Металлы (от лат. metallum - шахта, рудник) - группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

Характерные свойства металлов

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Физические свойства металлов

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности , металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия - двух самых тяжёлых металлов - почти равны (около 22.6 г/см³ - ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны , то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый - светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

оксид лития

пероксид натрия

надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Со средними и малоактивными металлами реакция происходит при нагревании:

При нагревании:

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды - метан.

Эдельман В. Металлы //Квант. - 1992. - № 2. - С. 2-9.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Что такое металлы?

«Металлом называется светлое тело, которое ковать можно»,- писал в 1763 году Ломоносов. Загляните в ваш учебник химии и вы увидите, что металлы обладают характерным металлическим блеском («светлое тело»), хорошо проводят тепло и электрический ток. Правда, тут же вы прочтете, что существуют элементы, проявляющие свойства как металлов, так и неметаллов. Другими словами, нет четкой грани, отделяющей одно от другого. Химика, который интересуется, в первую очередь, химическими реакциями и для которого каждый элемент - свой особый мир, такая неоднозначность не очень смущает. А вот физика это не устраивает. Если физика делит тела на металлы и неметаллы, то нужно понять, в чем их принципиальное различие. Поэтому надо так определить, что такое металл, чтобы, как и в других случаях в области точных наук, удовлетворить двум требованиям:

  1. все металлы должны обладать всеми без исключения приписываемыми им признаками;
  2. иные объекты должны не обладать хотя бы одним из этих признаков.

Вооружившись этими соображениями, посмотрим, все ли металлы без исключения имеют все свойства, приписываемые им учебником. Начнем с «ковать можно», т. е. с пластичности, говоря современным языком. И тут же, по созвучию, мы вспомним пластмассы: ведь не зря они так названы, многим из них свойственна пластичность - способность необратимо изменять форму без разрушения. Конечно, медь, железо, алюминий ковать легко, со свинцом еще проще, индий - довольно редкий и дорогой металл - можно мять почти как воск (а воск ведь - не металл!), щелочные металлы и того мягче. А попробуйте стукнуть по обычному чугуну - и он разлетится на кусочки! Ну, тут металлурги скажут: это потому, что чугун - не простое вещество. Он состоит из кристаллов железа, разделенных прослойками углерода, т. е. графита. Вот по этим-то прослойкам чугун и ломается. Ну что же, все верно. Только вот беда - хрупкий графит, как оказывается, современная физика относит к металлам! Да и не один графит: числятся, например, среди металлов мышьяк, сурьма и висмут, но ковать их можно с таким же успехом, как стекло - разлетаются на мелкие кусочки!

Проделайте такой простой опыт: разбейте баллон сгоревшей лампы, достаньте оттуда вольфрамовую спираль и попробуйте ее раскрутить. Ничего не выйдет, она рассыпется в пыль! Но ведь как-то ее сумели скрутить на заводе? Значит, может быть и такое - то можно деформировать, то нельзя, в зависимости от того, что происходило с образцом в прошлом. Что ж, придется, видимо, с этим признаком - пластичностью - расстаться. Тем более, что он присущ многим неметаллам; ведь то же стекло - нагрей его, и оно станет мягким и податливым.

Итак, укорачиваем формулировку и двигаемся дальше.

На очереди - «блеск», или, говоря научным языком, оптические свойства. Блестящих предметов много: и вода, и стекло, и полированные камни, да мало ли что еще. Так что просто «блеском» не обойтись, вот и говорится: для металлов характерен металлический блеск. Ну, это совсем хорошо: получается, что металл - это металл. Правда, интуитивно мы чувствуем, что металлическим блеском блестят полированные медь, золото, серебро, железо. А широко распространенный минерал пирит - разве не блестит, как металлы? Про типичные полупроводники германий и кремний и говорить не приходится, по внешнему виду их от металлов никак не отличишь. С другой стороны, не так давно научились получать хорошие кристаллы таких соединений, как двуокись молибдена; кристаллы эти коричнево-фиолетовые и на обычный металл мало похожи. Оказывается, это вещество надо считать металлом. Почему - будет ясно чуть дальше.

Так что блеск как чисто «металлический» признак отпадает.

На очереди - теплопроводность. Пожалуй, этот признак можно отбросить сразу - все без исключения тела проводят тепло. Правда, про металлы говорится, что они хорошо проводят тепло. Но, боюсь, на вопрос «что такое хорошо и что такое плохо?» в этом случае ни один папа не ответит.

Хорошо ли проводит тепло медь? Посмотрим в таблицу и сразу же столкнемся со встречным вопросом: а какая медь и при какой температуре? Если взять чистую медь, например ту, из которой делают провода для радиоприборов, и нагреть ее до красного каления, т. е. отжечь, то при комнатной температуре она да еще чистое серебро будут проводить тепло лучше любого другого металла. Но погните такой медный образец, стукните или зажмите в тисках - и его теплопроводность станет заметно хуже. А что произойдет, если кусочек отожженной меди начать охлаждать? Сначала теплопроводность будет расти, увеличится в десятки раз при температуре около 10 К, а потом начнет быстро падать и при достижении абсолютного нуля должна стать нулевой (рис. 1).

Рис. 1. Зависимость удельной теплопроводности от температуры для различных веществ. (Удельная теплопроводность - это количество теплоты, которое протекает между противоположными гранями кубика со стороной 1 см при разности температур между этими гранями 1 К в 1 с.)

Возьмем теперь другой металл - висмут. Картина для него очень похожа на ту, которую мы видели для меди, только максимум теплопроводности лежит при 3 К, а при комнатной температуре висмут проводит тепло плохо, не многим лучше, чем кристалл кварца. Но кварц-то - не металл! И тот же кварц, как видно из рисунка 1, по своим теплопроводным свойствам иногда оказывается не хуже меди. А плавленный кварц, т. е. кварцевое стекло, проводит тепло плохо, примерно как нержавеющая сталь.

Кварц - не исключение. Все кристаллы хорошего качества ведут себя подобным образом, только числа будут немного различными. У алмаза, например, уже при комнатной температуре теплопроводность лучше, чем у меди.

Отбрасываем с чистым сердцем теплопроводность и жалеть об этом не будем. И не только потому, что по этому признаку металл от неметалла не так уж легко отличить, но и потому, что, оказывается, специфические черты в теплопроводности металлов (а такие есть) являются следствием его электропроводности - последнего оставшегося свойства.

И опять в формулировке, приведенной в начале статьи, уточнение - не просто электропроводность, а хорошая электропроводность. А ведь когда речь шла о теплопроводности, эпитет «хорошая» нас насторожил и, как оказалось, не напрасно. Что же - и последнее свойство под подозрением? Надо обязательно его спасать, а то мы останемся вообще без металлов, а заодно без полупроводников, без изоляторов. Вот это наука получается! Любой школьник в большинстве случаев не задумываясь скажет, с чем он имеет дело, а копнули поглубже - остановились в недоумении.

И есть от чего. Возьмем таблицы физических величин и посмотрим на числа. Вот, к примеру, при комнатной температуре удельное сопротивление ρ (Ом·см) меди ~1,55·10 -6 ; у висмута ρ ~ 10 -4 ; у графита ρ ~ 10 -3 ; у чистых кремния и германия ρ ~ 10 2 (но, добавляя примеси, его можно довести до ~10 -3); у мрамора ρ = 10 7 - 10 11 ; у стекла ρ = 10 10 ; а где-то в конце списка - янтарь с удельным сопротивлением до 1019. И где же тут кончаются металлы-проводники и начинаются диэлектрики? А мы еще не упомянули про электролиты. Обычная морская вода неплохо проводит ток. Что же - и ее считать металлом?

Посмотрим, не поможет ли нам температура. Если повышать температуру, то различия между веществами начнут сглаживаться: у меди сопротивление начнет расти, у стекла, например, уменьшаться. Значит, надо проследить за тем, что произойдет при охлаждении. И вот тут мы наконец увидим качественные различия. Посмотрите на рисунок 2: при температурах жидкого гелия, вблизи абсолютного нуля, вещества разделились на две группы. У одних сопротивление остается небольшим, у сплавов или у не очень чистых металлов ρ почти не изменяется при охлаждении, у чистых металлов сопротивление сильно уменьшается. Чем чище и совершеннее кристалл, тем значительнее это изменение. Иногда ц при температуре, близкой к абсолютному нулю, меньше, чем при комнатной, в сотни тысяч раз. У других веществ, например у полупроводников, с понижением температуры сопротивление начинает стремительно возрастать, и чем ниже температура, тем оно больше. Бели бы можно было добраться до абсолютного нуля, то ρ стало бы бесконечно большим. Впрочем, достаточно и того, что сопротивление реально становится столь большим, что никаким современным прибором его уже не измеришь.

Итак, мы добрались до ответа: металлы - это такие вещества, которые проводят электричество при любой температуре.

Рис. 2. Зависимость удельного сопротивления чистых металлов (меди и платины) и полупроводника (чистого германия) от температуры.

В противоположность этому диэлектрики перестают проводить ток, если их охладить до абсолютного нуля. Если пользоваться таким определением, то и графит, и двуокись молибдена оказываются металлами. А куда же отнести полупроводники? Если речь идет о чистых, совершенных кристаллах, то они, строго говоря, диэлектрики. Но если в них содержится много примесей, то они могут стать металлами, т. е. сохранять проводимость при самых низких температурах.

Что же у нас осталось в конце концов? Нам удалось выявить единственный существенный признак, руководствуясь которым мы можем, если не в повседневной практике, то хотя бы в принципе, всегда отличить металл от неметалла. А раз этот признак единственный, то оказываются автоматически удовлетворенными оба условия, выполнения которых мы потребовали в начале статьи.

Почему металлы проводят ток?

Уже давно было замечено, что одни элементы, такие как медь, золото, серебро, железо, свинец, олово, и в чистом виде, и при сплавлении друг с другом образуют металлы. Другие, например фосфор, сера, хлор, азот, кислород, не только сами металлами не являются, но и соединяясь с металлами превращают их в диэлектрики. Пример тому - обыкновенная соль NaCl . Поэтому в химии появилось деление элементов на металлы и неметаллы.

Такая классификация, однако, не более чем констатация фактов, хотя на первый взгляд она претендует на то, чтобы объяснить свойства веществ исходя только из строения атомов. В самом деле, посмотрим на таблицу Менделеева. Элементы, расположенные в одном столбце, очень похожи по своим химическим свойствам. А вот будут ли изготовленные из них кристаллы или сплавы проводить электрический ток? Глядя на таблицу, ответить на этот вопрос нельзя. Так, все элементы первой группы - металлы, за исключением первого - водорода. Но ведь закон, который кому-то разрешено нарушать,- уже не закон. Правда, во второй группе дело обстоит лучше: здесь все элементы - привычные металлы; а в третьей группе опять сбой: бор - полупроводник, а алюминий - прекрасный металл. Дальше еще хуже. Первый элемент четвертой группы - углерод; мы уже упоминали, что графит, так называют кристалл углерода,- это металл. А вот алмаз - тоже кристалл, составленный из атомов углерода, но расположенных иначе, чем в графите,- изолятор. Кремний и германий - классические полупроводники. Олово - казалось бы, типичный металл. Однако... Если всем знакомое белое блестящее олово долго подержать при температуре -30 °С, то его кристаллическая структура изменится, а внешне оно посереет. И это олово - его так и называют «серое олово» - полупроводник! А свинец всегда металл.

Если начинать смешивать разные элементы, то картина совсем усложнится. Возьмем, например, и сплавим два металла индий и сурьму - в пропорции один к одному. Получим широко применяемый в технике полупроводник InSb . С другой стороны, мы уже говорили, что двуокись молибдена МoО 2 при Т ≈ 0 К проводит ток, т. е. МoО 2 - металл. (И WО 2 , и Re 2 О 3 и некоторые другие оксиды - тоже металлы.) А если получающиеся из атомов кристаллы сильно сжать, сдавить, то, оказывается, чуть ли не все вещества становятся металлами, даже такие типичные металлоиды, как сера. Правда, для нее давление перехода в металлическое состояние очень велико - несколько сотен тысяч атмосфер (а для водорода еще больше).

Похоже, что разделить элементы на металлы и неметаллы - не такая уж простая задача. Во всяком случае, ясно, что, рассматривая отдельные атомы, мы не можем сказать, будет ли вещество, составленное из этих атомов, проводить ток при Т ≈ 0 К, потому что огромную роль играет то, как расположены атомы друг относительно друга. Поэтому для ответа на вопрос «почему металлы проводят ток?» надо изучать, как атомы взаимодействуют между собой, образуя твердое тело.

Посмотрим, как обстоит дело с простейшим из металлов - литием. Порядковый номер Li - три. Это означает, что ядро атома Li содержит три протона и положительный заряд ядра компенсируют три электрона. Два из них образуют заполненную s-оболочку, ближайшую к ядру, и сильно связаны с ядром. Оставшийся электронрасположен на второй s-оболочке. На ней мог бы поместиться еще один электрон, но его у лития нет. Все остальные разрешенные состояния энергии свободны, и электроны на них попадают только при возбуждении атома (например, при сильном нагреве паров лития). Схема уровней в атоме лития показана на рисунке 3.

Рис. 3. Схема уровней энергии атома лития и их трансформации в зоны при объединении атомов в кристалл. Красным цветом обозначены занятые состояния.

Рассмотрим теперь множество атомов лития, находящихся в ограниченном объеме. Они могут образовывать газ (пар), жидкость или твердое тело. При достаточно низкой температуре силы взаимного притяжения препятствуют тепловому движению атомов, образуется кристалл. Это наверняка происходит при абсолютном нуле температуры, когда все известные вещества, кроме гелия,- кристаллы.

Итак, из опыта известно, что при низких температурах твердое тело - устойчивое состояние для лития. Но, как известно, устойчивым всегда является такое состояние вещества, в котором его внутренняя энергия меньше, чем в других возможных агрегатных состояниях при той же температуре. Суммарное уменьшение энергии при переходе из одного состояния в другое легко измерить - ведь это и есть теплота испарения или плавления.

С микроскопической точки зрения при низких температурах внутренняя энергия вещества есть, в первую очередь, сумма энергий электронов атомов, составляющих тело. Но электроны в атомах занимают строго определенные уровни энергии. Значит, мы можем ожидать, что при сближении атомов изменятся уровни энергии. При этом распределение электронов по уровням должно оказаться таким, чтобы их суммарная энергия была меньше, чем сумма энергий электронов в таком же количестве изолированных друг от друга атомов.

Что произойдёт с уровнями, можно понять исходя из аналогии движения электрона в атоме с любой колебательной системой, например с маятником. Пусть у нас есть два совершенно одинаковых маятника. Пока они не взаимодействуют друг с другом, частота колебаний обоих маятников одна и та же. Введем теперь взаимодействие между ними - свяжем их, например, мягкой пружинкой. И сразу же вместо одной частоты появятся две. Посмотрите на рисунок 4: связанные маятники могут колебаться синфазно, а могут навстречу друг другу. Очевидно, в последнем случае их движение будет более быстрым, т. е. частота колебаний такой системы выше собственной частоты колебаний одного маятника. Таким образом, связь приводит к расщеплению частот. Если связать три маятника, то станет уже три собственных частоты, у системы из четырех связанных маятников четыре собственные частоты и так далее до бесконечности.

Рис. 4. Колебания связанных маятников.

Поведение любой другой колебательной системы подобно. Если мы заменим маятники, например, на электрические колебательные контуры, то, как хорошо знают радиолюбители, при введении связи между ними их собственные частоты также расщепляются. Электроны в атоме - это тоже своеобразная колебательная система. Как и маятник, электроны имеют массу, есть сила Кулона, возвращающая их к положению равновесия; и этим определяется движение электронов в атоме, характеризуемое, согласно квантовой механике, собственной частотой. Для электронов включение взаимодействия при взаимном сближении приводит к тому, что частоты, бывшие до того одинаковыми, становятся немного разными.

В квантовой механике имеется прямая связь между энергией и частотой колебаний, выражаемая формулой \(~E = h \nu\), где h = 6,6·10 -34 Дж·с - постоянная Планка, а ν - частота колебаний. Поэтому надо ожидать, что при сближении двух атомов лития каждый из уровней, показанных на рисунке 3, расщепится на два. Каждому новому уровню энергии будет соответствовать своя электронная оболочка теперь уже не отдельного атома, а «молекулы». Оболочки заполняются электронами по тому же правилу, что и у атома,- по два электрона на оболочку. Та пара оболочек, которая получилась из самого нижнего уровня, будет полностью заполнена электронами. Действительно, на них можно разместить четыре электрона, а их у двух атомов лития - шесть. Остаются два электрона, которые теперь расположатся на нижнем из уровней второй пары. Заметьте, какой произошел качественный скачок: раньше эти два электрона занимали два из четырех состояний, имеющих одинаковую энергию. Теперь у них появилась возможность выбирать, и они расположились так, чтобы их суммарная энергия была поменьше. Нетрудно сообразить, что произойдет при добавлении следующих атомов: для трех атомов каждый исходный уровень расщепится на три (см. рис. 3). Девять электронов расположатся так: шесть на нижней триаде уровней, возникших из уровня ближайшей к ядру внутренней заполненной оболочки атома; еще два электрона - на нижнем уровне следующей триады; оставшийся электрон - на среднем уровне той же триады. Еще одно место на этом уровне остается свободным, а верхний уровень полностью пуст. Если взять n атомов (\(~n \gg 1\)), то каждый уровень расщепится на n тесно расположенных уровней, образующих, как говорят, полосу или зону разрешенных значений энергии. В нижней полосе все состояния заняты, а во второй - только половина, и именно те, энергия которых ниже. Следующая полоса - полностью пустая.

Расстояние между соседними уровнями в зоне легко оценить. Естественно считать, что при сближении атомов изменение энергии электронов атома примерно равно теплоте испарения вещества, пересчитанной на один атом. Она составляет для металлов обычно несколько электронвольт, а значит, и полная ширина зон ΔE , определяемая взаимодействием соседних атомов, должна иметь тот же масштаб, т. е. ΔE ~ 1 эВ ≈ 10 -19 Дж. Для расстояния между уровнями получим \(~\delta E \sim \dfrac{\Delta E}{n}\), где n - число атомов в образце. Это число чрезвычайно велико: межатомное расстояние составляет всего несколько ангстремов, и объем, приходящийся на один атом, оказывается всего ~ 10 -22 см 3 . Если наш образец имеет, для определенности, объем 1 см 3 , то для него n ≈ 10 22 . Поэтому численно оказывается δE ≈ 10 -22 · ΔE ≈ 10 -41 Дж. Эта величина столь мала, что всегда можно пренебречь квантованием энергии внутри зоны и считать, что в пределах зоны разрешены любые значения энергии.

Итак, в кристалле уровни энергии размываются в зоны, имеющие ширину, сравнимую с расстоянием между ними. Разрешенными для электронов являются состояния внутри зоны, и здесь электроны могут иметь практически любую энергию (разумеется, в пределах ширины зоны). Но очень важно, что число мест в каждой зоне строго ограничено и равно удвоенному числу атомов, составляющих кристалл. И это обстоятельство, совместно с принципом минимума энергии, определяет распределение электронов по зонам. Теперь у нас все готово, чтобы наконец понять, почему литий проводит ток. Взглянем опять на рисунок 3. Что же получилось? Пока атомы были сами по себе, все электроны находились во вполне определенных состояниях, строго одинаковых для всех атомов. Теперь атомы объединились в кристалл. Сами атомы в кристалле не только одинаковы, но и совершенно одинаково расположены относительно соседей (за исключением, конечно, тех, которые попали на поверхность кристалла). А все электроны имеют теперь разные энергии. Это может быть только в том случае, если электроны больше не принадлежат отдельным атомам, а каждый электрон «поделили» между собой все атомы. Другими словами, электроны свободно передвигаются внутри идеального кристалла, образуя как бы жидкость, которая заполняет весь объем образца. И электрический ток - это направленный поток этой жидкости, аналогичный текущей по трубам воде.

Чтобы заставить воду течь по трубе, надо создать разность давлений у концов трубы. Тогда под действием внешних сил молекулы приобретут направленную скорость - вода потечет. Очень важно здесь появление именно направленной скорости, ведь сами по себе молекулы хаотически движутся с громадными скоростями - при комнатной температуре средняя скорость теплового движения молекулы порядка 10 3 м/с. Так что дополнительная энергия, приобретаемая молекулой в потоке, мала по сравнению с энергией теплового движения.

Дополнительная энергия, которую надо сообщить электрону, чтобы он участвовал в общем направленном движении электронов в кристалле (а это и есть ток), также мала по сравнению с собственной энергией электрона. В этом нетрудно убедиться. Мы уже говорили, что энергия электрона по порядку величины равна 1 эВ = 1,6·10 -19 Дж. Если вспомнить, что для свободного электрона \(~E = \dfrac{m \upsilon^2}{2}\) и m = 9,1·10 -31 кг, то легко найти скорость: υ ~ 10 6 м/с. Предположим, что все электроны участвуют в токе, а их в 1 м 3 проводника n ~ 10 28 Z (Z - заряд ядра). Тогда в проводе с поперечным сечением S = 10 -6 м 2 при токе I ≈ 10 А (при большем токе провод расплавится) направленная скорость электронов равна \(~\upsilon_H = \dfrac{I}{neS} \approx 10^{-2} - 10^{-3}\) м/с. Значит, энергия электрона, участвующего в токе, больше энергии Е свободного электрона всего на 10 -8 Е , т. е. на 1,6·10 -27 Дж.

И тут мы сталкиваемся с удивительным фактом: оказывается,электроны, которые расположены в нижней зоне, называемой обычно валентной, не могут изменить свою энергию на малую величину. Ведь если какой-то электрон увеличит свою энергию, то это значит, что он должен перейти на другой уровень, а все соседние уровни в валентной зоне уже заняты. Свободные места есть только в следующей зоне. Но чтобы туда попасть, электрон должен изменить свою энергию сразу на несколько электрон-вольт. Вот так и сидят электроны в валентной зоне и ждут журавля в небе - энергичного кванта. А кванты нужной энергии бывают у видимого или ультрафиолетового света.

Итак, жидкость есть, а течь она не может. И если бы у лития было всего два электрона в атоме, т. е. если бы мы строили картинку для атомов лития, то получили бы мы изолятор. Но твердый гелий - действительно изолятор, так что мы можем уже поздравить себя с некоторым успехом: мы еще не объяснили, почему в металлах может течь ток, зато поняли, почему диэлектрики, где электронов полным-полно и все они «размазаны» по всему кристаллу, не проводят ток.

А что же литий? Да ведь у него есть вторая зона, которая заполнена только наполовину. Энергию, разделяющую занятые и свободные уровни внутри этой зоны, называют энергией Ферми E ф. Как мы уже говорили, разность энергий между уровнями в зоне очень невелика. Электрону, который расположен в зоне возле уровня Ферми, достаточно чуть-чуть увеличить свою энергию - и он на свободе, там, где состояния не заняты. Электронам из приграничной полосы ничто не мешает увеличить энергию под действием электрического поля и приобрести направленную скорость. А ведь это и есть ток! Но так же легко этим электронам и потерять направленную скорость, столкнувшись с атомами-примесями (которые всегда есть) или с другими нарушениями идеальной структуры кристалла. Этим объясняется сопротивление току.

Кажется, ясно, почему гелий - изолятор, а литий - проводник. Попробуем-ка наши представления применить к следующему элементу - бериллию. И тут - осечка, модель не сработала. У бериллия - четыре электрона, и, казалось бы, должны быть полностью заняты первая и вторая зоны, а третья обязана быть пустой. Получается изолятор, в то время как бериллий - металл.

Дело вот в чем. Если ширина зон достаточно велика, то они могут налезть друг на друга. Про такое явление говорят, что зоны перекрываются. У бериллия так и происходит: минимальная энергия электронов в третьей зоне меньше, чем максимальная во второй. Поэтому электронам оказывается энергетически выгодно оставить пустой часть второй зоны и занять состояния внизу третьей. Вот и получается металл.

А что будет с другими элементами? Перекрываются зоны или нет, заранее сказать нельзя, для этого нужны громоздкие расчеты на ЭВМ, и то не всегда можно получить достоверный ответ. Но вот что примечательно: из нашей схемы следует, что если брать элементы с нечетным числом электронов, то всегда должен получаться металл, если только структурной единицей в кристалле является отдельный атом. А вот водород, например, азот и фтор не желают кристаллизоваться в такую решетку. Они предпочитают сначала объединиться попарно, а уже молекулы, содержащие по четному числу электронов, выстраиваются в кристалл. И законы квантовой механики не мешают ему быть диэлектриком.

Итак, мы теперь знаем, что такое металл с точки зрения физики, и разобрались в самой сути явления, поняв, почему в принципе существуют изоляторы и проводники. Мы увидели, что нельзя предложить простой способ объяснения, почему какое-то конкретное вещество оказалось диэлектриком или металлом. Сделать это можно, лишь вооружившись всей мощью аппарата современной квантовой механики и вычислительной техники, но это уже задача специалистов.

В узлах кристаллической решётки металлов содержатся атомы. Электроны, движущиеся вокруг атомов, образуют «электронный газ» который свободно может перемещаться в разных направлениях. Это свойство объясняет высокую электропроводность и теплопроводность металлов.
Электронный газ отражает почти все световые лучи. Именно поэтому металлы так сильно блестят и чаще всего имеют серый или белый цвет. Связи между отдельными слоями металла невелики, что позволяет перемещать эти слои под нагрузкой в разных направлениях (по-другому — деформировать металл). Уникальным металлом является чистое золото. С помощью ковки из чистого золота можно сделать фольгу толщиной 0,002 мм! такой тончайший листочек металла полупрозрачен и имеет зелёный оттенок если смотрень через него на солнечный свет.

Электрофизическое свойство металлов выражено в его электропроводности. Принято считать, что все металлы имеют высокую электропроводность , то есть хорошо проводят ток! Но это не так, да и к тому же, всё зависит от температуры, при которой замеряют ток. Представим себе кристаллическую решётку металла, в которой ток передаётся с помощью движения электронов. Электроны движутся от одного узла кристаллическрой решётки к другому. Один электрон «выталкивает» из узла решётки другой электрон, который продолжает двигаться к другому узлу решётки и т.д. То есть электропроводность также зависит от того, насколько легко электроны могут перемещаться между узлов решётки. Можно сказать, что электропроводность металла зависит от кристаллического строения решётки и плотности расположения в ней частиц.
Частицы в узлах решётки имеют колебания, и эти колебания тем больше, чем выше температура металла. Такие кролебания значительно препятствуют перемещению электронов в кристаллической решётке
Таким образом, чем ниже температура металла, тем выше его способность проводить ток!
Отсюда вытекает понятие сверхпроводимости , которое наступает в металле при температуре близкой к абсолютному нулю! При абсолютном нуле (-273 0 C) колебания частиц в кристаллической решётке металла полностью затухают!
Электрофизическое свойство металлов , связанное с прохождением тока, называют температурным коэффициентом электросопротивления !
Установлен интересный факт, что, например у свинца (Pb) и ртути (Hg) при температуре, которая выше абсолютного нуля всего на несколько градусов, почти полностью исчезает электросопротивление, то есть наступает условие сверхпроводимости.
Самую высокую электропроводность имеет серебро (Ag), затем медь (Cu), далее идёт золото (Au) и алюминий (Al). С высокой электропроводностью этих металлов связано их использование в электротехнике. Иногда, для обеспечения химической стойкости и антикоррозионных свойств используют именно золото (позолоченные контакты).
Надо отметить, что электропроводность металлов значительно выше, чем электропроводность неметаллов. Вот например, углерод (С — графит) или кремний (Si) имеют электропроводность в 1000 раз меньше, чем, например, у ртути. Кроме того, неметаллы, в своём большинстве не являются проводниками электричества. Но среди неметаллов встречаются полупроводники: германий (Ge), кремний кристаллический, а также некоторые оксиды, фосфиты (химические соединения металла с фосфором) и сульфиды (химические соединения металла и серы).

Вам, наверное, знакомо явление — это свойство металлов под действием температуры или света отдавать электроны.
Что касается теплопроводности металлов, то её можно оценить из таблицы Менделеева, — она распределяется точно также, как электроотрицательность металлов. (Металлы, находящиеся слева вверху имеют наибольшую электроотрицательность, например, электроотрицательность натрия Na равна -2,76 В). В вою очередь, теплопроводность металлов объясняется наличием свободных электронов, которые переносят тепловую энергию.

http://www.kristallikov.net/page3.html#блеск чистых металлов

Cтраница 1



Характерный металлический блеск обусловлен взаимодействием электромагнитных световых волн со свободными электронами.  

Непрозрачность и характерный металлический блеск металлов обусловлены структурой энергетических уровней металлов. В этом случае электрон из валентной зоны, поглощая квант света, переходит в зону проводимости. Свет не отражается, а поглощается. В то же время металлам характерен блеск, который появляется в результате испускания света при возвращении возбужденных светом электронов на более низкие энергетические уровни.  

Металлы обладают характерным металлическим блеском в изломе, пластичностью (ковкостью), а также высокой электро - и теплопроводностью.  

Металлы обладают характерным металлическим блеском; кроме того, они хорошо проводят тепло и электрический ток.  

Металлы отличаются характерным металлическим блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей тепло - и электропроводностью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.  

Радий обладает характерным металлическим блеском, быстро исчезающим под действием воздуха. Возможно, на воздухе поверхность радия покрывается пленкой нитрида радия. Металлический радий разлагает воду с образованием гидроокиси и выделением водорода.  

Металлы отличаются характерным металлическим блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей тепло - и электропроводностью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.  

Металлы отличаются характерным металлическим блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.  

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.


Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.


Осмий

Как не крути, самые тяжелые металлы являются большой редкостью и поэтому они дорого стоят. И надо запомнить на будущее, что ни золото, ни свинец – не самые тяжелые металлы в мире! Иридий и осмий – вот победители в весе!