Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Здравствуйте! Ударим по приближающемуся ЕГЭ качественной систематической подготовкой, и упорством в измельчении гранита науки!!! В конце поста имеется конкурсная задача, будьте первым! В одной из статей данной рубрики мы с вами , в которых был дан график функции, и ставились различные вопросы, касающиеся экстремумов, промежутков возрастания (убывания) и прочие.

В этой статье рассмотрим задачи входящие в ЕГЭ по математике, в которых дан график производной функции, и ставятся следующие вопросы:

1. В какой точке заданного отрезка функция принимает наибольшее (или наименьшее) значение.

2. Найти количество точек максимума (или минимума) функции, принадлежащих заданному отрезку.

3. Найти количество точек экстремума функции, принадлежащих заданному отрезку.

4. Найти точку экстремума функции, принадлежащую заданному отрезку.

5. Найти промежутки возрастания (или убывания) функции и в ответе указать сумму целых точек, входящих в эти промежутки.

6. Найти промежутки возрастания (или убывания) функции. В ответе указать длину наибольшего из этих промежутков.

7. Найти количество точек, в которых касательная к графику функции параллельна прямой вида у = kx + b или совпадает с ней.

8. Найти абсциссу точки, в которой касательная к графику функции параллельна оси абсцисс или совпадает с ней.

Могут стоять и другие вопросы, но они не вызовут у вас затруднений, если вы поняли и (ссылки указаны на статьи, в которых представлена необходимая для решения информация, рекомендую повторить).

Основная информация (кратко):

1. Производная на интервалах возрастания имеет положительный знак.

Если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак.

Если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.

4. В точках экстремума (максимума-минимума) функции производная равна нулю. Касательная к графику функции в этой точке параллельна оси ох.

Это нужно чётко уяснить и помнить!!!

Многих график производной «смущает». Некоторые по невнимательности принимают его за график самой функции. Поэтому в таких зданиях, где видите, что дан график, сразу же акцентируйте своё внимание в условии на том, что дано: график функции или график производной функции?

Если это график производной функции, то относитесь к нему как бы к «отражению» самой функции, которое просто даёт вам информацию об этой функции.

Рассмотрим задание:

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–2;21).


Ответим на следующие вопросы:

1. В какой точке отрезка функция f (х) принимает наибольшее значение.

На заданном отрезке производная функции отрицательна, значит функция на этом отрезке убывает (она убывает от левой границы интервала к правой). Таким образом, наибольшее значение функции достигается на левой границе отрезка, т. е. в точке 7.

Ответ: 7

2. В какой точке отрезка функция f (х)

По данному графику производной можем сказать следующее. На заданном отрезке производная функции положительна, значит функция на этом отрезке возрастает (она возрастает от левой границы интервала к правой). Таким образом, наименьшее значение функции достигается на левой границе отрезка, то есть в точке х = 3.

Ответ: 3

3. Найдите количество точек максимума функции f (х)

Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. Рассмотрим, где таким образом меняется знак.

На отрезке (3;6) производная положительна, на отрезке (6;16) отрицательна.

На отрезке (16;18) производная положительна, на отрезке (18;20) отрицательна.

Таким образом, на заданном отрезке функция имеет две точки максимума х = 6 и х = 18.

Ответ: 2

4. Найдите количество точек минимума функции f (х) , принадлежащих отрезку .

Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный. У нас на интервале (0;3) производная отрицательна, на интервале (3;4) положительна.

Таким образом, на отрезке функция имеет только одну точку минимума х = 3.

*Будьте внимательны при записи ответа – записывается количество точек, а не значение х, такую ошибку можно допустит из-за невнимательности.

Ответ: 1

5. Найдите количество точек экстремума функции f (х) , принадлежащих отрезку .

Обратите внимание, что необходимо найти количество точек экстремума (это и точки максимума и точки минимума).

Точки экстремума соответствуют точкам смены знака производной (с положительного на отрицательный или наоборот). На данном в условии графике это нули функции. Производная обращается в нуль в точках 3, 6, 16, 18.

Таким образом, на отрезке функция имеет 4 точки экстремума.

Ответ: 4

6. Найдите промежутки возрастания функции f (х)

Промежутки возрастания данной функции f (х) соответствуют промежуткам, на которых ее производная положительна, то есть интервалам (3;6) и (16;18). Обратите внимание, что границы интервала не входят в него (круглые скобки – границы не включены в интервал, квадратные – включены). Данные интервалы содержат целые точки 4, 5, 17. Их сумма равна: 4 + 5 + 17 = 26

Ответ: 26

7. Найдите промежутки убывания функции f (х) на заданном интервале. В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. В данной задаче это интервалы (–2;3), (6;16), (18;21).

Данные интервалы содержат следующие целые точки: –1, 0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20. Их сумма равна:

(–1) + 0 + 1 + 2 + 7 + 8 + 9 + 10 +

11 + 12 + 13 + 14 + 15 + 19 + 20 = 140

Ответ: 140

*Обращайте внимание в условии: включены ли границы в интервал или нет. Если границы будут включены, то и в рассматриваемых в процессе решения интервалах эти границы также необходимо учитывать.

8. Найдите промежутки возрастания функции f (х)

Промежутки возрастания функции f (х) соответствуют промежуткам, на которых производная функции положительна. Мы уже указывали их: (3;6) и (16;18). Наибольшим из них является интервал (3;6), его длина равна 3.

Ответ: 3

9. Найдите промежутки убывания функции f (х) . В ответе укажите длину наибольшего из них.

Промежутки убывания функции f (х) соответствуют промежуткам, на которых производная функции отрицательна. Мы уже указывали их, это интервалы (–2;3), (6;16), (18;21), их длины соответственно равны 5, 10, 3.

Длина наибольшего равна 10.

Ответ: 10

10. Найдите количество точек, в которых касательная к графику функции f (х) параллельна прямой у = 2х + 3 или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у = 2х + 3 или совпадает с ней, то их угловые коэффициенты равны 2. Значит, необходимо найти количество точек, в которых у′(х 0) = 2. Геометрически это соответствует количеству точек пересечения графика производной с прямой у = 2. На данном интервале таких точек 4.

Ответ: 4

11. Найдите точку экстремума функции f (х) , принадлежащую отрезку .

Точка экстремума функции это такая точка, в которой её производная равна нулю, при чём в окрестности этой точки производная меняет знак (с положительного на отрицательный или наоборот). На отрезке график производной пересекает ось абсцисс, производная меняет знак с отрицательного на положительный. Следовательно, точка х = 3 является точкой экстремума.

Ответ: 3

12. Найдите абсциссы точек, в которых касательные к графику у = f (x) параллельны оси абсцисс или совпадают с ней. В ответе укажите наибольшую из них.

Касательная к графику у = f (x) может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки, в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю в точках 3, 6, 16,18. Наибольшая равна 18.

Можно построить рассуждение таким образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0 (действительно тангенс угла в ноль градусов равен нулю). Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс, а это точки 3, 6, 16,18.

Ответ: 18

На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–8;4). В какой точке отрезка [–7;–3] функция f (х) принимает наименьшее значение.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;14). Найдите количество точек максимума функции f (х) , принадлежащих отрезку [–6;9].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–18;6). Найдите количество точек минимума функции f (х) , принадлежащих отрезку [–13;1].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11; –11). Найдите количество точек экстремума функции f (х) , принадлежащих отрезку [–10; –10].


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–7;4). Найдите промежутки возрастания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–5;7). Найдите промежутки убывания функции f (х) . В ответе укажите сумму целых точек, входящих в эти промежутки.


На рисунке изображен график у = f ′(х) - производной функции f (х) , определенной на интервале (–11;3). Найдите промежутки возрастания функции f (х) . В ответе укажите длину наибольшего из них.


F На рисунке изображен график

Условие задачи то же (которую мы рассматривали). Найдите сумму трёх чисел:

1. Сумма квадратов экстремумов функции f (х).

2. Разность квадратов суммы точек максимума и суммы точек минимума функции f (х).

3. Количество касательных к f (х), параллельных прямой у = –3х + 5.

Первый, кто даст верный ответ, получит поощрительный приз – 150 рублей. Ответы пишите в комментариях. Если это ваш первый комментарий на блоге, то сразу он не появится, чуть позже (не беспокойтесь, время написания комментария регистрируется).

Успеха вам!

С уважением, Александр Крутицих.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Применение производной в формате ЕГЭ .

Выполнили: Плачковская Катерина, Леонова Юлия 11Б класс Научный руководитель: Солуян Надежда Николаева, учитель математики, «Почетный работник общего образования Российской Федерации»


Введение

Производная-это одна из сложнейших тем в математике, при ее помощи решаются задачи по физике, химии, биологии и даже географии. Многие учащиеся затрудняются или вообще не умеют их решать. Изучение производной продиктовано еще и тем, что многие задания ЕГЭ содержат применение производной.

Поэтому мы решили изучить эту тему более подробно.


Цель работы : сделать классификацию задач на применение производной в материалах ЕГЭ и рассмотреть способы их решения.

Задачи:

  • поиск исторических фактов
  • сбор информации о задачах на применение производной в материалах ЕГЭ
  • анализ взаимосвязи задач со способами их решения
  • изучить основные типы задач на применение производной
  • решить задачи включенные в материалы ЕГЭ
  • провести статистическое исследование.

История производной

Задачи на нахождения экстремума, проведение касательных к кривым и вычисление скорости постоянно возникали в практической деятельности.

В древности и в средние века такие задачи решались геометрическими и механическими способами. Позже было обнаружено, что все эти задачи можно решить единым методом, используя бесконечно малые величины. Развитие этого метода в трудах Ньютона и Лейбница привело к созданию математического анализа, появление которого широко раздвинуло границы применения математики.


Теоретические сведения

Производной функции y=f(x) называется предел отношения приращения функции к приращённому аргументу, при последнем стремящемся к нулю.


Физический смысл производной

Если тело движется прямолинейно по закону y=S’(t) , то мгновенная скорость (U) есть производная пути по времени.

U=S’(t)

Ускорение - есть производная скорости a=U’ (t)


Геометрический смысл производной

Тангенс угла наклона касательной (угловой коэффициент касательной), проведенный к графику функции y=f(x) в точке x 0 равен производной функции y=f"(x) в этой точке:




Производная сложной функции

Функция, заданная в виде y=f(g(x)) ,называется сложной, составленной из функций g и f . (функция, аргументом которой служит функция, называется сложной)

элементарная функция сложная функция

аргумент


Алгоритм нахождения наименьшего и наибольшего значений непрерывной функции y=f(x) на отрезке

1. Найти область определения функции

2. Найти производную f’(x)

3. Найти стационарные и критические точки функции, лежащие внутри отрезка (y’=0)

4. Вычислить значения функции y=f(x) в точках, отобранных на втором шаге, и в точках a и b; выбрать среди этих значений наименьшее (это будет y наим)


Алгоритм исследования непрерывной функции y=f(x) на монотонность и экстремумы

1. Найти область определения

2. Найти производную f’(x)

3. Найти стационарные (f’(x)=0) и критические (f’(x) не существует) точки функции y=f(x)

4. Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках

5. Сделать выводы о монотонности функции и о ее точках экстремума



Статистическое исследование.

1 этап работы:

Проанализировав результаты опроса 11-ых классов, выявила темы, вызывающие наибольшие затруднения у учеников:

Тригонометрические уравнения - техника дифференцирования - Задачи на физический и геометрический смысл производной -Исследование функций при помощи производной - Текстовые задачи - Решение задач на определение площадей - Иррациональные уравнения и выражения - Рациональные уравнения и выражения.

Вывод: тема «Применение производной» содержится в первых 3-х темах, значит, она вызывает наибольшее затруднения.


2 этап работы :

изучение основных видов задач по теме «Применение производной в заданиях единого государственного экзамена»

Применение производной формате в

формате ЕГЭ

Геометрический смысл

Аналитический смысл

Физический смысл





Задачи на применение физического смысла производной

Задача 1.

x(t) = (½)×t² - t – 4 . Определите в какой момент времени t -- скорость V = 6м/с.

Решение.

1) (x(t))‘ = ((½)×t² ­ t - 4)’

2) V(t) = (s(t))’; (s(t))’ = (x(t))’;

V(t) = ((½)×t² – t – 4)’

V(t) = ((½)×t²)’– (t)’– (4)’

3) V(t) = 6м/с (по условию)

Ответ: 7 с.


Задача 2.

Материальная точка движется по закону

х(t) = 15 + 16×t – 3×t². Каким будет ускорение через 2 секунды после начала движения?

Решение .

V(t) = 15 + 16×t – 3×t²

(V(t))’ = (15 + 16×t – 3×t²)’

Т.к (V(t))’ = a (t)

a (t) = 16 – 6×t

a(t) = 16 – 6 ×2

a(t) = 4

Ответ: 4 м/с².


Задачи на применение геометрического смысла производной

Задача 1

Прямая y = 5 x − 3 параллельна касательной к графику функции y = x 2 + 2 x − 4. Найдите абсциссу точки касания.

Решение

Прямая параллельная касательной имеет одинаковый с ней угол наклона к оси абсцисс. Т.е., угловой коэффициент касательной (он же тангенс угла наклона) равен 5, как у заданной прямой. С другой стороны, мы знаем, что угловой коэффициент касательной равен производной функции в точке касания. Найдем производную: y "(x ) = (x 2 + 2 x − 4)" = 2 x + 2. Составим уравнение, подставив в выражение для производной неизвестную абсциссу точки касания x 0 . 2 x 0 + 2 = 5 2 x 0 = 5 − 2 = 3 x 0 = 3/2 = 1,5.

Ответ: 1,5


Задача 2. На рисунке 1 изображен график функции y = f (x ), определенной на интервале (-10,5;19). Определите количество целых точек, в которых производная функции положительна.

Решение

Производная функции положительна

на тех участках, где функция возрастает.

По рисунку видно, что это промежутки

(−10,5;−7,6), (−1;8,2) и (15,7;19). Перечис-

лим целые точки внутри этих интервалов:

"−10","−9", "−8","0", "1","2", "3","4", "5","6",

"7","8", "16","17", "18". Всего 15 точек.

Ответ: 15


Задача 3. На рисунке изображен график функции y = f (x ), определенной на интервале (-11;23). Найдите сумму точек экстремума функции на отрезке . Решение На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8. x 1 + x 2 = 4 + 8 = 12. Ответ: 12


Аналитический способ решения

Задача 1.

Найдите значение производной функции в точке x0=2

Решение а) Найдем значение производной функции:

б) Найдем значение производной функции в точке x0:

Ответ: 31


Задача 2.

Найти значение производной функции F(x)=(3x+1)2 -3 в точке x=2/3.

Решение.

Найдём производную сложной функции: F’(x)=6(x+1)=6x+6;

Найдём значение производной функции в точке x=2/3:

F’(2/3)=6(2/3)+6=10

Ответ:10