Кора головного мозга – поверхностный слой, который покрывает его полушария. Его образуют преимущественно вертикально ориентированные нервные клетки и их отростки, а также пучки афферентных и эфферентных нервных волокон. Кроме того, в составе коры присутствуют клетки нейро-глии.

Характерной особенностью коры мозга является горизонтальная слоистость, которая обусловлена упорядоченным положением нервных клеток и волокон. Стоит отметить, что в коре присутствует шесть слоев, которые отличаются по плотности расположения, ширине, размерам и форме нейронов, которые их составляют. В силу вертикального расположения пучков нервных волокон, тел и отростков нейронов кора обладает вертикальной исчерченностью. Для функциональной организации этого органа огромное знание имеет вертикальное расположение нервных клеток.

Стоит отметить, что кора головного мозга имеет общую площадь примерно 2200 квадратных сантиметров, а количество нейронов в ней составляет более 10 миллиардов. Значительное место в составе коры отводится пирамидным нейронам. Они имеют разный размер, их дендриты обладают множеством шипиков: аксон, звездчатые клетки – имеют короткий аксон и короткие дендриты, веретенообразные нейроны – они обеспечивают горизонтальные или вертикальные взаимосвязи нейронов.

  1. Многослойность локализации нейронов.
  2. Соматотопическое расположение рецепторных систем.
  3. Модульная организация.
  4. Экранность – распределение на плоскости нейронального поля внешней рецепции.
  5. Представительство функций структур ЦНС.
  6. Зависимость степени активности от влияния ретикулярной формации и подкорковых структур.
  7. Цитоархитектоническое распределение на поля.
  8. Наличие вторичных и третичных полей в специфических проекционных моторной и сенсорных системах коры с преобладанием ассоциативных функций.
  9. Специализированные ассоциативные области коры.
  10. Способность продолжительного сохранения следов раздражения.
  11. Динамическое расположение функций, которое проявляется в способности компенсаций утраченных функций структур коры.
  12. Перекрытие в коре областей соседних периферических рецептивных полей.
  13. Реципрокная функциональная связь тормозных и возбудительных состояний коры.
  14. Способность к иррадиации состояния.
  15. Специфическая электрическая активность.

На отличительные особенности организации коры влияет тот факт, что в эволюции имела место кортиколизация функций ЦНС, то есть передача нижележащим мозговым структурам. Однако данная передача не значит, что кора выполняет функции других структур. Ее роль заключается в коррекции нарушений функций систем, которые с ней взаимодействуют, причем принимается во внимание индивидуальный опыт, анализа сигналов, формировании правильной реакции на данные сигналы, а также образовании в собственных и прочих заинтересованных структурах мозга следов о сигнале, его значение, характеристике и реакции на него. Затем по мере автоматизации реакция выполняется подкорковыми структурами.

Слои коры головного мозга

Молекулярный слой – его образуют волокна, которые сплетены друг с другом, в нем содержится мало клеток.

Наружный зернистый слой – для него характерно густое расположение мелких нейронов разной формы. В глубине находятся малые пирамидные клетки – свое название они получили благодаря форме.

Наружный пирамидный слой – в его состав входят пирамидные нейроны разной величины, причем крупные клетки расположены глубже.

Внутренний зернистый слой – для него характерно рыхлое положение мелких нейронов различной величины, возле них проходят плотные пучки волокон.

Внутренний пирамидный слой – включает средние и большие пирамидные нейроны, их апикальные дендриты простираются вплоть до молекулярного слоя.

Слой веретеновидных клеток – здесь находятся веретеновидные нейроны, при этом его глубинная часть переходит в белое вещество.

Области коры головного мозга

На основании расположения, плотности и формы нейронов кору мозга принято делить на несколько полей, они в определенной степени совпадают с некоторыми зонами, которым на основании клинических и физиологических данных приписывается ряд функций.

При помощи электрофизиологических методов было установлено, что кора головного мозга содержит области 3 типов в соответствии с функциями, выполняемыми расположенным там клетками. К ним относятся сенсорные, ассоциативные и двигательные зоны. Благодаря взаимосвязям между этими зонами удается контролировать и координировать произвольные и ряд непроизвольных форм деятельности, включая память, сознание, обучение, свойства личности.

Необходимо отметить, что функции отдельных участков коры, в том числе обширных передних областей, до сих пор не изучены. Данные области, а также некоторые другие участки мозга, называются немыми зонами. Это связано с тем, что в случае раздражения электрическим током не появляется никаких реакций или ощущений.

Существует мнение, что данные зоны несут ответственность за ряд индивидуальных особенностей или личность. Удаление этих участков или перерезка проводящих путей, которые идут от них к мозгу, использовали с целью снятия у пациентов острого возбуждения, однако от данного метода пришлось отказаться в силу побочных эффектов. К последствиям этого можно отнести снижение уровня интеллекта, сознания, способности к творчеству и логическому мышлению. Данные побочные эффекты указывают косвенно на функции, которые выполняют префронтальные зоны.

Особенности неврологического обследования

В ходе неврологического обследования основное внимание уделяют расстройствам движений и чувствительности. Потому выявить нарушения работы проводящих путей и первичных зон значительно легче, нежели поражения ассоциативной коры. Стоит отметить, что неврологических симптомов может не быть даже в случае обширного повреждения лобной, теменной или височной доли. Необходимо, чтобы оценка когнитивных функций была такой же логичной и последовательной, как и неврологическое обследование.

Этот вид обследования ориентирован на закрепленные связи между функцией и структурой. К примеру, при поражении стриарной коры или зрительного тракта всегда имеет место контралатеральная гомонимная гемианопсия. В том случае, если поражен седалищный нерв, не наблюдается ахиллов рефлекс.

Сначала предполагалось, что подобным образом действуют и функции ассоциативной коры. Существовало мнение, что есть центры памяти, восприятия пространства, понимания слов, поэтому с помощью специальных тестов можно было определять расположение поражения. Позднее возникли представления относительно распределенных нейронных систем и функциональной специализации в их пределах. Эти представления свидетельствуют о том, что за сложные поведенческие и когнитивные функции несут ответственность распределенные системы – сложные нейронные контуры, в составе которых имеют место корковые и подкорковые образования.

Потому можно сделать следующие выводы:

  1. Сложные функции, к примеру, память или речь, страдают в случае поражения любой структуры, входящей в соответствующую распределенную систему.
  2. Если какая-то структура относится одновременно к ряду распределенных систем, ее поражение становится причиной нарушения нескольких функций.
  3. Если сохраненные звенья возьмут на себя функции пораженного участка, то нарушение функции может быть временным или минимальным.
  4. Отдельные структуры, которые входят в состав распределенной системы, несут ответственность за различные стороны функции, обеспечиваемые этой системой, однако стоит отметить, что данная специализация относительна.

То есть поражение любой структуры этой распределенной системы приведет к нарушению одной и той же функции, при этом клинические проявления будут отличаться.

Кора головного мозга – это сложный орган, который выполняет множество важных функций. Сбои в ее работе могут привести к достаточно серьезным последствиям для организма, поэтому в случае каких-либо нарушений нужно обязательно своевременно обратиться за помощью к грамотному специалисту.

Кора головного мозга - высший отдел центральной нервной системы, обеспечивающий функционирование организма как единого целого при его взаимодействии с окружающей средой.

головного мозга (кора большого мозга, новая кора) представляет собой слой серого вещества, состоящего из 10-20 млрд и покрывающего большие полушария (рис. 1). Серое вещество коры составляет более половины всего серого вещества ЦНС. Суммарная площадь серого вещества коры — около 0,2 м 2 , что достигается извилистой складчатостью ее поверхности и наличием борозд разной глубины. Толщина коры в ее разных участках колеблется от 1,3 до 4,5 мм (в передней центральной извилине). Нейроны коры располагаются в шести слоях, ориентированных параллельно ее поверхности.

В участках коры, относящихся к , имеются зоны с трехслойным и пятислойным расположением нейронов в структуре серого вещества. Эти участки филогенетически древней коры занимают около 10% поверхности полушарий мозга, остальные 90% составляют новую кору.

Рис. 1. Моля латеральной поверхности коры большого мозга (по Бродману)

Строение коры головного мозга

Кора большого мозга имеет шестислойное строение

Нейроны разных слоев различаются по цитологическим признакам и функциональным свойствам.

Молекулярный слой — самый поверхностный. Представлен небольшим числом нейронов и многочисленными ветвящимися дендритами пирамидных нейронов, лежащих в более глубоких слоях.

Наружный зернистый слой сформирован плотно расположенными многочисленными мелкими нейронами разной формы. Отростки клеток этого слоя образуют кортикокортикальные связи.

Наружный пирамидальный слой состоит из пирамидных нейронов средней величины, отростки которых также участвуют в образовании кортикокортикальных связей между соседними областями коры.

Внутренний зернистый слой подобен второму слою по виду клеток и расположению волокон. В слое проходят пучки волокон, связывающие различные участки коры.

К нейронам этого слоя проводятся сигналы от специфических ядер таламуса. Слой очень хорошо представлен в сенсорных областях коры.

Внутренний пирамидный слои образован средними и крупными пирамидными нейронами. В двигательной области коры эти нейроны особенно крупные (50-100 мкм) и получили название гигантских, пирамидных клеток Беца. Аксоны этих клеток формируют быстропроводящие (до 120 м/с) волокна пирамидного тракта.

Слой полиморфных клеток представлен преимущественно клетками, аксоны которых образуют кортикоталамические пути.

Нейроны 2-го и 4-го слоев коры участвуют в восприятии, переработке поступающих к ним сигналов от нейронов ассоциативных областей коры. Сенсорные сигналы из переключающих ядер таламуса поступают преимущественно к нейронам 4-го слоя, выраженность которого наибольшая в первичных сенсорных областях коры. К нейронам 1-го и других слоев коры поступают сигналы из других ядер таламуса, базальных ганглиев, ствола мозга. Нейроны 3-го, 5-го и 6-го слоев формируют эфферентные сигналы, посылаемые в другие области коры и по нисходящим путям в нижележащие отделы ЦНС. В частности, нейроны 6-го слоя формируют волокна, следующие в таламус.

В нейронном составе и цитологических особенностях разных участков коры имеются значительные отличия. По этим отличиям Бродман разделил кору на 53 цитоархитектонических поля (см. рис. 1).

Расположение многих из этих нолей, выделенных на основе гистологических данных, совпадает по топографии с расположением корковых центров, выделенных на основе выполняемых ими функций. Используются и другие подходы деления коры на области, например, на основе содержания в нейронах определенных маркеров, по характеру нейронной активности и другим критериям.

Белое вещество полушарий головного мозга образовано нервными волокнами. Выделяют ассоциативные волокна, подразделяемые на дугообразные волокна, но которым сигналы передаются между нейронами рядом лежащих извилин и длинные продольные пучки волокон, доставляющие сигналы к нейронам более удаленных участков одноименного полушария.

Комиссуральные волокна - поперечные волокна, передающие сигналы между нейронами левого и правого полушарий.

Проекционные волокна - проводят сигналы между нейронами коры и других отделов мозга.

Перечисленные виды волокон участвуют в создании нейронных цепей и сетей, нейроны которых расположены на значительных расстояниях друг от друга. В коре имеется также особый вид локальных нейронных цепей, образованных рядом расположенными нейронами. Эти нейронные структуры получили название функциональных кортикальных колонок. Нейронные колонки образованы группами нейронов, расположенных друг над другом перпендикулярно поверхности коры. Принадлежность нейронов к одной и той же колонке можно определить по повышению их электрической активности на раздражение одного и того же рецептивного поля. Такая активность регистрируется при медленном перемещении регистрирующего электрода в коре в перпендикулярном направлении. Если регистрировать электрическую активность нейронов, расположенных в горизонтальной плоскости коры, то отмечается повышение их активности при раздражении различных рецептивных полей.

Диаметр функциональной колонки составляет до 1 мм. К нейронам одной функциональной колонки поступают сигналы от одного и того же афферентного таламокортикального волокна. Нейроны соседних колонок связаны друг с другом отростками, с помощью которых обмениваются информацией. Наличие в коре таких взаимосвязанных функциональных колонок увеличивает надежность восприятия и анализа информации, поступающей к коре.

Эффективность восприятия, обработки и использования информации корой для регуляции физиологических процессов обеспечивается также соматотопическим принципом организации сенсорных и моторных полей коры. Суть такой организации заключается в том, что в определенной (проекционной) области коры представлены не любые, а топографически очерченные участки рецептивного поля поверхности тела, мышц, суставов или внутренних органов. Так, например, в соматосенсорной коре поверхность тела человека спроецирована в виде схемы, когда в определенной точке коры представлены рецептивные поля конкретной области поверхности тела. Строгим топографическим образом в первичной моторной коре представлены эфферентные нейроны, активация которых вызывает сокращение определенных мышц тела.

Полям коры присущ также экранный принцип функционирования. При этом рецепторный нейрон посылает сигнал не на одиночный нейрон или в одиночную точку коркового центра, а на сеть или ноле нейронов, связанных отростками. Функциональными ячейками этого поля (экрана) являются колонки нейронов.

Кора мозга, формируясь на поздних этапах эволюционного развития высших организмов, в определенной мере подчинила себе все нижележащие отделы ЦНС и способна корригировать их функции. В то же время функциональная активность коры больших полушарий определяется притоком к ней сигналов от нейронов ретикулярной формации ствола мозга и сигналов от рецептивных полей сенсорных систем организма.

Функциональные области коры мозга

По функциональному признаку в коре выделяют сенсорные, ассоциативные и двигательные области.

Сенсорные (чувствительные, проекционные) области коры

Они состоят из зон, содержащих нейроны, активация которых афферентными импульсами от сенсорных рецепторов или прямым воздействием раздражителей вызывает появление специфических ощущений. Эти зоны имеются в затылочной (поля 17-19), теменной (ноля 1-3) и височной (поля 21-22, 41-42) областях коры.

В сенсорных зонах коры выделяют центральные проекционные поля, обеспечивающие топкое, четкое восприятие ощущений определенных модальностей (свет, звук, прикосновение, тепло, холод) и вторичные проекционные ноля. Функцией последних является обеспечение понимания связи первичного ощущения с другими предметами и явлениями окружающего мира.

Зоны представительства рецептивных полей в сенсорных зонах коры в значительной мере перекрываются. Особенность нервных центров в области вторичных проекционных полей коры — их пластичность, которая проявляется возможностью перестройки специализации и восстановления функций после повреждения какого-либо из центров. Эти компенсаторные возможности нервных центров особенно выражены в детском возрасте. В то же время повреждение центральных проекционных полей после перенесенных заболевании, сопровождается грубым нарушением функций чувствительности и часто невозможностью ее восстановления.

Зрительная кора

Первичная зрительная кора (VI, поле 17) располагается по обеим сторонам шпорной борозды на медиальной поверхности затылочной доли головного мозга. В соответствии с выявлением па неокрашенных срезах зрительной коры чередующихся белых и темных полос ее называют также стриарной (полосатой) корой. К нейронам первичной зрительной коры посылают зрительные сигналы нейроны латерального коленчатого тела, которые получают сигналы от ганглиозных клеток сетчатки. Зрительная кора каждого полушария получает визуальные сигналы от ипсилатеральной и контралатеральной половин сетчатки обоих глаз и их поступление к нейронам коры организовано по соматотопическому принципу. Нейроны, к которым поступают зрительные сигналы от фоторецепторов, топографически расположены в зрительной коре подобно рецепторам в сетчатке глаза. При этом область желтого пятна сетчатки имеет относительно большую зону представительства в коре, чем другие области сетчатки.

Нейроны первичной зрительной коры ответственны за зрительное восприятие, которое на основе анализа входных сигналов проявляется их способностью обнаруживать зрительный стимул, определять его специфическую форму и ориентацию в пространстве. Упрощенно можно представить сенсорную функцию зрительной коры в решении задачи и ответе на вопрос, что представляет собой зрительный объект.

В анализе других качеств зрительных сигналов (например, расположения в пространстве, движения, связи с другими событиями и т.д.) принимают участие нейроны полей 18 и 19 экстрастриарной коры, расположенных но соседству с нолем 17. Информация о сигналах, поступивших в сенсорные зрительные зоны коры, передастся для дальнейшего анализа и использования зрения для выполнения других функций мозга в ассоциативные области коры и другие отделы мозга.

Слуховая кора

Расположена в латеральной борозде височной доли в области извилины Гешля (AI, поля 41-42). К нейронам первичной слуховой коры поступают сигналы от нейронов медиальных коленчатых тел. Волокна слуховых путей, проводящие звуковые сигналы в слуховую кору, организованы тонотопически, и это позволяет нейронам коры получать сигналы от определенных слуховых рецепторных клеток кортиева органа. Слуховая кора регулирует чувствительность слуховых клеток.

В первичной слуховой коре формируются звуковые ощущения и проводится анализ отдельных качеств звуков, позволяющий ответить на вопрос, что представляет собой воспринятый звук. Первичная слуховая кора играет важную роль в анализе коротких звуков, интервалов между звуковыми сигналами, ритма, звуковой последовательности. Более сложный анализ звуков осуществляется в ассоциативных областях коры, смежных с первичной слуховой. На основе взаимодействия нейронов этих областей коры осуществляется бинауральный слух, определяются характеристики высоты, тембра, громкости звука, принадлежность звука, формируется представление о трехмерном звуковом пространстве.

Вестибулярная кора

Располагается в верхней и средней височных извилинах (поля 21-22). К ее нейронам поступают сигналы от нейронов вестибулярных ядер ствола мозга, связанных афферентными связями с рецепторами полукружных каналов вестибулярного аппарата. В вестибулярной коре формируется ощущение о положении тела в пространстве и ускорении движений. Вестибулярная кора взаимодействует с мозжечком (через височно-мостомозжечковый путь), участвует в регуляции равновесия тела, приспособлении позы к осуществлению целенаправленных движений. На основе взаимодействия этой области с соматосенсорной и ассоциативными областями коры происходит осознание схемы тела.

Обонятельная кора

Расположена в области верхней части височной доли (крючок, ноля 34, 28). Кора включает ряд ядер и относится к структурам лимбической системы. Ее нейроны расположены в трех слоях и получают афферентные сигналы от митральных клеток обонятельной луковицы, связанных афферентными связям с обонятельными рецепторными нейронами. В обонятельной коре проводится первичный качественный анализ запахов и формируется субъективное ощущение запаха, его интенсивности, принадлежности. Повреждение коры ведет к снижению обоняния или к развитию аносмии — потере обоняния. При искусственном раздражении этой области возникают ощущения различных запахов по типу галлюцинаций.

Вкусовая кора

Расположена в нижней части соматосенсорной извилины, непосредственно кпереди от области проекции лица (поле 43). Ее нейроны получают афферентные сигналы от релейных нейронов таламуса, которые связаны с нейронами ядра одиночного тракта продолговатого мозга. К нейронам этого ядра поступают сигналы непосредственно от чувствительных нейронов, образующих синапсы на клетках вкусовых луковиц. Во вкусовой коре проводится первичный анализ вкусовых качеств горького, соленого, кислого, сладкого и на основе их суммации формируется субъективное ощущение вкуса, его интенсивности, принадлежности.

Сигналы запахов и вкуса достигают нейронов передней части островковой коры, где на основе их интеграции формируется новое, более сложное качество ощущений, определяющее наше отношение к источникам запаха или вкуса (например, к пище).

Соматосенсорная кора

Занимает область постцентральной извилины (SI, поля 1-3), включая парацентральную дольку на медиальной стороне полушарий (рис. 9.14). В соматосенсорную область поступают сенсорные сигналы от нейронов таламуса, связанных спиноталамическими путями с рецепторами кожи (тактильная, температурная, болевая чувствительность), проприорецепторами (мышечных веретен, суставных сумок, сухожилий) и интерорецепторами (внутренних органов).

Рис. 9.14. Важнейшие центры и области коры большого мозга

Из-за перекреста афферентных путей в соматосенсорную зону левого полушария приходит сигнализация от правой стороны тела, соответственно в правое полушарие — от левой стороны тела. В этой сенсорной области коры соматотопически представлены все части тела, но при этом наиболее важные рецептивные зоны пальцев рук, губ, кожи лица, языка, гортани занимают относительно большие площади, чем проекции таких поверхностей тела, как спина, передняя часть туловища, ноги.

Расположение представительства чувствительности частей тела вдоль постцентральной извилины часто называют «перевернутый гомункулюс», так как проекция головы и шеи находится в нижней части постцентральной извилины, а проекция каудальной части туловища и ног — в верхней части. При этом чувствительность голеней и стоп проецируется на кору пара- центральной дольки медиальной поверхности полушарий. Внутри первичной соматосенсорной коры имеется определенная специализация нейронов. Например, нейроны поля 3 получают преимущественно сигналы от мышечных веретен и механорецепторов кожи, поля 2 — от рецепторов суставов.

Кору постцентральной извилины относят к первичной соматосенсорной области (SI). Ее нейроны посылают обработанные сигналы к нейронам вторичной соматосенсорной коры (SII). Она располагается кзади от постцентральной извилины в теменной коре (поля 5 и 7) и принадлежит к ассоциативной коре. Нейроны SII не получают прямых афферентных сигналов от нейронов таламуса. Они связаны с нейронами SI и нейронами других областей коры мозга. Это позволяет проводить здесь интегральную оценку сигналов, попадающих в кору по спиноталамическому пути с сигналами, поступающими из других (зрительной, слуховой, вестибулярной и т.д.) сенсорных систем. Важнейшей функцией этих полей теменной коры является восприятие пространства и трансформация сенсорных сигналов в координаты моторных. В теменной коре формируется стремление (намерение, побуждение) осуществить моторное действие, что является основой для начала планирования в ней предстоящей моторной активности.

Интеграция различных сенсорных сигналов связана с формированием различных ощущений, адресуемых к разным частям тела. Эти ощущения используются как для формирования психических, так и других ответных реакций, примерами которых могут быть движения при одновременном участии мышц обеих сторон тела (например, перемещение, ощупывание обеими руками, хватание, однонаправленное движение обеими руками). Функционирование этой области необходимо для узнавания предметов на ощупь и определения пространственного расположения этих предметов.

Нормальная функция соматосенсорных областей коры является важным условием формирования таких ощущений как тепло, холод, боль и их адресации к определенной части тела.

Повреждение нейронов области первичной соматосенсорной коры ведет к снижению различных видов чувствительности на противоположной стороне тела, а локальное повреждение — к потере чувствительности в определенной части тела. Особенно ранимой при повреждении нейронов первичной соматосенсорной коры является дискриминационная чувствительность кожи, а наименее — болевая. Повреждение нейронов вторичной соматосенсорной области коры может сопровождаться нарушением способности распознания предметов на ощупь (тактильная агнозия) и навыков использования предметов (апраксия).

Двигательные области коры

Около 130 лет тому назад исследователи, нанося точечные раздражения на кору мозга электрическим током, обнаружили, что воздействие на поверхность передней центральной извилины вызывает сокращение мышц противоположной стороны тела. Так было обнаружено наличие одной из моторных зон коры мозга. В последующем оказалось, что к организации движений имеют отношение несколько областей коры мозга и его другие структуры, а в областях моторной коры имеются не только двигательные нейроны, но и нейроны, осуществляющие другие функции.

Первичная моторная кора

Первичная моторная кора располагается в передней центральной извилине (MI, поле 4). Ее нейроны получают основные афферентные сигналы от нейронов соматосенсорной коры — полей 1, 2, 5, премоторной коры и таламуса. Кроме того, через вентролатеральный таламус в MI посылают сигналы нейроны мозжечка.

От пирамидных нейронов Ml начинаются эфферентные волокна пирамидного пути. Часть волокон этого пути следует к моторным нейронам ядер черепных нервов ствола мозга (кортикобульбарный тракт), часть — к нейронам стволовых моторных ядер (красное ядро, ядра ретикулярной формации, стволовые ядра, связанные с мозжечком) и часть — к интер- и моторным нейронам спинного мозга (кортикоспинальный тракт).

Имеется соматотопическая организация расположения нейронов в MI, контролирующих сокращение разных мышечных групп тела. Нейроны, контролирующие мышцы ног и туловища, расположены в верхних участках извилины и занимают относительно малую площадь, а контролирующие мышцы рук, особенно пальцев, лица, языка и глотки расположены в нижних участках и занимают большую площадь. Таким образом, в первичной двигательной коре относительно большую площадь занимают те нейронные группы, которые управляют мышцами, осуществляющими разнообразные, точные, мелкие, тонко регулируемые движения.

Поскольку многие нейроны Ml увеличивают электрическую активность непосредственно перед началом произвольных сокращений, то первичной моторной коре отводят ведущую роль в контроле активности моторных ядер ствола и мотонейронов спинного мозга и инициации произвольных, целенаправленных движений. Повреждение поля Ml ведет к парезу мышц и невозможности осуществления тонких произвольных движений.

Вторичная моторная кора

Включает области премоторной и дополнительной моторной коры (МII, поле 6). Премоторная кора расположена в поле 6, на боковой поверхности мозга, кпереди от первичной моторной коры. Ее нейроны получают через таламус афферентные сигналы из затылочной, соматосенсорной, теменной ассоциативной, префронтальной областей коры и мозжечка. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в моторную кору MI, небольшое число — в спинной мозг и большее — в красные ядра, ядра ретикулярной формации, базальные ганглии и мозжечок. Премоторная кора играет основную роль в программировании и организации движений, находящихся под контролем зрения. Кора участвует в организации позы и вспомогательных движений для действий, осуществляемых дистальными мышцами конечностей. Повреждение прсмотор- ной коры часто вызывает тенденцию повторного выполнения начатого движения (персеверация), даже если осуществленное движение достигло цели.

В нижней части премоторной коры левой лобной доли, непосредственно кпереди от участка первичной моторной коры, в которой представлены нейроны, контролирующие мышцы лица, располагается речевая область , или моторный центр речи Брока. Нарушение ее функции сопровождается нарушением артикуляции речи, или моторной афазией.

Дополнительная моторная кора располагается в верхней части поля 6. Ее нейроны получают афферентные сигналы из соматосснсорной, теменной и префронтальной областей коры головного мозга. Обработанные в ней сигналы нейроны коры посылают по эфферентным волокнам в первичную моторную кору MI, спинной мозг, стволовые моторные ядра. Активность нейронов дополнительной моторной коры повышается раньше, чем нейронов коры MIи главным образом в связи с осуществлением сложных движений. При этом возрастание нейронной активности в дополнительной моторной коре не связано с движениями как таковыми, для этого достаточно мысленно представить модель предстоящих сложных движений. Дополнительная моторная кора принимает участие в формировании программы предстоящих сложных движений и в организации моторных реакций на специфичность сенсорных стимулов.

Поскольку нейроны вторичной моторной коры посылают множество аксонов в поле MI, ее считают в иерархии моторных центров организации движений более высокой структурой, стоящей над моторными центрами моторной коры MI. Нервные центры вторичной моторной коры могут оказывать влияние на активность моторных нейронов спинного мозга двумя путями: непосредственно через кортикоспинальный путь и через поле MI. Поэтому их иногда называют супрамоторными полями, в функцию которых входит инструктирование центров поля MI.

Из клинических наблюдений известно, что сохранение нормальной функции вторичной моторной коры важно для осуществления точных движений руки, и особенно для выполнения ритмических движений. Так, например, при их повреждении пианист перестает чувствовать ритм и выдерживать интервал. Нарушается способность к осуществлению противоположных движений руками (манипулирование обоими руками).

При одновременном повреждении моторных зон MI и MII коры утрачивается способность к тонким координированным движениям. Точечные раздражения в этих областях моторной зоны сопровождаются активацией не отдельных мышц, а целой группы мышц, вызывающих направленное движение в суставах. Эти наблюдения послужили поводом для формирования вывода о том, что в моторной коре представлены не столько мышцы, сколько движения.

Префронтальная кора

Располагается в области поля 8. Ее нейроны получают основные афферентные сигналы из затылочной зрительной, теменной ассоциативной коры, верхних холмиков четверохолмия. Обработанные сигналы передаются по эфферентным волокнам в премоторную кору, верхние холмики четверохолмия, стволовые моторные центры. Кора играет определяющую роль в организации движений, находящихся под контролем зрения и принимает непосредственное участие в инициации и контроле движений глаз и головы.

Механизмы, реализующие превращение замысла движения в конкретную моторную программу, в залпы импульсов, посылаемых к определенным мышечным группам, остаются недостаточно понятными. Считается, что замысел движения формируется благодаря функциям ассоциативной и других областей коры, взаимодействующих со многими структурами головного мозга.

Информация о замысле движения передается в двигательные области лобной коры. Двигательная кора через нисходящие пути активирует системы, обеспечивающие выработку и использование новых двигательных программ или использование старых, уже отработанных на практике и хранящихся в памяти. Составной частью этих систем являются базальные ганглии и мозжечок (см. их функции выше). Программы движения, выработанные при участии мозжечка и базальных ганглиев, передаются через таламус в моторные зоны и прежде всего в первичную моторную область коры. Эта область непосредственно инициирует исполнение движений, подключая к нему определенные мышцы и обеспечивая последовательность смены их сокращения и расслабления. Команды коры передаются на моторные центры ствола мозга, спинальные мотонейроны и мотонейроны ядер черепных нервов. Мотонейроны в осуществлении движений выполняют роль конечного пути, через который двигательные команды передаются непосредственно к мышцам. Особенности передачи сигналов от коры к моторным центрам ствола и спинного мозга описаны в главе, посвященной ЦНС (ствол мозга, спинной мозг).

Ассоциативные области коры

У человека ассоциативные области коры занимают около 50% площади всей коры большого мозга. Они располагаются в участках между сенсорными и двигательными областями коры. Ассоциативные области не имеют четких границ со вторичными сенсорными областями как по морфологическим, так и по функциональным признакам. Выделяют теменную, височную и лобную ассоциативные области коры больших полушарий.

Теменная ассоциативная область коры. Располагается в полях 5 и 7 верхней и нижней теменных долек мозга. Область граничит впереди с соматосенсорной корой, сзади — со зрительной и слуховой корой. К нейронам теменной ассоциативной области могут поступать и активировать их зрительные, звуковые, тактильные, проприоцептивные, болевые, сигналы из аппарата памяти и другие сигналы. Часть нейронов является полисенсорной и может повышать свою активность при поступлении к ней соматосенсорных и визуальных сигналов. Однако степень повышения активности нейронов ассоциативной коры на поступление афферентных сигналов зависит от текущей мотивации, внимания субъекта и информации, извлекаемой из памяти. Она остается незначительной, если поступающий из сенсорных областей мозга сигнал для субъекта безразличен, и существенно возрастает, если он совпал с имеющейся мотивацией и привлек его внимание. Например, при предъявлении обезьяне банана активность нейронов ассоциативной теменной коры остается невысокой, если животное сыто, и наоборот, активность резко возрастает у голодных животных, которым нравятся бананы.

Нейроны теменной ассоциативной коры связаны эфферентными связями с нейронами префронтальной, премоторной, моторной областей лобной доли и поясной извилины. Исходя из экспериментальных и клинических наблюдений, принято считать, что одной из функций коры поля 5 является использование соматосенсорной информации для осуществления целенаправленных произвольных движений и манипулирования объектами. Функцией коры поля 7 является интеграция визуальных и соматосенсорных сигналов для координации движений глаз и визуально-ведомых движений руки.

Нарушением этих функций теменной ассоциативной коры при повреждении ее связей с корой лобной доли или заболеванием самой лобной доли, объясняются симптомы последствий заболеваний, локализованных в области теменной ассоциативной коры. Они могут проявляться затруднением в понимании смыслового содержания сигналов (агнозия), примером которого может быть потеря способности распознавания формы и пространственного расположения объекта. Могут нарушаться процессы трансформации сенсорных сигналов в адекватные моторные действия. В последнем случае больной теряет навыки практического использования хорошо знакомых инструментов и предметов (апраксия), и у него может развиться невозможность осуществления визуально-ведомых движений (например, движение руки в направлении предмета).

Лобная ассоциативная область коры. Располагается в префронтальной коре, которая является частью коры лобной доли, локализующейся кпереди от полей 6 и 8. Нейроны лобной ассоциативной коры получают обработанные сенсорные сигналы по афферентным связям от нейронов коры затылочной, теменной, височной долей мозга и от нейронов поясной извилины. Лобная ассоциативная кора получает сигналы о текущем мотивационном и эмоциональном состояниях от ядер таламуса, лимбической и других структур мозга. Кроме того, лобная кора может оперировать абстрактными, виртуальными сигналами. Эфферентные сигналы ассоциативная лобная кора посылает обратно, в структуры мозга, от которых они были получены, в моторные области лобной коры, хвостатое ядро базальных ганглиев и гипоталамус.

Эта область коры играет первостепенную роль в формировании высших психических функций человека. Она обеспечивает формирование целевых установок и программ осознанных поведенческих реакций, узнавание и смысловую оценку предметов и явлений, понимание речи, логическое мышление. После обширных повреждений лобной коры у больных могут развиться апатия, снижение эмоционального фона, критичного отношения к своим собственным поступкам и поступкам окружающих, самодовольство, нарушение возможности использования прошлого опыта для изменения поведения. Поведение больных может стать непредсказуемым и неадекватным.

Височная ассоциативная область коры. Располагается в полях 20, 21, 22. Нейроны коры получают сенсорные сигналы от нейронов слуховой, экстрастриарной зрительной и префронтальной коры, гиппокампа и миндалины.

После двухстороннего заболевания височных ассоциативных областей с вовлечением в патологический процесс гиппокампа или связей с ним у больных могут развиться выраженные нарушения памяти, эмоционального поведения, неспособность сосредоточения внимания (рассеянность). У части людей при повреждении нижневисочной области, где предположительно располагается центр узнавания лица, может развиться зрительная агнозия — неспособность узнавания лиц знакомых людей, предметов, при сохранности зрения.

На границе височной, зрительной и теменной областей коры в нижней теменной и задней части височной доли располагается ассоциативный участок коры, получивший название сенсорного центра речи, или центра Вернике. После его повреждения развивается нарушение функции понимания речи при сохранности речедвигательной функции.


Мозговая кора входит в состав большинства существ на земле, однако именно у человека данная область достигла наибольшего развития. Специалисты утверждают, что это способствовало вековая трудовая деятельность, которая сопровождает нас на протяжении всей жизни.

В этой статье мы рассмотрим строение, а также за что отвечает кора мозга.

Корковая часть головного мозга играет главную функционирующую роль для человеческого организма в целом и состоит из нейронов, их отростков и глиальных клеток. В состав коры входят звездчатые, пирамидные и веретенообразные нервные клетки. Вследствие наличия складов, корковая область занимает достаточно большую поверхность.

В строение коры головного мозга включается послойная классификация, которая подразделяется на следующие слои:

  • Молекулярный. Имеет отличительные отличия, которое отражается в низком клеточном уровне. Низкий показатель количества этих клеток, состоящих из волокон, тесно взаимосвязаны между собой
  • Наружный зернистый. Клеточные субстанции этого слоя направляются в молекулярный слой
  • Слой пирамидальных нейронов. Является наиболее широким слоем. Достиг наибольшей развитости в прецентральной извилине. Количество пирамидных клеток увеличивается в пределах 20-30 мкм от наружной зоны данного слоя к внутреннему
  • Внутренний зернистый. Непосредственно зрительная кора головного мозга является тем участком, где внутренний зернистый слой достиг максимального своего развития
  • Внутренний пирамидный. В его состав входят пирамидные клетки, имеющие крупный размер. Эти клетки переносятся до молекулярного слоя
  • Слой мультиморфных клеток. Данный слой сформирован нервными клетками различного характера, но в большей степени веретенообразного типа. Внешняя зона характеризуется наличием более крупных клеток. Клетки внутреннего отдела характеризуются незначительным размером

Если рассматривать послойный уровень более тщательно, то можно увидеть, что кора большого мозга больших полушарий принимает на себя проекции каждого из уровней, протекающих в различных отделах ЦНС.

Зоны коры больших полушарий

Особенности клеточного строения корковой части мозга подразделяется на структурные единицы, а именно: зоны, поля, области и подобласти.

Кора мозга классифицируется на следующие проекционные зоны:

  • Первичные
  • Вторичные
  • Третичные

В первичной зоне располагаются определенные нейронные клетки, к которым постоянно поступает рецепторный импульс (слуховой, зрительный). Вторичный отдел характеризуется наличием периферических отделов-анализаторов. Третичная принимает обработанные данные от первичной и вторичной зоны, а сама отвечает за условные рефлексы.

Также кора полушарий головного мозга подразделяется на ряд отделов или зон, которые позволяют регулировать множество человеческих функций.

Выделяет следующие зоны:

  • Сенсорные - участки, в которых располагаются зоны коры головного мозга:
    • Зрительные
    • Слуховые
    • Вкусовые
    • Обонятельные
  • Моторные. Это корковые области, раздражение которых может привести к определенным двигательным реакциям. Находятся в передней центральной извилине. Ее повреждение может привести к существенным двигательным нарушениям
  • Ассоциативные. Данные корковые отделы находятся рядом с сенсорными зонами. Импульсы нервных клеток, которые направляются в сенсорную зону, формируют возбуждающий процесс ассоциативных отделов. Их поражение влекут за собой тяжелые нарушения процесса обучения и функций памяти

Функции долей коры головного мозга

Кора большого мозга и подкорка выполняют ряд человеческих функций. Непосредственно сами доли коры головного мозга содержат в себе такие необходимые центры, как:

  • Двигательный, речевой центр (центр Брока). Располагается в нижней области лобной доли. Его повреждение может полностью нарушить речевую артикуляцию, то есть больной может понимать, что ему говорят, однако ответить не может
  • Слуховой, речевой центр (центр Вернике). Находится в левой височной доле. Повреждение этой области может привести к тому, что человек будет не способен понять, что говорит другой человека, при этом способность излагать свои мысли остается. Также в этом случае серьёзно нарушается письменная речь

Функции речи выполняются сенсорными и двигательными зонами. Ее функции связаны с письменной речью, а именно чтением и письмом. Зрительная кора и головной мозг регулируют эту функцию.

Повреждение зрительного центра полушарий головного мозга ведет к полной потере навыков чтения и письма, а также к возможной потере зрения.

В височной доле расположен центр, который отвечает за процесс запоминание. Пациент с поражением данного участка не может запомнить названия определенных вещей. Однако само значение и функции предмета он понимает и может их описать.

Например, вместо слова «кружка» человек говорит: «это то, куда наливают жидкость, чтобы затем выпить».

Патологии коры мозга

Существует огромное количество заболеваний, поражающих мозг человека и в том числе его корковую структуру. Поражение коры приводит к нарушению работы ее ключевых процессов, а также снижает ее работоспособность.

К наиболее распространенным заболеваниям корковой части относятся:

  • Болезнь Пика. Развивается у людей в пожилом возрасте и характеризуется отмиранием нервных клеток. При этом внешние проявления при данном заболевании практически идентичны болезни Альцгеймера, что можно заметить на этапе диагностирования, когда мозг похож на иссушенный грецкий орех. Стоит также отметить, что заболевание неизлечимо, единственное, на что направлена терапия так это на подавление или устранение симптоматики
  • Менингит. Данное инфекционное заболевание косвенно затрагивает отделы коры головного мозга. Возникает вследствие поражения коры инфекцией пневмококка и ряда других. Характеризуется головными болями, повышенной температурой, резью в глазах, сонливостью, тошнотой
  • Гипертоническая болезнь. При данном заболевании в коре мозга начинают формироваться очаги возбуждения, а исходящие импульсы от данного очага начинают сужать сосуды, что приводит к резким скачкам артериального давления
  • Кислородное голодание коры головного мозга (гипоксия). Данное патологическое состояние чаще всего развивается в детском возрасте. Возникает вследствие недостатка кислорода или нарушения кровотока в головном мозга. Может привести к невозвратным изменениям нейронной ткани или летальному исходу

Большинство патологий мозга и коры невозможно определить исходя из проявляющейся симптоматики и внешних признаков. Для их выявления требуется прохождение специальных диагностических методов, которые позволяют исследовать практически любые, даже самые труднодоступные места и впоследствии определить состояние того или иного участка, а также проанализировать его работу.

Область коры диагностируется с помощью различных методик, о которых мы более подробно расскажем в следующей главе.

Проведение обследования

Для высокоточного обследования коры головного мозга используются такие методы, как:

  • Магнитно-резонансная и компьютерная томография
  • Энцефалография
  • Позитронно-эмиссионная томография
  • Рентгенография

Также используется ультразвуковое исследование мозга, однако этот метод является наименее эффективных в сравнении с вышеперечисленными методами. Из преимуществ ультразвукового исследования выделяют цену и быстроту обследования.

В большинстве случаев пациентам проводится диагностирование мозгового кровообращения. Для этого могут использоваться дополнительный ряд диагностик, а именно;

  • Ультразвуковая допплерография. Позволяет выявить пораженные сосуды и изменения скорости кровотока в них. Метод обладает высокой информативностью и абсолютной безопасностью для здоровья
  • Реоэнцефалография. Работа этого метода заключается в регистрации электрического сопротивления тканей, что позволяет сформировать линию пульсового кровотока. Позволяет определить состояние сосудов, их тонус и ряд других данных. Обладает меньшей информативностью, чем ультразвуковой способ
  • Рентгеновская ангиография. Это стандартное рентгенологическое исследование, которое дополнительно проводится при помощи внутривенного введения контрастного вещества. Затем проводится сам рентген. В результате распространения вещества по всем организму, на экране подсвечиваются все потоки крови в головном мозге

Данные методы позволяют предоставить точную информацию о состоянии мозга, коры и показателей кровотока. Также существуют и другие способы, которые применяются в зависимости от характера заболевания, состояния пациента и других факторов.

Мозг человека является самым сложным органом, а на его изучение затрачиваются многочисленные ресурсы. Однако даже в эпоху инновационных методик его исследования, изучить определенные его участки не представляется возможным.

Мощность обработки процессов в головном мозге настолько значительна, что даже суперкомпьютер не в состоянии даже близко приблизиться по соответствующим показателям.

Кора большого мозга и сам головной мозг постоянно исследуются, вследствие чего открытие различных новых фактов о нем становиться все больше. Наиболее распространенные открытия:

  • В 2017 году был проведен эксперимент, в котором были задействованы человек и суперкомпьютер. Выяснилось, что даже самая технически оснащенная техника способна сымитировать только 1 секунду мозговой активности. На задачу ушло целых 40 минут
  • Объем человеческой памяти в электронной единице измерения количества данных, составляет около 1000 терабайт
  • Мозг человека состоит более чем из 100 тысяч сосудистых сплетений, 85 млрд. нервных клеток. Также в мозгу имеется около 100 трлн. нейронных связей, которые обрабатывают человеческие воспоминания. Таким образом при познании чего-то нового структурная часть мозга также изменяется
  • Когда человек пробуждается, головной мозг накапливает электрическое поле мощностью 25 ВТ. Этой мощности достаточно, что зажечь лампу накаливания
  • Масса мозга составляет всего 2% от общей массы человека, тем не менее, мозг расходует около 16 % энергии в теле и более 17 % кислорода
  • Головной мозг состоит на 80% из воды и на 60% из жира. Поэтому для поддержания нормальных функций мозгу необходимо здоровое питание. Употребляйте в пищу те продукты, которые содержат омега-3 жирные кислоты (рыба, оливковое масло, орехи) и ежедневно выпивайте необходимое количество жидкости
  • Ученые выяснили, что если человек «сидит» на какой-либо диете, то мозг начинает есть сам себя. А низкие показатели кислорода в крови на протяжении нескольких минут, могут привести к нежелательным последствиям
  • Забывчивость человека является естественным процессом, а уничтожение ненужной информации в мозге позволяет ему оставаться гибким. Также забывчивость может возникать искусственно, например, при употреблении алкоголя, который затормаживает естественные процессы в мозге

Активизация умственных процессов дает возможность генерировать дополнительную мозговую ткань, которая заменяет поврежденную. Поэтому необходимо постоянно умственно развиваться, что значительно снизит риск возникновения слабоумия в уже пожилом возрасте.

Кора головного мозга

мозг головной: кора (кора головного мозга) - верхний слой полушарий мозга головного, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидные клетки), а также из пучков афферентных (центростремительных) и эфферентных (центробежных) нервных волокон. В нейроанатомическом плане характерна наличием горизонтальных слоев, отличающихся шириной, плотностью, формой и размерами входящих в них нервных клеток.

Кора мозга головного разделяется на ряд областей: например, в наиболее распространенной классификации цитоархитектонических формаций К. Бродмана в коре человека выделено 11 областей и 52 поля. На базе данных филогенеза выделяется новая кора, или неокортекс; старая, или архикортекс; и древняя, или палеокортекс. По функциональным критериям выделяются три типа областей: зоны сенсорные, обеспечивающие прием и анализ афферентных сигналов, идущих от специфических релейных ядер таламуса; зоны моторные, имеющие двусторонние внутрикорковые связи со всеми сенсорными областями для взаимодействия зон сенсорных и моторных; и зоны ассоциативные, не имеющие прямые афферентные или эфферентные связей с периферией, но связанные с зонами сенсорными и моторными.


Словарь практического психолога. - М.: АСТ, Харвест . С. Ю. Головин . 1998 .

Анатомо-физиологическая подсистема нервной системы.

Специфика.

Верхний слой полушарий головного мозга, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидныe клетки), а также из пучков афферентных (центростремительных) и эфферентных (центробежных) нервные волокон. В нейроанатомическом плане характеризуется наличием горизонтальных слоев, отличающихся шириной, плотностью, формами и размерами входящих в них нервных клеток.

Структура.

Кору головного мозга разделяют на ряд областей, например в наиболее распространенной классификации цитоархитектонических формаций К.Бродмана в коре головного мозга человека выделено 11 областей и 52 поля. На основе данных филогенеза, выделяют новую кору, или неокортекс, старую, или архикортекс, и древнюю, или палеокортекс. По функциональному критерию, выделяют три типа областей: сенсорные зоны, которые обеспечивают прием и анализ афферентных сигналов, идущих от специфических релейных ядер таламуса, моторные, которые имеют двусторонние внутрикорковые связи со всеми сенсорными областями для взаимодействия сенсорных и моторных зон, и ассоциативные, не имеющие прямые афферентные или эфферентные связи с периферией, но связанные с сенсорными и моторными зонами.


Психологический словарь . И.М. Кондаков . 2000 .

КОРА ГОЛОВНОГО МОЗГА

(англ. cerebral cortex ) - поверхностный слой, покрывающий полушария головного мозга , образован преимущественно вертикально ориентированными нервными клетками (нейронами) и их отростками, а также пучками афферентных (центростремительных ) и эфферентных (центробежных ) нервных волокон. Помимо этого в состав коры входят клетки нейроглии.

Характерная особенность структуры К. г. м. - горизонтальная слоистость, обусловленная упорядоченным расположением тел нервных клеток и нервных волокон. В К. г. м. выделяют 6 (по данным некоторых авторов, 7) слоев, отличающихся по ширине, плотности расположения, форме и размерам составляющих их нейронов. Из-за преимущественно вертикальной ориентации тел и отростков нейронов, а также пучков нервных волокон К. г. м. имеет вертикальную исчерченность. Для функциональной организации К. г. м. большое значение имеет вертикальное, колонкообразное расположение нервных клеток.

Основным типом нервных клеток, входящих в состав К. г. м., являются пирамидные клетки . Тело этих клеток напоминает конус, от вершины которого отходит один толстый и длинный, апикальный дендрит; направляясь к поверхности К. г. м., он истончается и веерообразно делится на более тонкие конечные ветви. От основания тела пирамидной клетки отходят более короткие базальные дендриты и , направляющийся в белое вещество, расположенное под К. г. м., или ветвящийся в пределах коры. Дендриты пирамидных клеток несут на себе большое количество выростов, т. н. шипиков , которые принимают участие в формировании синаптических контактов с окончаниями афферентных волокон, приходящих в К. г. м. из др. отделов коры и подкорковых образований (см. ). Аксоны пирамидных клеток образуют основные эфферентные пути, идущие из К. г. м. Размеры пирамидных клеток варьируют от 5-10 мк до 120-150 мк (гигантские клетки Беца). Помимо пирамидных нейронов в состав К. г. м. входят звездчатые , веретенообразные и некоторые др. типы интернейронов, участвующих в приеме афферентных сигналов и формировании функциональных межнейронных связей.

Основываясь на особенностях распределения в слоях коры различных по величине и форме нервных клеток и волокон, всю территорию К. г. м. подразделяют на ряд областей (напр., затылочная, лобная, височная и др.), а последние - на более дробные цитоархитектонические поля , отличающиеся по своей клеточной структуре и функциональному значению. Общепринята классификация цитоархитектонических формаций К. г. м., предложенная К. Бродманом, который разделил всю К. г. м. человека на 11 областей и 52 поля.

Исходя из данных филогенеза, К. г. м. подразделяют на новую (неокортекс ), старую (архикортекс ) и древнюю (палеокортекс ). В филогенезе К. г. м. происходит абсолютное и относительное увеличение территорий новой коры при относительном уменьшении площади древней и старой. У человека на долю новой коры приходится 95,6%, в то время как древняя занимает 0,6%, а старая - 2,2% всей корковой территории.

Функционально в коре выделяют 3 типа областей: сенсорные, моторные и ассоциативные.

Сенсорные (или проекционные) корковые зоны осуществляют прием и анализ афферентных сигналов по волокнам, идущим из специфических релейных ядер таламуса. Сенсорные зоны локализованы в определенных областях коры: зрительная расположена в затылочной (поля 17, 18, 19), слуховая в верхних отделах височной области (поля 41, 42), соматосенсорная , анализирующая импульсацию, поступающую с рецепторов кожи, мышц, суставов, - в области постцентральной извилины (поля 1, 2, 3). Обонятельные ощущения связаны с функцией филогенетически более старых отделов коры (палеокортекс) - гиппокампова извилина.

Моторная (двигательная) область - поле 4 по Бродману - находится на прецентральной извилине. Для двигательной коры характерно наличие в слое V гигантских пирамидных клеток Беца, аксоны которых образуют пирамидный тракт - основной двигательный тракт, нисходящий до моторных центров мозгового ствола и спинного мозга и обеспечивающий корковый контроль произвольных мышечных сокращений. Моторная кора имеет двусторонние внутрикорковые связи со всеми сенсорными областями, что обеспечивает тесное взаимодействие сенсорных и моторных зон.

Ассоциативные области. Кора больших полушарий человека характеризуется наличием обширной территории, не имеющей прямых афферентных и эфферентных связей с периферией. Эти области, связанные через обширную систему ассоциативных волокон с сенсорными и моторными зонами, получили название ассоциативных (или третичных) корковых зон. В задних отделах коры они расположены между теменными, затылочными и височными сенсорными областями, а в передних отделах они занимают основную поверхность лобных долей. Ассоциативная кора либо отсутствует, либо слабо развита у всех млекопитающих до приматов. У человека заднеассоциативная кора занимает примерно половину, а лобные области четверть всей поверхности коры. По строению они отличаются особенно мощным развитием верхних ассоциативных слоев клеток в сравнении с системой афферентных и эфферентных нейронов. Их особенностью является также наличие полисенсорных нейронов - клеток, воспринимающих информацию из различных сенсорных систем.

В ассоциативной коре расположены и центры, связанные с речевой деятельностью (см. и ). Ассоциативные области коры рассматриваются как структуры, ответственные за синтез поступающей информации, и как аппарат, необходимый для перехода от наглядного восприятия к абстрактным символическим процессам.

Клинические нейропсихологические исследования показывают, что при поражении заднеассоциативных областей нарушаются сложные формы ориентации в пространстве, конструктивная деятельность, затрудняется выполнение всех интеллектуальных операций, которые осуществляются с участием пространственного анализа (счет, восприятие сложных смысловых изображений). При поражении речевых зон нарушается возможность восприятия и воспроизведения речи. Поражение лобных отделов коры приводит к невозможности осуществления сложных программ поведения, требующих выделения значимых сигналов на основе прошлого опыта и предвидения будущего. См. , , , , , . (Д. А. Фарбер.)


Большой психологический словарь. - М.: Прайм-ЕВРОЗНАК . Под ред. Б.Г. Мещерякова, акад. В.П. Зинченко . 2003 .

Кора головного мозга

Слой серого вещества, покрывающий мозговые полушария большого мозга. Кора головного мозга подразделяется на четыре доли: лобные, затылочные, височные и теменные. Часть коры, покрывающая большую часть поверхности полушарий мозга, называется неокортексом, так как она сформировалась на заключительных стадиях человеческой эволюции. Неокортекс можно подразделить на зоны в соответствии с их функциями. Разные части неокортекса связаны с сенсорными и моторными функциями; соответствующие участки коры головного мозга участвуют в планировании движений (лобные доли) или связаны с памятью и восприятием ().


Психология. А-Я. Словарь-справочник / Пер. с англ. К. С. Ткаченко. - М.: ФАИР-ПРЕСС . Майк Кордуэлл . 2000 .

Смотреть что такое "кора головного мозга" в других словарях:

    КОРА ГОЛОВНОГО МОЗГА - КОРА ГОЛОВНОГО МОЗГА, покрытый глубокими извилинами наружный слой больших полушарий головного мозга. Кора, или «серое вещество», представляет собою наиболее сложно организованную часть мозга; ее назначение восприятие ощущений, управление… … Научно-технический энциклопедический словарь

    Кора Головного Мозга - верхний слой полушарий головного мозга, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидныe клетки), а также из пучков афферентных, центростремительных и эфферентных, центробежных нервныe волокон. В … Психологический словарь

    кора головного мозга - мед. Мозг это самый объемистый из элементов центральной нервной системы. Он состоит из двух боковых частей, полушарий головного мозга, соединенных один с другим, и из нижележащих элементов. Он весит около 1200 г. Два полушария головного мозга… … Универсальный дополнительный практический толковый словарь И. Мостицкого

    Кора головного мозга - Тонкая (2 мм) внешняя оболочка полушарий мозга. Кора головного мозга человека является центром высших когнитивных процессов и обработки сенсомоторной информации … Психология ощущений: глоссарий

    кора головного мозга - Кора/ больших полушарий. Поверхностный слой головного мозга у высших позвоночных животных и человека … Словарь многих выражений

    Кора головного мозга - Центральная нервная система (ЦНС) I. Шейные нервы. II. Грудные нервы. III. Поясничные нервы. IV. Крестцовые нервы. V. Копчиковые нервы. / 1. Головной мозг. 2. Промежуточный мозг. 3. Средний мозг. 4. Мост. 5. Мозжечок. 6. Продолговатый мозг. 7.… … Википедия

    КОРА ГОЛОВНОГО МОЗГА - Поверхность, покрывающая серое вещество, которое образует самый верхний уровень головного мозга. В эволюционном смысле это самое новое нервное образование, и приблизительно 9 12 миллиардов его клеток отвечают за основные сенсорные функции,… … Толковый словарь по психологии

    кора головного мозга - см. Кора … Большой медицинский словарь

    Кора Головного Мозга, Кора Большого Мозга (Cerebral Cortex) - имеющий сложное строение внешний слой большого мозга, на который приходится до 40% веса всего головного мозга и который содержит примерно 15 миллиардов нейронов (см. Серое вещество). Кора большого мозга непосредственно отвечает за психику… … Медицинские термины

    КОРА ГОЛОВНОГО МОЗГА, КОРА БОЛЬШОГО МОЗГА - (cerebral cortex) имеющий сложное строение внешний слой большого мозга, на который приходится до 40% веса всего головного мозга и который содержит примерно 15 миллиардов нейронов (см. Серое вещество). Кора большого мозга непосредственно отвечает… … Толковый словарь по медицине

Книги

  • Как эмоции влияют на абстрактное мышление и почему математика невероятно точна. Как устроена кора головного мозга, почему ее возможности ограничены и как эмоции, дополняя работу коры, позволяют челов , А. Г. Свердлик. Математика, в отличие от прочих дисциплин, универсальна и предельно точна. Она создает логическую структуру всех естественных наук. Непостижимая эффективность математики, как в свое время… Купить за 638 грн (только Украина)
  • Как эмоции влияют на абстрактное мышление и почему математика невероятно точна. Как устроена кора головного мозга, почему ее возможности ограничены и как эмоции, дополняя работу коры, позволяют человеку совершать научные открытия , А. Г. Свердлик. Математика, в отличие от прочих дисциплин, универсальна и предельно точна. Она создает логическую структуру всех естественных наук. «Непостижимая эффективность математики», как в свое время…

Функции чтения обеспечивает лексический центр (центр лексии). Центр лексии располагается в угловой извилине.

Графический анализатор, центр графии, функция письма

Функции письма обеспечивает графический центр (центр графии). Центр графии располагается в заднем отделе средней лобной извилины.

Счетный анализатор, центр калькуляции, функция счета

Функции счета обеспечивает счетный центр (центр калькуляции). Центр калькуляции располагается на стыке теменно-затылочной области.

Праксис, праксический анализатор, центр праксиса

Праксис - это способность к выполнению целенаправленных двигательных актов. Праксис формируется в процессе жизнедеятельности человека, начиная с грудного возраста, и обеспечивается сложной функциональной системой мозга с участием корковых полей теменной доли (нижняя теменная долька) и лобной доли, особенно левого полушария у правшей. Для нормального праксиса необходимы сохранность кинестетической и кинетической основы движений, зрительно-пространственной ориентировки, процессов программирования и контроля целенаправленных действий. Поражение праксической системы на том или ином уровне проявляется таким видом патологии, как апраксия. Термин «праксис» происходит от греческого слова «praxis», которое означает «действие». - это нарушение целенаправленного действия при отсутствии параличей мышц и сохранности составляющих его элементарных движений.

Гностический центр, центр гнозиса

В правом полушарии у правшей, в левом полушарии головного мозга у левшей представлены многие гностические функции. При поражении преимущественно правой теменной доли может возникать анозогнозия, аутопагнозия, конструктивная апраксия. С центром гнозиса также связаны музыкальный слух, ориентация в пространстве, центр смеха.

Память, мышление

Наиболее сложные корковые функции - это память и мышление. Эти функции не имеют четкой локализации.

Память, функция памяти

В реализации функции памяти участвуют различные участки. Лобные доли обеспечивают активную целенаправленную мнестическую деятельность. Задние гностические отделы коры связаны с частными формами памяти - зрительной, слуховой, тактильно-кинестической. Речевые зоны коры осуществляют процесс кодирования поступающей информации в словесные логико-грамматические системы и словесные системы. Медиобазальные отделы височной доли, в частности гиппокамп, переводят текущие впечатления в долговременную память. Ретикулярная формация обеспечивает оптимальный тонус коры, заряжая ее энергией.

Мышление, функция мышления

Функция мышления - это результат интегративной деятельности всего головного мозга, особенно лобных долей, которые участвуют в организации целенаправленной сознательной деятельности человека, мужчины, женщины. Происходят программирование, регуляция и контроль. При этом у правшей левое полушарие является основой преимущественно абстрактного словесного мышления, а правое полушарие связано главным образом с конкретным образным мышлением.

Развитие корковых функций начинается с первых месяцев жизни ребенка, достигает своего совершенства к 20 годам.

В последующих статьях мы остановимся на актуальных вопросах неврологии: зоны коры головного мозга, зоны больших полушарий, зрительная, зона коры, слуховая зона коры, моторные двигательные и чувствительные сенсорные зоны, ассоциативные, проекционные зоны, моторные и функциональные зоны, речевые зоны, первичные зоны коры головного мозга, ассоциативные, функциональные зоны, фронтальная кора, соматосенсорная зона, опухоль коры, отсутствие коры, локализация высших психических функций, проблема локализации, мозговая локализация, концепция динамической локализации функций, методы исследования, диагностики.

Кора головного мозга лечение

В Сарклиник применяются авторские методы восстановления работы коры головного мозга. Лечение коры головного мозга в России у взрослых, подростков, детей, лечение коры больших полушарий головного мозга в Саратове у мальчиков и девочек, парней и девушек, мужчин и женщин позволяет восстановить утраченные функции. У детей активизируется развитие коры головного мозга, центры головного мозга. У взрослых и детей лечится атрофия и субатрофия коры головного мозга, нарушение коры, торможение в коре, возбуждение в коре, повреждение коры, изменения в коре, болит кора, сужение сосудов, плохое кровоснабжение, раздражение и дисфункция коры, органическое поражение, инсульт, отслоение, повреждение, диффузные изменения, диффузная ирритация, отмирание, недоразвитие, разрушение, болезни, вопрос доктору Если кора головного мозга пострадала, то при правильном и адекватном лечении есть возможность восстановления ее функций.

. Имеются противопоказания. Необходима консультация специалиста.

Текст: ® SARCLINIC | Sarclinic.com \ Sаrlinic.ru Фото: MedusArt / Фотобанк Фотодженика / photogenica.ru Люди, изображенные на фото, - модели, не страдают от описанных заболеваний и/или все совпадения исключены.