и в этом уравнении есть один или несколько членов с переменной второго порядка, вы можете перенести все члены уравнения на одну сторону уравнения и приравнять его к нулю.

      • Например, дано уравнение: 5x 2 + 7x - 9 = 4x 2 + x – 18. Оно может быть преобразовано в уравнение x 2 + 6x + 9 = 0, которое является квадратным уравнением.
      • Уравнения с переменной х больших порядков, например, x 3 , x 4 и т.д. не являются квадратными уравнениями. Это кубические уравнения, уравнения четвертого порядка и так далее (только если такие уравнения не могут быть упрощены до квадратных уравнений с переменной х в степени 2).
    2. Квадратные уравнения, где а = 1, раскладываются на (x+d)(x+e), где d*е=с и d+е=b. Если данное вам квадратное уравнение имеет вид: x 2 + bx + c = 0 (то есть коэффициент при x 2 равен 1), то такое уравнение можно (но не гарантированно) разложить на вышеуказанные множители. Для этого нужно найти два числа, которые при перемножении дают «с», а при сложении – «b». Как только вы найдете такие два числа (d и е), подставьте их в следующее выражение: (x+d)(x+e), которое при раскрытии скобок приводит к исходному уравнению.

      • Например, дано квадратное уравнение x 2 + 5x + 6 = 0. 3*2=6 и 3+2=5, поэтому вы можете разложить данное уравнение на (х+3)(х+2).
      • В случае отрицательных членов внесите следующие незначительные изменения в процесс разложения на множители:
        • Если квадратное уравнение имеет вид x 2 -bx+c, то оно раскладывается на: (х-_)(х-_).
        • Если квадратное уравнение имеет вид x 2 -bx-c, то оно раскладывается на: (х+_)(х-_).
      • Примечание: пробелы могут быть заменены на дроби или десятичные числа. Например, уравнение x 2 + (21/2)x + 5 = 0 раскладывается на (х+10)(х+1/2).
    3. Разложение на множители методом проб и ошибок. Несложные квадратные уравнения можно разложить на множители, просто подставляя числа в возможные решения до тех пор, пока вы не найдете правильного решения. Если уравнение имеет вид ax 2 +bx+c, где a>1, возможные решения записываются в виде (dx +/- _)(ex +/- _), где d и е - числовые коэффициенты отличные от нуля, которые при перемножении дают а. Либо d, либо e (или оба коэффициента) могут быть равны 1. Если оба коэффициента равны 1, то воспользуйтесь способом, описанным выше.

      • Например, дано уравнение 3x 2 - 8x + 4. Здесь 3 имеет только два множителя (3 и 1), поэтому возможные решения записываются в виде (3x +/- _)(х +/- _). В этом случае, подставив вместо пробелов -2, вы найдете правильный ответ: -2*3x=-6x и -2*х=-2x; - 6x+(-2x)=-8x и -2*-2=4, то есть такое разложение при раскрытии скобок приведет к членам исходного уравнения.

Рассмотрим на конкретных примерах, как разложить многочлен на множители.

Разложение многочленов будем проводить в соответствии с .

Разложить многочлены на множители:

Проверяем, нет ли общего множителя. есть, он равен 7cd. Выносим его за скобки:

Выражение в скобках состоит из двух слагаемых. Общего множителя уже нет, формулой суммы кубов выражение не является, значит, разложение завершено.

Проверяем, нет ли общего множителя. Нет. Многочлен состоит из трех слагаемых, поэтому проверяем, нет ли формулы полного квадрата. Два слагаемых являются квадратами выражений: 25x²=(5x)², 9y²=(3y)², третье слагаемое равно удвоенному произведению этих выражений:2∙5x∙3y=30xy. Значит, данный многочлен является полным квадратом. Так как удвоенное произведение со знаком «минус», то это — :

Проверяем, нельзя ли вынести общий множитель за скобки. Общий множитель есть, он равен a. Выносим его за скобки:

В скобках — два слагаемых. Проверяем, нет ли формулы разности квадратов или разности кубов. a² — квадрат a, 1=1². Значит, выражение в скобках можно расписать по формуле разности квадратов:

Общий множитель есть, он равен 5. Выносим его за скобки:

в скобках — три слагаемых. Проверяем, не является ли выражение полным квадратом. Два слагаемых — квадраты: 16=4² и a² — квадрат a, третье слагаемое равно удвоенному произведению 4 и a: 2∙4∙a=8a. Следовательно, это — полный квадрат. Так как все слагаемые со знаком «+», выражение в скобках является полным квадратом суммы:

Общий множитель -2x выносим за скобки:

В скобках — сумма двух слагаемых. Проверяем, не является ли данное выражение суммой кубов. 64=4³, x³- куб x. Значит, двучлен можно разложить по формуле :

Общий множитель есть. Но, поскольку многочлен состоит из 4 членов, мы будем сначала , а уже потом выносить за скобки общий множитель. Сгруппируем первое слагаемое с четвертым, в второе — с третьим:

Из первых скобок выносим общий множитель 4a, из вторых — 8b:

Общего множителя пока нет. Чтобы его получить, из вторых скобок вынесем за скобки «-«, при этом каждый знак в скобках изменится на противоположный:

Теперь общий множитель (1-3a) вынесем за скобки:

Во вторых скобках есть общий множитель 4 (этот тот самый множитель, который мы не стали выносить за скобки в начале примера):

Поскольку многочлен состоит из четырех слагаемых, выполняем группировку. Сгруппируем первое слагаемое со вторым, третье — с четвертым:

В первых скобках общего множителя нет, но есть формула разности квадратов, во вторых скобках общий множитель -5:

Появился общий множитель (4m-3n). Выносим его за скобки.

Очень часто числитель и знаменатель дроби представляют собой алгебраические выражения, которые сначала нужно разложить на множители, а потом, обнаружив среди них одинаковые, разделить на них и числитель, и знаменатель, то есть сократить дробь. Заданиям разложить многочлен на множители посвящена целая глава учебника по алгебре в 7-м классе. Разложение на множители можно осуществить 3 способами , а также комбинацией этих способов.

1. Применение формул сокращенного умножения

Как известно, чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить. Есть, как минимум, 7 (семь) часто встречающихся случаев умножения многочленов, которые вошли в понятие . Например,

Таблица 1. Разложение на множители 1-м способом

2. Вынесение общего множителя за скобку

Этот способ основан на применении распределительного закона умножения. Например,

Каждое слагаемое исходного выражения мы делим на множитель, который выносим, и получаем при этом выражение в скобках (то есть в скобках остаётся результат деления того, что было, на то, что выносим). Прежде всего нужно правильно определить множитель , который надо вынести за скобку.

Общим множителем может быть и многочлен в скобках:

При выполнении задания «разложите на множители» надо быть особенно внимательным со знаками при вынесении общего множителя за скобки. Чтобы поменять знак у каждого слагаемого в скобке (b — a) , вынесем за скобку общий множитель -1 , при этом каждое слагаемое в скобке разделится на -1: (b — a) = — (a — b) .

В том случае если выражение в скобках возводится в квадрат (или в любую чётную степень), то числа внутри скобок можно менять местами совершенно свободно, так как вынесенные за скобки минусы при умножении всё равно превратятся в плюс: (b — a) 2 = (a — b) 2 , (b — a) 4 = (a — b) 4 и так далее…

3. Способ группировки

Иногда общий множитель имеется не у всех слагаемых в выражении, а только у некоторых. Тогда можно попробовать сгруппировать слагаемые в скобки так, чтобы из каждой можно было какой-то множитель вынести. Способ группировки - это двойное вынесение общих множителей за скобки.

4. Использование сразу нескольких способов

Иногда нужно применить не один, а несколько способов разложения многочлена на множители сразу.

Это конспект по теме «Разложение на множители» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Любой алгебраический многочлен степени n может быть представлен в виде произведения n-линейных множителей вида и постоянного числа, которое является коэффициентов многочлена при старшей ступени х, т.е.

где - являются корнями многочлена.

Корнем многочлена называют число (действительное или комплексное), обращающее многочлен в нуль. Корнями многочлена могут быть как действительные корни, так и комплексно-сопряженные корни, тогда многочлен может быть представлен в следующем виде:

Рассмотрим методы разложения многочленов степени «n» в произведение множителей первой и второй степени.

Способ №1. Метод неопределенных коэффициентов.

Коэффициенты такого преобразованного выражения определяются методом неопределенных коэффициентов. Суть метода сводится к тому, что заранее известен вид множителей, на которые разлагается данный многочлен. При использовании метода неопределённых коэффициентов справедливы следующие утверждения:

П.1. Два многочлена тождественно равны в случае, если равны их коэффициенты при одинаковых степенях х.

П.2. Любой многочлен третьей степени разлагается в произведение линейного и квадратного множителей.

П.3. Любой многочлен четвертой степени разлагается на произведение двух многочленов второй степени.

Пример 1.1. Необходимо разложить на множители кубическое выражение:

П.1. В соответствии с принятыми утверждениями для кубического выражения справедливо тождественное равенство:

П.2. Правая часть выражения может быть представлена в виде слагаемых следующим образом:

П.3. Составляем систему уравнений из условия равенства коэффициентов при соответствующих степенях кубического выражения.

Данная система уравнений может быть решена методом подбора коэффициентов (если простая академическая задача) или использованы методы решения нелинейных систем уравнений. Решая данную систему уравнений, получим, что неопределённые коэффициенты определяются следующим образом:

Таким образом, исходное выражение раскладывается на множители в следующем виде:

Данный метод может использоваться как при аналитических выкладках, так и при компьютерном программировании для автоматизации процесса поиска корня уравнения.

Способ №2. Формулы Виета

Формулы Виета - это формулы, связывающие коэффициенты алгебраических уравнений степени n и его корни. Данные формулы были неявно представлены в работах французского математика Франсуа Виета (1540 - 1603). В связи с тем, что Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем явном виде.

Для любого алгебраического многочлена степени n, который имеет n-действительных корней,

справедливы следующие соотношения, которые связывают корни многочлена с его коэффициентами:

Формулами Виета удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Пример 2.1. Рассмотрим, как связаны корни многочлена с его коэффициентами на примере кубического уравнения

В соответствии с формулами Виета взаимосвязь корней многочлена с его коэффициентами имеет следующий вид:

Аналогичные соотношения можно составить для любого полинома степени n.

Способ №3. Разложение квадратного уравнения на множители с рациональными корнями

Из последней формулы Виета следует, что корни многочлена являются делителями его свободного члена и старшего коэффициента. В связи с этим, если в условии задачи задан многочлен степени n c целыми коэффициентами

то данный многочлен имеет рациональный корень (несократимая дробь), где p - делитель свободного члена , а q – делитель старшего коэффициента . В таком случае многочлен степени n можно представить в виде (теорема Безу):

Многочлен , степень которого на 1 меньше степени начального многочлена, определяется делением многочлена степени n двучлен , например, с помощью схемы Горнера или самым простым способом - «столбиком».

Пример 3.1. Необходимо разложить многочлен на множители

П.1. В связи с тем, что коэффициент при старшем слагаемом равен единицы, то рациональные корни данного многочлена являются делителями свободного члена выражения, т.е. могут быть целыми числами . Подставляем каждое из представленных чисел в исходное выражение найдем, что корень представленного многочлена равен .

Выполним деление исходного многочлена на двучлен:

Воспользуемся схемой Горнера

В верхней строке выставляются коэффициенты исходного многочлена, при этом первая ячейка верхней строки остается пустой.

В первой ячейке второй строки записывается найденный корень (в рассматриваемом примере записывается число «2»), а следующие значения в ячейках вычисляются определенным образом и они являются коэффициентами многочлена, который получится в результате деления многочлена на двучлен. Неизвестные коэффициенты определяются следующим образом:

Во вторую ячейку второй строки переносится значение из соответствующей ячейки первой строки (в рассматриваемом примере записывается число «1»).

В третью ячейку второй строки записывается значение произведения первой ячейки на вторую ячейку второй строки плюс значение из третьей ячейки первой строки (в рассматриваемом примере 2 ∙1 -5 = -3).

В четвертую ячейку второй строки записывается значение произведения первой ячейки на третью ячейку второй строки плюс значение из четвертой ячейки первой строки (в рассматриваемом примере 2 ∙ (-3) +7 = 1).

Таким образом, исходный многочлен раскладывается на множители:

Способ №4. Использование формул сокращенного умножения

Формулы сокращенного умножения применяют для упрощения вычислений, а также разложение многочленов на множители. Формулы сокращенного умножения позволяют упростить решение отдельных задач.

Формулы, используемые для разложения на множители