§ 23. Линейное уравнение с одной переменной. Решение линейных уравнений с одной переменной и уравнений, сводящихся к ним

Мы зна емо, как решать уравнения 2х = -8; х - 5; 0,01 х -17.

Каждое из этих уравнений имеет вид ах = b , где х - переменная, а и b - некоторые числа.

Числа а и b называют коэффициентами уравнения.

Если а ≠ 0, то уравнение ах = b называют уравнением первой степени с одной переменной. Поделив обе части уравнения на а, получим х = , то есть являетсяединственным корнем этого уравнения является число

Если а - 0 и b - 0, то линейное уравнение имеет вид 0х - 0. Корнем такого уравнения является любое число, так как при любом значении х значение левой и правой частей уравнения равны и равны нулю. Поэтому уравнение 0х = 0 множество корней.

Если а - 0, а b ≠ 0, то линейное уравнение примет вид 0х - b . При этом не существует никакого значения переменной х, которое бы превращало левую и правую части уравнения на одно и то же число. Ведь значение левой части уравнения при любом значении х равен нулю, а значение правой части - числу b , отличном от нуля. Поэтому уравнение 0х = b при b ≠ 0 не имеет корней.

Систематизируем данные о решения линейного уравнения ах = b в виде схемы:

Пример 1. Решить уравнение:

Р а з в ’ я з а н н я.

1) 0,2 х = 7; х = 7: 0,2; х = 35.

Ответ: - 4.

3)0х = 7; уравнение не имеет корней.

Ответ: корней не имеет.

Процесс решения многих уравнений является сводом этих уравнений к лилейным путем равносильных преобразований по свойствам уравнений.

Пример 2. Решить уравнение:

1) 3(х + 1) - 2х = 6 - 4х;

Р а з в ’ я з а н н я.

1. Избавимся от знаменателей (если они есть):

1)3(х + 3) - 2х = 6 - 4х.

Умножим обе частили уравнения на 6 (6 - наименьший общий знаменатель дробей). Имеем:

3(х + 1) + 2(5 - х) = х + 13.

2. Раскроем скобки (если они есть):

3х + 9 - 2х = 6 - 4х;

3х + 3 + 10 - 2х = х + 13.

3. Перенесем слагаемые, содержащие переменную, в левую часть, а остальные - в правую, изменив знаки этих слагаемых на противоположные:

3х - 2х + 4х = 6 - 9;

3х - 2х - х = 13 - 3 - 10.

4. Сведем подобные слагаемые:

5. Решим полученное линейное уравнение:

Ответ: -0,6.

х - любое число.

Ответ: любое число.

Пример 3. Решить уравнение 5(х + г) = 3х - 7р в отношении х.

Р а з в ’ я з а н н я. Раскроем скобки в левой части уравнения: 5х + 5р - 3х - 7р. Перенесем слагаемое 3х в левую часть, а 5р - в правую. Имеем: 5х - 3х = -7р - 5р; 2х = -12р. Тогда х = (-12р) : 2; х = (-12: 2)г; х = -6р.

Ответ: -6р.

Какое уравнение называют линейным уравнением с одной переменной? Приведите примеры линейных уравнений. В каком случае уравнение ах - b имеет единственный корень? В любом случае корнем уравнения ах - b -любое число? В каком случае уравнение ах = b не имеет корней?

848. (Устно) Какое из уравнений является линейным:

5) х + 7 = х 2 ;

849. (Устно) Сколько корней имеет уравнение:

850. Выясните, какое из данных уравнений имеет только одно решение, не имеет решений, имеет бесконечное множество решений:

851. (Устно) Решите уравнение:

2) 0,5 х = -2,5;

3) -2,5 х = 7,5;

852. Решите уравнение:

6) -0,01 х = 0,17;

8)-1,2 х = -4,2;

853. Найдите корень уравнения:

6) 0,1 х = 0,18.

854. Определите, что должно быть записано справа в уравнении вместо пробелов, если известно его корень:

855. Найдите корень уравнения:

1) 7х + 14 = 0;

2) 0, 3х - 21 = 0,5 х - 23;

3) 1х + 3 = 6х - 13;

4) 5х + (3х - 7) = 9;

5) 47 = 10 - (9х + 2);

6) (3х + 2) - (8х + 6) = 14.

856. Решите уравнение:

2) 1,4 х - 12 = 0,9 х + 4;

3) 3х + 14 = 5х - 16;

4) 12 - (5х + 10) = -3;

5) 6 - (8х + 11) = -1;

6) (3х - 4) - (6 - 4х) = 4.

857. Какое из уравнений равносильно уравнению 5х = 10:

3) х + 2 = х + 1;

5) х = 8 - 3х;

6)1х - 7 = 4х?

858. Являются ли уравнения равносильными:

1) 4х - х = 17 3х = 17;

2) 5х - 9 = 3х и 6х = 21;

3) 2х = -12 и х + 6 = 0;

4) 12х = 0 15х = 15?

859.

1) 3х + 7 равен -2;

2) 4(х + 1) равно значению выражения 5х - 9?

860. При каком значении у:

1) значение выражения 5у - 13 равна -3;

2) значения выражений 3(в - 2) и 13у - 8 равны между собой?

861. Решите уравнение:

2) 2х - у = 1;

862. Найдите корень уравнения:

863. Составьте линейное уравнение, корнем которого является:

1) число -2;

2) число -0,2.

864. Составьте линейное уравнение:

1) не имеет корней;

2) корнем которого является любое число.

865. Составьте линейное уравнение, корнем которого было бы:

1) число -8;

2) любое число.

866. Найдите корень уравнения:

1)(4х - 2) + (5х - 4) - 9 - (5 - 11х);

2) (7 - 8х) - (9 - 12х) - (5х + 4) = -16;

3) 3(4х - 5) - 10(2х - 1) = 33;

4) 9(3(х + 1) 2х) = 7(х + 1).

867. Решите уравнение:

1) (9х - 4) + (15х - 5) = 18 - (25 - 22х);

2) (10х + 6) - (9 - 9х) + (8 - 11х) = -19;

3) 7(х - 1) - 3(2х + 1) = -х - 15;

4) 5(4(х - 1) - 3х) = 9х.

868.

1) 2х + а = х + а;

2) b + х = с - х;

3) 6х + 2m = х - 8m ;

4) 9а + х = 3b - 2х.

Р а з в ’ я з а н н я.

4) 9a - х = 3b - 2х; х + 2х = 3b - 9а; 3х = 3(b - 3a). Поделим обе части уравнения на 3. Получим: х = b - 3а.

Ответ: b - 3а.

869. Решите уравнение относительно х:

1) 7х + m = 2х + m ;

2) а + х = 2m - х;

3) 3х + b = 9b - х;

4) 5р + 2х = 10 - 3х.

870. Являются ли равносильными уравнения:

1) 2х - 4 = 2 и 5(х - 3) + 1 = 3х - 8;

2) 5х + 3 = 8 и 7(х - 2) + 20 = 4х + 3;

3) 5х = 0 и 0 х = 5;

4) 7х + 1 = 7х 2 и 5(х + 1) = 5х + 5;

5) 0: х = 7 и 0 ∙ х = 7;

6) 3(х - 2) = 3х - 6 и 2(х + 7) - 2(х + 1) + 12?

871. При каком значении у значение выражения:

1) 5у + 7 в три раза больше значения выражения у + 5;

2) 2у - 4 на 7,4 больше значения выражения 3 - 7у?

872. При каком значении х значение выражения:

1) 7х + 8 вдвое больше значения выражения х + 7;

2) 5х - 8 па 17,2 меньше значения выражения х + 2 ?

873. Составьте уравнение, которое было бы равносильно уравнению 7(2х - 8) = 5(7х - 8) - 15х.

874. При каком значении а уравнение:

1) 2ах = 16 имеет корень, равный 4;

2) 3х имеет корень, равный ;

3) 5(а + 1)х = 40 имеет корень, равный -1 ?

875. При каком значении b корнем уравнения:

1) 3b х = -24 является число -4;

2) (2а - 5)х = 45 с число 3?

876. Решите уравнение:

1) 4х + 7 = 3(х - 2) + х:

2) 2х + 5 - 2(х - 4) + 13;

3) 2х(1 - 3х) + 5х(3 - х) = 17х - 8х 2 ;

4) (7х - 3 + 2х 2 - 4х - 5) - (6х 3 - х 2 + 2х) = 3х 2 - (6х - х 3).

877. Найдите корень уравнения:

1) 3(х - 2) + 4х = 7(х -1) + 1;

2) 2(х + 1) + х = 6(х + 3);

3) 3х(2 + х) - 4 (1 - х 2) = 7х 2 + 6х;

4) (х 2 + 4х - 8) - (7х - 2х 2 - 5) = 3х 2 - (3х + 3).

878. Решите уравнение.

Уравнение – это равенство, в котором присутствует одна или несколько переменных.
Мы рассмотрим случай, когда в уравнении одна переменная, то есть одно неизвестное число. По сути, уравнение – это вид математической модели . Поэтому в первую очередь уравнения необходимы нам для решения задач.

Вспомним, как составляется математическая модель для решения задачи.
Например, в новом учебном году количество учащихся в школе №5 увеличилось вдвое. После того, как 20 учеников перешли в другую школу, в общей сложности в школе №5 стало учиться 720 учеников. Сколько учащихся было в прошлом году?

Нам нужно выразить то, что сказано в условии математическим языком . Пусть количество учащихся в прошлом году будет X. Тогда согласно условию задачи,
2X – 20 = 720. У нас получилась математическая модель, которая представляет собой уравнение с одной переменной . Если точнее, то это уравнение первой степени с одной переменной. Осталось найти его корень.


Что такое корень уравнения?

То значение переменной, при котором наше уравнение обратится в верное равенство, называется корнем уравнения. Бывают такие уравнения, у которых много корней. Например, в уравнении 2*X = (5-3)*X любое значение X является корнем. А уравнение X = X +5 вообще не имеет корней, так как какое бы мы не подставили значение X, у нас не получится верное равенство. Решить уравнение означает найти все его корни, или определить, что оно не имеет корней. Таким образом, чтобы ответить на наш вопрос, нам нужно решить уравнение 2X – 20 = 720.

Как решать уравнения с одной переменной?

Для начала запишем базовые определения. Каждое уравнение имеет правую и левую части. В нашем случае, (2X – 20) – левая часть уравнения (она стоит слева от знака равенства), а 720 – правая часть уравнения. Слагаемые правой и левой части уравнения называются членами уравнения. У нас членами уравнения являются 2X, -20 и 720.

Сразу скажем про 2 свойства уравнений:

  1. Любой член уравнения можно переносить из правой части уравнения в левую, и наоборот. При этом надо изменить знак этого члена уравнения на противоположный. То есть, записи вида 2X – 20 = 720, 2X – 20 – 720 = 0, 2X = 720 + 20, -20 = 720 – 2X равносильны.
  2. Обе части уравнения можно умножить или разделить на одно и то же число. Это число не должно быть равно нулю. То есть, записи вида 2X – 20 = 720, 5*(2X – 20) = 720*5, (2X – 20):2 = 720:2 также равносильны.
Воспользуемся этими свойствами для решения нашего уравнения.

Перенесем -20 в правую часть с противоположным знаком. Получим:

2X = 720 + 20. Сложим то, что у нас в правой части. Получим, что 2X = 740.

Теперь разделим левую и правую части уравнения на 2.

2X:2 = 740:2 или X = 370. Мы нашли корень нашего уравнения и заодно нашли ответ на вопрос нашей задачи. В прошлом году в школе №5 было 370 учеников.

Проверим, действительно ли наш корень обращает уравнение в верное равенство. Подставим вместо X число 370 в уравнение 2X – 20 = 720.

2*370-20 = 720.

Все верно.

Итак, чтобы решить уравнение с одной переменной его нужно привести к так называемому линейному уравнению вида ax = b, где a и b – некоторые числа. Затем левую и правую часть разделить на число a. Получим, что x = b:a.

Что означает привести уравнение к линейному уравнению?

Рассмотрим такое уравнение:

5X - 2X + 10 = 59 - 7X +3X.

Это также уравнение с одной неизвестной переменной X. Наша задача привести это уравнение к виду ax = b.

Для этого сначала соберем все слагаемые, имеющие в качестве множителя X в левой части уравнения, а остальные слагаемые - в правой части. Слагаемые, имеющие в качестве множителя одну и ту же букву, называют подобными слагаемыми.

5X - 2X + 7X – 3X = 59 – 10.

Согласно распределительному свойству умножения мы можем вынести одинаковый множитель за скобки, а коэффициенты (множители при переменной x) сложить. Этот процесс также называют приведением подобных слагаемых.

X(5-2+7-3) = 49.

7X = 49. Мы привели уравнение к виду ax = b, где a = 7, b = 49.

А как мы написали выше, корнем уравнения вида ax = b будет x = b:a.

То есть X = 49:7 = 7.

Алгоритм нахождения корней уравнения с одной переменной.

  1. Собрать подобные слагаемые в левой части уравнения, остальные слагаемые – в правой части уравнения.
  2. Привести подобные слагаемые.
  3. Привести уравнение к виду ax = b.
  4. Найти корни по формуле x = b:a.
Примечание . В данной статье мы не рассматривали те случаи, когда переменная возводится в какую-нибдуь степень. Иначе говоря мы рассматривали уравнения первой степени с одной переменной.

Определенный интеграл

\[ I=\int_a^bf(x)dx \]

был построен в предположении, что числа $a,\,b$ конечны и $f(x)$ - непрерывная функция. Если одно из этих предположений нарушается, говорят о несобственных интегралах.

10.1 Несобственные интегралы 1 рода

Несобственный интеграл 1 рода возникает, когда по крайней мере одно из чисел $a,\,b$ бесконечно.

10.1.1 Определение и основные свойства

Рассмотрим сначала ситуацию, когда нижний предел интегрирования конечен, а верхний равен $+\infty$, другие варианты обсудим несколько позднее. Для $f(x)$, непрерывной при всех интересующих нас $x$, рассмотрим интеграл

\begin{equation} I=\int _a^{+\infty}f(x)dx. \quad(19) \label{inf1} \end{equation}

Прежде всего надо установить смысл этого выражения. Для этого введем функцию

\[ I(N)=\int _a^{N}f(x)dx \]

и рассмотрим ее поведение при $N\rightarrow +\infty$.

Определение. Пусть существует конечный предел

\[ A=\lim_{N \rightarrow +\infty}I(N)=\lim_{N \rightarrow +\infty}\int _a^{N}f(x)dx. \]

Тогда говорят, что несобственный интеграл 1 рода (19) является сходящимся и ему приписывают значение $A$, саму функцию называют интегрируемой на интервале $\left[ a, \, +\infty \right)$. Если же указанного предела не существует или он равен $\pm \infty$, то говорят, что интеграл (19) расходится.

Рассмотрим интеграл

\[ I=\int _0^{+\infty} \frac{dx}{1+x^2}. \]

\[ I(N)=\int _0^{N} \frac{dx}{1+x^2}. \]

В данном случае известна первообразная подинтегральной функции, так что

\[ I(N)=\int _0^{N} \frac{dx}{1+x^2}=arctgx|_0^{N}=arctgN. \]

Известно, что $arctg N \rightarrow \pi /2 $ при $N \rightarrow +\infty$. Таким образом, $I(N)$ имеет конечный предел, наш несобственный интеграл сходится и равен $\pi /2$.

Сходящиеся несобственные интегралы 1 рода обладают всеми стандартными свойствами обычных определенных интегралов.

1. Если $f(x)$, $g(x)$ интегрируемы на интервале $\left[ a, \, +\infty \right)$, то их сумма $f(x)+g(x)$ также интегрируема на этом интервале, причем \[ \int _a^{+\infty}\left(f(x)+g(x)\right)dx=\int _a^{+\infty}f(x)dx+\int _a^{+\infty}g(x)dx. \] 2. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, то для любой константы $C$ функция $C\cdot f(x)$ также интегрируема на этом интервале, причем \[ \int _a^{+\infty}C\cdot f(x)dx=C \cdot \int _a^{+\infty}f(x)dx. \] 3. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, причем на этом интервале $f(x)>0$, то \[ \int _a^{+\infty} f(x)dx\,>\,0. \] 4. Если $f(x)$ интегрируема на интервале $\left[ a, \, +\infty \right)$, то для любого $b>a$ интеграл \[ \int _b^{+\infty} f(x)dx \] сходится, причем \[ \int _a^{+\infty}f(x)dx=\int _a^{b} f(x)dx+\int _b^{+\infty} f(x)dx \] (аддитивность интеграла по интервалу).

Справедливы также формулы замены переменной, интегрирования по частям и т.д. (с естественными оговорками).

Рассмотрим интеграл

\begin{equation} I=\int _1^{+\infty}\frac{1}{x^k}\,dx. \quad (20) \label{mod} \end{equation}

Введем функцию

\[ I(N)=\int _1^{N}\frac{1}{x^k}\,dx. \]

В данном случае первообразная известна, так что

\[ I(N)=\int _1^{N}\frac{1}{x^k}\,dx\,=\frac{x^{1-k}}{1-k}|_1^N= \frac{N^{1-k}}{1-k}-\frac{1}{1-k} \]

при $k \neq 1$,

\[ I(N)=\int _1^{N}\frac{1}{x}\,dx\,=lnx|_1^N= lnN \]

при $k = 1$. Рассматривая поведение при $N \rightarrow +\infty$, приходим к выводу, что интеграл (20) сходится при $k>1$, а при $k \leq 1$ - расходится.

Рассмотрим теперь вариант, когда нижний предел интегрирования равен $-\infty$, а верхний конечен, т.е. рассмотрим интегралы

\[ I=\int _{-\infty}^af(x)dx. \]

Однако этот вариант можно свести к предыдущему, если сделать замену переменных $x=-s$ и поменять затем пределы интегрирования местами, так что

\[ I=\int _{-a}^{+\infty}g(s)ds, \]

$g(s)=f(-s)$. Рассмотрим теперь случай, когда имеется два бесконечных предела, т.е. интеграл

\begin{equation} I=\int _{-\infty}^{+\infty}f(x)dx, \quad (21) \label{intr} \end{equation}

причем $f(x)$ непрерывна при всех $x \in \mathbb{R}$. Разобъем интервал на две части: возьмем $c \in \mathbb{R}$, и рассмотрим два интеграла,

\[ I_1=\int _{-\infty}^{c}f(x)dx, \quad I_2=\int _{c}^{+\infty}f(x)dx. \]

Определение. Если оба интеграла $I_1$, $I_2$ сходятся, то интеграл (21) называется сходящимся, ему приписывают значение $I=I_1+I_2$ (в соответствии с аддитивностью по интервалу). Если хотя бы один из интегралов $I_1$, $I_2$ расходится, интеграл (21) называется расходящимся.

Можно доказать, что сходимость интеграла (21) не зависит от выбора точки $c$.

Несобственные интегралы 1 рода с интервалами интегирования $\left(-\infty, \, c \right]$ или $(-\infty, \, +\infty)$ также обладают всеми стандартными свойствами определенных интегралов (с соответствующей переформулировкой, учитывающей выбор интервал интегрирования).

10.1.2 Признаки сходимости несобственных интегралов 1 рода

Теорема (первый признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны при $x>a$, причем $0 a$. Тогда

1. Если интеграл \[ \int _a^{+\infty}g(x)dx \] сходится, то сходится и интеграл \[ \int _a^{+\infty}f(x)dx. \] 2. Если интеграл \[ \int _a^{+\infty}f(x)dx \] расходится, то расходится и интеграл \[ \int _a^{+\infty}g(x)dx. \]

Теорема (второй признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны и положительны при $x>a$, причем существует конечный предел

\[ \theta = \lim_{x \rightarrow +\infty} \frac{f(x)}{g(x)}, \quad \theta \neq 0, \, +\infty. \]

Тогда интегралы

\[ \int _a^{+\infty}f(x)dx, \quad \int _a^{+\infty}g(x)dx \]

сходятся или расходятся одновременно.

Рассмотрим интеграл

\[ I=\int _1^{+\infty}\frac{1}{x+\sin x}\,dx. \]

Подинтегральное выражение - положительная функция на интервале интегрирования. Далее, при $x \rightarrow +\infty$ имеем:

$\sin x$ является "малой" поправкой в знаменателе. Точнее, если взять $f(x)=1/(x+\sin x)$, \, $g(x)=1/x$, то

\[ \lim _{x \rightarrow +\infty}\frac{f(x)}{g(x)}=\lim _{x \rightarrow +\infty}\frac{x}{x+\sin x}=1. \]

Применяя второй признак сравнения, приходим к выводу, что наш интеграл сходится или расходится одновременно с интегралом

\[ \int _1^{+\infty}\frac{1}{x}\,dx . \]

Как было показано в предыдущем примере, этот интеграл расходится ($k=1$). Следовательно, исходный интеграл расходится.

Вычислить несобственный интеграл или установить его сходимость (расходимость).

1. \[ \int _{0}^{+\infty}e^{-ax}\,dx. \] 2. \[ \int _{0}^{+\infty}xe^{-x^2}\,dx. \] 3. \[ \int _{-\infty}^{+\infty}\frac{2xdx}{x^2+1}. \] 4. \[ \int _{0}^{+\infty}\frac{xdx}{(x+2)^3}. \] 5. \[ \int _{-\infty}^{+\infty}\frac{dx}{x^2+2x+2}. \] 6. \[ \int _{1}^{+\infty}\frac{lnx}{x^2}\,dx. \] 7. \[ \int _{1}^{+\infty}\frac{dx}{(1+x)\sqrt{x}}. \] 8. \[ \int _{0}^{+\infty}e^{-\sqrt{x}}\,dx. \] 9. \[ \int _{0}^{+\infty}e^{-ax}\cos x\,dx. \] 10. \[ \int _{0}^{+\infty}\frac{xdx}{x^3+1}. \]

Определенный интеграл как предел интегральной суммы

может существовать (т.е. иметь определенное конечное значение) лишь при выполнении условий


Если хотя бы одно из этих условий нарушено, то определение теряет смысл. Действительно, в случае бесконечного отрезка, например [a ; ) его нельзя разбить на п частей конечной длины
, которая к тому же с увеличением количества отрезков стремилась бы к нулю. В случае же неограниченной в некоторой точкес [a ; b ] нарушается требование произвольного выбора точки на частичных отрезках – нельзя выбрать=с , поскольку значение функции в этой точке не определено. Однако и для этих случаев можно обобщить понятие определенного интеграла, введя еще один предельный переход. Интегралы по бесконечным промежуткам и от разрывных (неограниченных) функций называют несобственными .

Определение.

Пусть функция
определена на промежутке [a ; ) и интегрируема на любом конечном отрезке [a ; b ], т.е. существует
для любого b > a . Предел вида
называютнесобственным интегралом первого рода (или несобственным интегралом по бесконечному промежутку) и обозначают
.

Таким образом, по определению,
=
.

Если предел справа существует и конечен, то несобственный интеграл
называютсходящимся . Если этот предел бесконечен, или не существует вообще, то говорят, что несобственный интеграл расходится .

Аналогично можно ввести понятие несобственного интеграла от функции
по промежутку (–; b ]:

=
.

А несобственный интеграл от функции
по промежутку (–; +) определяется как сумма введенных выше интегралов:

=
+
,

где а – произвольная точка. Этот интеграл сходится, если сходятся оба слагаемых, и расходится, если расходится хотя бы одно из слагаемых.

С геометрической точки зрения, интеграл
,
, определяет численное значение площади бесконечной криволинейной трапеции, ограниченной сверху графиком функции
, слева – прямой
, снизу – осью ОХ. Сходимость интеграла означает существование конечной площади такой трапеции и равенство ее пределу площади криволинейной трапеции с подвижной правой стенкой
.

На случай интеграла с бесконечным пределом можно обобщить и формулу Ньютона-Лейбница :

=
=F(+ ) – F(a ),

где F(+ ) =
. Если этот предел существует, то интеграл сходится, в противном случае – расходится.

Мы рассмотрели обобщение понятия определенного интеграла на случай бесконечного промежутка.

Рассмотрим теперь обобщение для случая неограниченной функции.

Определение

Пусть функция
определена на промежутке [a ; b ), неограниченна в некоторой окрестности точки b , и непрерывна на любом отрезке
, где>0 (и, следовательно, интегрируема на этом отрезке, т.е.
существует). Предел вида
называетсянесобственным интегралом второго рода (или несобственным интегралом от неограниченной функции) и обозначается
.

Таким образом, несобственный интеграл от неограниченной в точке b функции есть по определению

=
.

Если предел справа существует и конечен, то интеграл называется сходящимся . Если конечного предела не существует, то несобственный интеграл называется расходящимся.

Аналогично можно определить несобственный интеграл от функции
имеющей бесконечный разрыв в точкеа :

=
.

Если функция
имеет бесконечный разрыв во внутренней точкес
, то несобственный интеграл определяется следующим образом

=
+
=
+
.

Этот интеграл сходится, если сходятся оба слагаемых, и расходится, если расходится хотя бы одно слагаемое.

С геометрической точки зрения, несобственный интеграл от неограниченной функции также характеризует площадь неограниченной криволинейной трапеции:

Поскольку несобственный интеграл выводится путем предельного перехода из определенного интеграла, то все свойства определенного интеграла могут быть перенесены (с соответствующими уточнениями) на несобственные интеграла первого и второго рода.

Во многих задачах, приводящих к несобственным интегралам, не обязательно знать, чему равен этот интеграл, достаточно лишь убедиться в его сходимости или расходимости. Для этого используют признаки сходимости . Признаки сходимости несобственных интегралов:

1) Признак сравнения .

Пусть для всех х

. Тогда, если
сходится, то сходится и
, причем

. Если
расходится, то расходится и
.

2) Если сходится
, то сходится и
(последний интеграл в этом случае называетсяабсолютно сходящимся ).

Признаки сходимости и расходимости несобственных интегралов от неограниченных функций аналогичны сформулированным выше.

Примеры решения задач.

Пример 1.

а)
; б)
; в)

г)
; д)
.

Решение.

а) По определению имеем:

.

б) Аналогично

Следовательно, данный интеграл сходится и равен .

в) По определению
=
+
, причем,а произвольное число. Положим в нашем случае
, тогда получим:

Данный интеграл сходится.

Значит, данный интеграл расходится.

д) Рассмотрим
. Чтобы найти первообразную подынтегральной функции, необходимо применить метод интегрирования по частям. Тогда получим:

Поскольку ни
, ни
не существуют, то не существует и

Следовательно, данный интеграл расходится.

Пример 2.

Исследовать сходимость интеграла в зависимости от п .

Решение.

При
имеем:

Если
, то
и. Следовательно, интеграл расходится.

Если
, то
, а
, тогда

=,

Следовательно, интеграл сходится.

Если
, то

следовательно, интеграл расходится.

Таким образом,

Пример 3.

Вычислить несобственный интеграл или установить его расходимость:

а)
; б)
; в)
.

Решение.

а) Интеграл
является несобственным интегралом второго рода, поскольку подынтегральная функция
не ограничена в точке

. Тогда, по определению,

.

Интеграл сходится и равен .

б) Рассмотрим
. Здесь также подынтегральная функция не ограничена в точке
. Поэтому, данный интеграл – несобственный второго рода и по определению,

Следовательно, интеграл расходится.

в) Рассмотрим
. Подынтегральная функция
терпит бесконечный разрыв в двух точках:
и
, первая из которых принадлежит промежутку интегрирования
. Следовательно, данный интеграл – несобственный второго рода. Тогда, по определению

=

=

.

Следовательно, интеграл сходится и равен
.