.
Следовательно, уравнение Шредингера имеет вид

. (18)

Можно показать, что уравнение (18) имеет решение, удовлетворяющее стандартным условиям, в следующих случаях: 1) при любых положительных значениях E ; 2) при дискретных отрицательных значениях энергии, равных

. (19)

Случай соответствует электрону, пролетающему вблизи ядра, т.е. свободному электрону. Случай соответствует электрону, движущемуся вблизи ядра, т.е. связанному электрону. Самый нижний уровень , отвечающий минимально возможной энергии, называется основным , все остальные – возбужденными . Таким образом, квантование энергии атома является следствием теории, в отличие от теории Бора, в которой квантование вводилось как постулат.

Собственные функции уравнения (18), представленные в сферической системе координат, содержат три целочисленных параметра: главное число n , орбитальное число l и магнитное число m

.

Главное число n определяет энергетический уровень электрона в атоме в соответствии с формулой (19) и может принимать любые положительные целочисленные значения.

Орбитальное число l определяет орбитальный момент импульса электрона. Согласно законам квантовой механики момент импульса квантуется по правилу

. (20)
При заданном n орбитальное число может принимать значения

. (21)

Магнитное число m определяет ориентацию орбитального момента в пространстве. Согласно законам квантовой механики величина проекции момента на некоторое направление z принимает дискретные значения

,
где m – магнитное квантовое число, которое при заданном l может принимать значения

.
Таким образом, вектор момента импульса электрона в атоме может иметь в пространстве возможных ориентаций.

Согласно (19) энергия электрона зависит только от главного квантового числа n . Каждому собственному значению энергии (кроме ) соответствует несколько собственных функций , отличающихся значениями квантовых чисел l и m . Это означает, что атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях.

Состояния с одинаковой энергией называются вырожденными , а число различных состояний с каким-либо значением энергии называется кратностью вырождения соответствующего энергетического уровня.


Кратность вырождения энергетических уровней легко вычисляется путем подсчета возможных значений l и m . Каждому значению квантового числа l соответствует значений квантового числа m . Следовательно, число различных состояний, соответствующих данному n , равно

. (22)

В атомной физике применяется условное обозначение состояний электрона с различными значениями момента импульса. Электрон, находящийся в состоянии с называется s -электроном (соответствующее состояние – s -состоянием), с – p -электроном, с – d -электроном, с – f -электроном и далее по алфавиту. Значение главного квантового числа указывается перед условным обозначением орбитального числа l . Поскольку l всегда меньше n , возможны следующие состояния электрона:

1s ,

2s , 2p ,

3s , 3p , 3d
и т.д. Схему уровней энергии удобно изображать так, как показано на рис.


Испускание и поглощение света происходит при переходах электрона с одного уровня на другой. В квантовой механике доказывается, что для орбитального квантового числа имеется правило отбора

. (23)
Это означает, что возможны только такие переходы, при которых l меняется на единицу. Правило обусловлено тем, что фотон обладает собственным моментом импульса (спином s ). Его величина вычисляется по общему правилу (20), где вместо l следует использовать . Данное значение определяет максимальную величину проекции спина на избранное направление. Испускание или поглощение фотона, согласно закону сохранения момента импульса, приводит к изменению момента импульса атома, согласно с правилом (23).

На рис. показаны переходы, разрешенные правилом (23). Серии Лаймана соответствует переходам

;
серии Бальмера соответствуют переходы

и ,
и т.д.

Решение уравнения Шредингера для атома водорода дает, что волновая функция электрона в 1s состоянии является сферически-симметричной и имеет вид

,
где есть боровский радиус. Вероятность нахождения электрона в шаровом слое радиуса r и толщиной dr равна

.
Подставив в формулу волновую функцию, получим

.

График радиальной плотности вероятности изображен на рис. Ее максимум приходится на . Таким образом, в основном состоянии атома водорода наиболее вероятное расстояние между ядром и электроном равно боровскому радиусу.

Спин электрона. Спиновое квантовое число. При классическом движении по орбите электрон обладает магнитным моментом. Причем классическое отношение магнитного момента к механическому имеет значение

, (1)
где и – соответственно магнитный и механический момент. К аналогичному результату приводит и квантовая механика. Так как проекция орбитального момента на некоторое направление может принимать только дискретные значения, то это же относится и к магнитному моменту. Поэтому, проекция магнитного момента на направление вектора B при заданном значении орбитального квантового числа l может принимать значения

,
где – так называемый магнетон Бора .

О. Штерн и В. Герлах в своих опытах проводили прямые измерения магнитных моментов. Они обнаружили, что узкий пучок атомов водорода, заведомо находящихся в s -состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса, а с ним и магнитный момент электрона равен нулю. Таким образом, магнитное поле не должно оказывать влияние на движение атомов водорода, т.е. расщепления быть не должно.

Для объяснения этого и других явлений Гаудсмит и Уленбек выдвинули предпо­ложение, что электрон обладает собственным моментом импульса , не связанным с движением электрона в пространстве. Этот собственный момент был назван спином .

Первоначально предполагалось, что спин обусловлен вращением электрона вокруг своей оси. Согласно этим представлениям для отношения магнитного и механического моментов должно выполняться соотношение (1). Экспериментально было установлено, что это отношение в действительности в два раза больше, чем для орбитальных моментов

.
По этой причине, представление электрона как о вращающемся шарике оказывается несостоятельным. В квантовой механике спин электрона (и всех других микрочастиц) рассматривается как внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Величина собственного момента импульса микрочастицы определяется в квантовой механике с помощью спинового квантового числа s (для электрона )

.
Проекция спина на заданное направление может принимать квантованные значения, отличающиеся друг от друга на . Для электрона

,
где – магнитное спиновое квантовое число .

Итак, электрон – это элементарная частица, заряженная отрицательно. Электроны составляют материю, из которой состоит все сущее. Отметим также, что электрон является фермионом, что говорит о его полуцелом спине, а также имеет дуальную природу, ибо может быть как частицей материи, так и волной. Если рассматривается его свойство, как масса, то подразумевается первая его сущность.

Масса электрона имеет ту же природу, что любого другого макроскопического объекта, однако все меняется, когда скорости движения материальных частиц становятся близкими к скорости света. В этом случае в силу вступает релятивистская механика, являющая надмножеством классической механики и распространяющаяся на случаи движения тел с высокими скоростями.

Итак, в классической механике понятие «масса покоя» не существует, ибо считается, что масса тела не изменятся при его движении. Данное обстоятельство подтверждается также и опытными фактами. Однако данный факт является всего лишь приближением на случай малых скоростей. Под малыми скоростями здесь подразумеваются скорости гораздо меньшие по величине, чем скорость света. В ситуации же, когда скорость тела сравнима со скоростью света, масса любого тела изменяется. Электрон – не исключение. Более того, данная закономерность имеет достаточную значимость именно для микрочастиц. Это обосновано тем, что именно в микромире возможны такие высокие скорости, при которых изменения массы становятся заметны. Причем в масштабах микромира данный эффект происходит непрерывно.

Увеличение массы электрона

Итак, при движении частиц (электрона) с релятивистскими скоростями их масса изменяется. Причём, чем больше скорость частицы, тем больше и ее масса. При стремлении значения скорости движения частицы к скорости света масса ее стремится к бесконечности. В случае же, когда скорость частицы равна нулю, масса становится равной константе, которая и называется массой покоя, в том числе массой покоя электрона. Причина данного эффекта кроется в релятивистских свойствах частицы.

Дело в том, что масса частицы прямо пропорциональна ее энергии. Та же, в свою очередь, прямо пропорциональна сумме кинетической энергии частицы и ее энергии в покоящемся состоянии, которая и содержит в себе массу покоя. Таким образом, первый член в этой сумме приводит к тому, что масса движущейся частицы увеличивается (как следствие изменения энергии).

Численное значение массы покоя электрона

Массу покоя электрона и других элементарных частиц обычно измеряют в электронвольтах. Один электронвольт равен энергии, затрачиваемой элементарным зарядом на преодоление разности потенциалов в один вольт. В данных единицах масса покоя электрона равна 0,511 МэВ.

Проблема собственной энергии электрона не является новой: она появилась в классической физике. Если предположить, что электрон является шариком радиуса , причем весь его заряд расположен на поверхности, то полная электростатическая энергия равна . Возможно, что масса электрона соответствует этой энергии. Однако, если вы сосчитаете импульс поля, когда электрон движется со скоростью v (с учетом лоренцева сокращения шарика), то получите . Эта величина соответствует частице с массой . Пуанкаре предположил, что какие-то силы должны удерживать части шарика и что эти силы должны давать добавки в энергию. Однако не существует надежной теории таких сил.

Эта собственная энергия происходит от энергии, необходимой для того, чтобы «собрать» заряд. Можно считать, что это есть энергия взаимодействия одной части заряда электрона с другой.

Казалось бы, что возможный способ избавиться от подобных эффектов состоит в том, чтобы запретить электрону воздействовать на самого себя - т. е. предположить, что электроны действуют только друг на друга. (Тогда электрон мог бы быть точечным зарядом.) Однако действие электрона самого на себя необходимо для объяснения реального явления, явления радиационного трения. Ускоряемый заряд излучает, теряя энергию, поэтому ускоряющая сила должна производить работу. Против каких сил? Согласно классической физике - против силы, создаваемой действием одной части заряда на другую.

Первый член согласуется с массой, вычисленной из импульса поля. Второй член есть сила реакции излучения, испущенного электроном, и не зависит от . Однако было бы непоследовательным устремить а к нулю. Распределенный заряд никогда не был тщательно проанализирован. Возникают вопросы, связанные с внутренними движениями и т. п.

В действительности эти вопросы в классической физике решались различными путями, но ни один из них не был успешно перенесен в квантовую механику (ссылки см. в работе Фейнмана ).

Перенормировка массы.

Обсудим теперь аналог этой задачи в квантовой механике - перенормировку массы. Рассмотрим амплитуду электрона, движущегося между точками X и Y. Диаграмма низшего порядка дает

Возможно также, что при движении от X к Y электрон испустит и поглотит виртуальный фотон. В этом случае

где величина

является инвариантной функцией вида . Каков ее физический смысл? Допустим, что С мала. Тогда первые два члена могут быть записаны в виде

благодаря тому, что

(Последняя формула является частным случаем более общего операторного соотношения

Если бы С была числом, мы могли бы рассматривать ее как поправку к массе. Первый и второй члены этого ряда суть амплитуды движения электрона без и с одним виртуальным фотоном соответственно.

Легко проверить, что третий член соответствует вкладу с двумя фотонами

четвертый член - вкладу с тремя фотонами и т. д. Однако такие диаграммы содержат лишь процессы, в которых в каждый данный момент содержится не более одного фотона.

Примеры диаграмм другого типа с двумя виртуальными фотонами приведены на рис. 28-1. Мы не будем сейчас принимать во внимание такие диаграммы, так как они добавляют в С члены порядка , когда мы записываем полную амплитуду распространения электрона между X и Y в виде

где А и В - функции от . Полюс этого пропагатора дает соотношение между энергией и импульсом свободной частицы и поэтому определяет экспериментально наблюдаемую массу .

Избавляясь от матриц в знаменателе

мы получаем, что положение полюса определяется решением уравнения

Заметим здесь, что наличие второго полюса может быть истолковано как существование другой частицы (вероятно, -мезона). Предполагая, что и , мы можем положить и . Тогда

Таким образом, пропагатор имеет полюс при и для , близких к , ведет себя как некоторая константа (вычет в полюсе), умноженная на . Обозначим вычет при через . Можно теперь переписать пропагатор следующим образом:

( может быть выражено через А, В и их производные , в точке . Отклонение от обычной формы можно интерпретировать как поправку к константе связи фотона (поскольку множитель в пропагаторе можно получить, умножая каждую фотонную вершину на ). Следующий шаг заключается в том, чтобы вычислить функции А и В. Для этой цели следует вычислить интеграл

Используя соотношения

избавляемся от . При вычислении можно положить , тогда получаем

Этот интеграл расходится. При больших значениях первый знаменатель может быть заменен на . Тогда член, содержащий , исчезает в силу соображений симметрии. Остальная часть подынтегрального выражения ведет себя при больших как , и поэтому интеграл логарифмически расходится. Квантовая электродинамика ударила лицом в грязь!

Бете заметил, что данная бесконечность является единственно существенной в электродинамике (за исключением еще одной, которую мы обсудим позднее). Пусть у нас есть способ сделать этот интеграл «на время» сходящимся. Допустим, например, что пропагатор всегда следует умножать на релятивистски-инвариантный множитель , обеспечивающий сходимость.

Если положить

(такой обрезает интеграл при больших ), то интеграл может быть вычислен. Получаем (методы вычисления см. в ссылке )

пренебрегая членами, исчезающими вместе с .

Если вам придется вычислять любой процесс в высшем порядке, вы встретите член, пропорциональный (для частиц со спином - электронов, взаимодействующих лишь с фотонами, не встретится ничего более плохого, чем логарифмические расходимости). Затем, где бы вы ни встретили m, подставьте вместо него разложите до первой степени по . Чудо заключается в том, что полный коэффициент при обратится в нуль. Остальные члены имеют определенный предел при . Другими словами, значение параметра обрезания не появляется в окончательном выражении, если мы всегда выражаем ответ через экспериментальную массу и устремляем при фиксированном .

Используя подобные идеи, Бете попробовал вычислить смещение энергетических уровней в атоме водорода, обусловленное собственной энергией связанного электтрона. Толчок был дан экспериментом Резерфорда и Лэмба, которые обнаружили, используя микроволновую технику, расщепление примерно в 1000 МГц между уровнями и в водороде. Если пренебречь взаимодействием с полем излучения, то эти уровни должны быть полностью вырождены. Бете произвел неполное вычисление, используя нерелятивистское приближение. Быстрое развитие квантовой электродинамики в 1948-1949 гг. последовало в результате усилий сформулировать его и Вайскопфа идеи в релятивистски-инвариантной форме и закончить его вычисления.

Итак, мы нашли еще одно правило, которое должно быть включено в квантовую электродинамику: (1) введите произвольный фактор обрезания

И . Массы и отличаются, но вычисления приводят к квадратичным расходимостям. При проведении подобных расчетов частицы считаются точечными. В действительности следует учитывать облако нуклонных пар, и некоторые считают, что такой учет приведет к устранению расжодимостей. Однако подобные утверждения никогда не были доказаны.

Электронвольт (электрон-вольт, электроновольт) - единица измерения электрической энергии, используемая в атомной и молекулярной физике.

Как мы увидим, джоуль оказывается слишком крупной единицей для измерения энергии электронов, атомов, молекул как в атомной и ядерной физике, так и в химии и молекулярной биологии. Здесь удобнее пользоваться единицей электрон-вольт (эВ). Один электрон-вольт равен энергии, которую приобретает электрон, проходя разность потенциалов 1 В (вольт). Заряд электрона равен 1,6*10 -19 Кл, и, поскольку изменение потенциальной энергии равно qV ,

1 эВ = (1,6*10 -19 Кл)(1,0 В) =1,6*10 -19 Дж.

Электрон, ускоренный разностью потенциалов 1000 В, теряет потенциальную энергию 1000 эВ и приобретает кинетическую энергию 1000 эВ (или 1 кэВ). Если той же разностью потенциалов ускорить частицу с вдвое большим зарядом (2е = 3,2*10 -19 Кл), ее энергия изменится на 2000 эВ.

Электрон-вольт - удобная единица для измерения энергии молекул и элементарных частиц, но он не принадлежит к системе СИ. Поэтому при расчетах следует переводить электрон-вольты в джоули, пользуясь приведенным выше коэффициентом.

Электрический потенциал уединенного точечного заряда

Электрический потенциал на расстоянии r от уединенного точечного заряда Q можно получить непосредственно из формулы (24.4).

Электрическое поле точечного заряда имеет напряженность

и направлено вдоль радиуса от заряда (или к заряду, если Q а на расстоянии r а от Q до точки b на расстоянии r b от Q . Тогда вектор dl параллелен Е и dl = dr .
Таким образом,

Как уже говорилось, физический смысл имеет лишь разность потенциалов. Поэтому мы вправе присвоить потенциалу в какой-либо точке произвольное значение. Принято считать потенциал равным нулю на бесконечности (например, V b = 0 при r b = оо), и тогда электрический потенциал на расстоянии r от уединенного точечного заряда равен

Это электрический потенциал относительно бесконечности; он иногда называется «абсолютным потенциалом» уединенного точечного заряда. Обратим внимание на то, что потенциал V убывает как первая степень расстояния от заряда, в то время как напряженность электрического поля убывает как квадрат расстояния.
Потенциал велик вблизи положительного заряда и убывает до нуля на очень большом расстоянии. Вблизи отрицательного заряда потенциал меньше нуля (отрицателен) и с увеличением расстояния возрастает до нуля.

Чтобы определить напряженность электрического поля системы зарядов, необходимо просуммировать напряженности полей, создаваемых каждым зарядом в отдельности. Поскольку напряженность поля-вектор, такое суммирование нередко вырастает в проблему. Найти же электрический потенциал нескольких точечных зарядов гораздо проще: потенциал-скалярная величина и при сложении потенциалов не требуется учитывать направление. В этом большое преимущество электрического потенциала. Суммирование можно легко выполнить для любого числа точечных зарядов.

Продолжение следует. Коротко о следующей публикации:

Замечания и предложения принимаются и приветствуются!