Практические задачи, связанные с оценкой вероятности наступления события в результате нескольких равноценных попыток могут анализироваться с применением формулы Бернулли или (при большом количестве таких попыток) с применением приближенной формулы Пуассона. Для работы с этим материалом Вам снова потребуется знание ..

Схема Бернулли состоит в следующем: производится последовательность испытаний, в каждом из которых вероятность наступления определенного события А одна и та же и равна р. Испытания предполагаются независимыми (т.е. считается, что вероятность появления события А в каждом из испытаний не зависит от того, появилось или не появилось это событие в других испытаниях). Наступление события А обычно называют успехом, а ненаступление - неудачей. Обозначим вероятность неудачи q=1-P(A)=(1-p). Вероятность того, что в n независимых испытаниях успех наступит ровно m раз, выражается формулой Бернулли :

Вероятность Р n (m) при данном n сначала увеличивается при увеличении m от 0 до некоторого значения m 0 , а затем уменьшается при изменении m от m 0 до n.

Поэтому m 0 , называют наивероятнейшим числом наступлений успеха в опытах. Это число m 0 , заключено между числами np-q и np+p (или, что то же самое, между числами n(p+1)-1 и n(p+1) ) .Если число np-q - целое число, то наивероятнейших чисел два: np-q и np+p.

Важное замечание. Если np-q< 0, то наивероятнейшее число выигрышей равно нулю.

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А ={выпала шестерка}.

Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:


Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m 0 =0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20.

Решение: при n =19 находим


Таким образом, максимальная вероятность достигается для двух значений m 0 , равных 11 и 12. Эта вероятность равна P 19 (11)=P 19 (12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m 0 , т.к.

Не является целым числом. Наивероятнейшее число наступлений успеха m 0 равно 12. Вероятность его появления равна P 20 (12)=0,1797. Совпадение чисел P 20 (12) и P 19 (12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона


Пример 4. Радиоаппаратура состоит из 1000 элементов. Вероятность отказа одного элемента в течение года равна 0,002. Какова вероятность отказа двух элементов за год? Какова вероятность отказа не менее двух элементов за год?

Решение: будем рассматривать работу каждого элемента как отдельное испытание. Обозначим А ={отказ элемента за год}.

P(A)=p=0,002, l=np=1000*0,002=2


П о формуле Пуассона


Обозначим через P 1000 (> 2) вероятность отказа не менее двух элементов за год.
Переходя к противоположному событию, вычислим P 1000 (> 2) как.

Поэтому ваше ближайшее времяпровождение будет крайне полезным. Кроме того, я расскажу, в чём заблуждается подавляющее большинство участников лотерей и азартных игр. …Нееет, вера или слабая надежда «сорвать куш» тут совершенно не при чём;-) Не успев и глазом моргнуть, погружаемся в тему:

Что такое независимые испытания ? Практически всё понятно уже из самого названия. Пусть производится несколько испытаний. Если вероятность появления некоего события в каждом из них не зависит от исходов остальных испытаний, то… заканчиваем фразу хором =) Молодцы. При этом под словосочетанием «независимые испытания» часто подразумевают повторные независимые испытания – когда они осуществляются друг за другом.

Простейшие примеры:
– монета подбрасывается 10 раз;
– игральная кость подбрасывается 20 раз.

Совершенно ясно, что вероятность выпадения орла либо решки в любом испытании не зависит от результатов других бросков. Аналогичное утверждение, естественно, справедливо и для кубика.

А вот последовательное извлечение карт из колоды не является серией независимых испытаний – как вы помните, это цепочка зависимых событий . Однако если карту каждый раз возвращать обратно, то ситуация станет «такой, какой надо».

Спешу обрадовать – у нас в гостях очередной Терминатор, который абсолютно равнодушен к своим удачам/неудачам, и поэтому его стрельба представляет собой образец стабильности =):

Задача 1

Стрелок совершает 4 выстрела по мишени. Вероятность попадания при каждом выстреле постоянна и равна . Найти вероятность того, что:

а) стрелок попадёт только один раз;
б) стрелок попадёт 2 раза.

Решение : условие сформулировано в общем виде и вероятность попадания в мишень при каждом выстреле считается известной . Она равна (если совсем тяжко, присвойте параметру какое-нибудь конкретное значение, например, ) .

Коль скоро, мы знаем , то легко найти вероятность промаха в каждом выстреле:
, то есть, «ку» – это тоже известная нам величина .

а) Рассмотрим событие «Стрелок попадёт только один раз» и обозначим его вероятность через (индексы понимаются как «одно попадание из четырёх») . Данное событие состоит в 4 несовместных исходах: стрелок попадёт в 1-й или во 2-й или в 3-й или в 4-й попытке.

Найти вероятность того, что при броске 10 монет орёл выпадет на 3 монетах.

Здесь испытания не повторяются, а скорее, производятся одновременно, но, тем не менее, работает та же самая формула: .

Решение будет отличаться смыслом и некоторыми комментариями, в частности:
способами можно выбрать 3 монеты, на которых выпадет орёл.
– вероятность выпадения орла на каждой из 10 монет
и т.д.

Однако на практике подобные задачи встречаются не столь часто, и, видимо, по этой причине формула Бернулли чуть ли не стереотипно ассоциируется только с повторными испытаниями. Хотя, как только что было показано, повторяемость вовсе не обязательна.

Следующая задача для самостоятельного решения:

Задача 3

Игральную кость бросают 6 раз. Найти вероятность того, что 5 очков:

а) не выпадут (выпадут 0 раз) ;
б) выпадут 2 раза;
в) выпадут 5 раз.

Результаты округлить до 4 знаков после запятой.

Краткое решение и ответ в конце урока.

Очевидно, что в рассматриваемых примерах некоторые события более вероятны, а некоторые – менее вероятны. Так, например, при 6 бросках кубика даже безо всяких расчётов интуитивно понятно, что вероятности событий пунктов «а» и «бэ» значительно больше вероятности того, что «пятёрка» выпадет 5 раз. А теперь поставим задачу найти

НАИВЕРОЯТНЕЙШЕЕ число появлений события в независимых испытаниях

Опять же на уровне интуиции в Задаче №3 можно сделать вывод о том, что наивероятнейшее количество появлений «пятёрки» равно единице – ведь всего граней шесть, и при 6 бросках кубика каждая из них должна выпасть в среднем по одному разу. Желающие могут вычислить вероятность и посмотреть, будет ли она больше «конкурирующих» значений и .

Сформулируем строгий критерий : для отыскания наивероятнейшего числа появлений случайного события в независимых испытаниях (с вероятностью в каждом испытании) руководствуются следующим двойным неравенством:

, причём:

1) если значение – дробное, то существует единственное наивероятнейшее число ;
в частности, если – целое, то оно и есть наивероятнейшее число: ;

2) если же – целое, то существуют два наивероятнейших числа: и .

Наивероятнейшее число появлений «пятёрки» при 6 бросках кубика подпадает под частный случай первого пункта:

В целях закрепления материала решим пару задач:

Задача 4

Вероятность того, что при броске мяча баскетболист попадёт в корзину, равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую вероятность.

А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =)

Решение : для оценки наивероятнейшего числа попаданий используем двойное неравенство . В данном случае:

– всего бросков;
– вероятность попадания в корзину при каждом броске;
– вероятность промаха при каждом броске.

Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в следующих пределах:

Поскольку левая граница – дробное число (пункт №1) , то существует единственное наивероятнейшее значение, и, очевидно, что оно равно .

Используя формулу Бернулли , вычислим вероятность того, что при 8 бросках будет ровно 2 попадания:

Ответ : – наивероятнейшее количество попаданий при 8 бросках,
– соответствующая вероятность.

Аналогичное задание для самостоятельного решения:

Задача 5

Монета подбрасывается 9 раз. Найти вероятность наивероятнейшего числа появлений орла

Примерный образец решения и ответ в конце урока.

После увлекательного отступления рассмотрим ещё несколько задач, а затем я поделюсь секретом правильной игры в азартные игры и лотереи.

Задача 6

Среди изделий, произведенных на станке-автомате, в среднем бывает 60% изделий первого сорта. Какова вероятность того, что среди 6 наудачу отобранных изделий будет:

а) от 2 до 4 изделий первого сорта;
б) не менее 5 изделий первого сорта;
в) хотя бы одно изделие более низкого сорта.

Вероятность производства первосортного изделия не зависит от качества других выпущенных изделий, поэтому здесь идёт речь о независимых испытаниях. Старайтесь не пренебрегать анализом условия, а то может статься – события-то зависимые или задача вообще о другом.

Решение : вероятность зашифрована под проценты, которые, напоминаю, нужно разделить на сто: – вероятность того, что выбранное изделие будет 1-го сорта.
Тогда: – вероятность того, что оно не будет первосортным.

а) Событие «Среди 6 наудачу отобранных изделий будет от 2 до 4 изделий первого сорта» состоит в трёх несовместных исходах:

среди изделий будет 2 первосортных или 3 первосортных или 4 первосортных.

С исходами удобнее разделаться по отдельности. Трижды используем формулу Бернулли :

– вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из шести.

Данное значение нас тоже не устроит, так как оно меньше требуемой надёжности работы вычислительного центра:

Таким образом, шести компьютеров тоже не достаточно. Добавляем ещё один:

3) Пусть в вычислительном центре компьютеров. Тогда безотказно должны работать 5, 6 или 7 компьютеров. Используя формулу Бернулли и теорему сложения вероятностей несовместных событий , найдём вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из семи.

Ранее в п. 1.4 введены понятия зависимых и независимых событий. С понятием независимых событий связано и имеет широкое применение понятие независимых опытов или испытаний.

Опыты α 1 , α 2 , … , α n называются независимыми, если любая комбинация их исходов является совокупностью независимых событий. Иначе, если в задаче проводится ряд многократно повторяющихся испытаний α 1 , α 2 , …, α n при неизменном комплексе условий и в каждом испытании некоторые событие А может наступить с некоторой вероятностью p = p (А ) не зависящей от других испытаний, и не наступить с вероятностью p (Ā ), то указанные испытания называются независимыми. Данная схема независимых испытаний носит название схемы Бернулли.

Схема названа в честь Якоба Бернулли – родоначальника семьи выдающихся швейцарских учёных. (Якоб Б., Иоганн Б., Николай Б., Даниил Б. и др.). Якоб Бернулли доказал так называемую теорему Бернулли – важный частный случай закона больших чисел (см. п. 3.11). Указанная теорема относится к рассматриваемой здесь последовательности независимых испытаний.

Примерами независимых испытаний являются: а) многократное (n раз) подбрасывание монеты; б) извлечение (n раз) одинаковых на ощупь шаров из урны с их последующим возвращением; в) любая совокупность независимых испытаний (опытов), в каждом из которых вероятность успешных исходов одинакова, например, серия выстрелов по мишени, выбор n деталей из их совокупности, изучение n анализов горной породы определённого свойства и т.д.

В схеме Бернулли наступление события А с вероятностью p = p (А ) условно называется успехом, а его ненаступление (противоположное событие Ā ) –неудачей. Вероятность неудачи в каждом опыте такого типа равна q = 1 – p .

На практике обычно возникают задачи со сложными событиями, в которых из n опытов, составляющих схему Бернулли, в m опытах (m < n ) событие А наступает (т.е завершается успехом), а в (n m ) опытах это событие не наступает (завершается неудачей). Пусть P n (k ) – обозначает вероятность того, что при производстве n опытов успех наступает в k опытах (успех реализуется k раз). Ставится следующая задача: пусть в n испыта-ниях, соответствующих схеме Бернулли, k испытаний завершились успехом. Требуется найти вероятность P n (k ) (читается: « P из n испытаний k успешных» ). Данная вероятность рассчитывается по формуле Бернулли, которой соответствует одноименная теорема.

Теорема Бернулли. Если вероятность p наступления события А в каждом из последовательности n испытаний α 1 , α 2 , … , α n постоянна, то вероятность того, что событие А наступит k раз и не наступит n k раз, вычисляется по формуле Бернулли:

P n (k ) = С n k p k q n-k , (2.1)

где q = 1- p .

Доказательство. Действительно, пусть события A į и Ā į – появление и непоявление соответственно события А в į -ом испытании α i (i = 1, 2, … , n ). Пусть также В k обозначает событие, состоящее в том, что в n независимых испытаниях событие А появилось k раз. При n = 3 и k = 2 событие В 2 выражается через элементарные события А į (į = 1, 2, 3) по формуле:

В 2 = А 1 А 2 Ā 3 + А 1 Ā 2 А 3 + Ā 1 А 2 А 3 .

В общем виде последняя формула будет такой

т.е каждый член суммы (2.2) соответствует появлению события А k раз и (n k ) раз непоявлений. Число всех комбинаций (слагаемых) в (2.2) равно числу способов выбора из n испытаний k испытаний, в которых событие А произошло, т.е числу сочетаний C n k . Вероятность каждой такой комбинации по теореме умножения вероятностей независимых событий равна p k × q n k , так как p (А į) = p , p (Ā į) = q , i = 1,2,…,n . Но комбинации в (2.2) являются несовместными событиями. Поэтому по теореме сложения вероятностей получим

Таким образом, имеет место формула Бернулли

P n (k) = C n k p k q n-k .

Что и требовалось доказать.

Замечание 1. Сформулированная выше теорема относится к случаю, когда в каждом испытании вероятность появления события А постоянна. Тогда для расчета вероятности P n (k ) справедлива формула Бернулли (2.1). Если же вероятности наступления события А в испытаниях α 1 , α 2 , … , α n разные, т.е. вероятности составляют значения p 1 , p 2 , … , p n , то тогда вместо (2.1) справедлива формула:

Замечание 6. Вероятность того, что в n опытах, проводящихся по схеме Бернулли, успех наступит от k 1 до k 2 раз , вычисляется по формулеP n (k )) для конкретных значений n и p . Так как аргумент k принимает лишь целые значения, график представляется в виде точек на плоскости (k , P n (k )). Для наглядности точки соединяются ломаной линией, и такой график называется полигоном распределения (рис.2.1). При p = 0,5, n = 6, как показано на рисунке 2.1, полигон симметричен относительно прямой x = np (если p близко к 0,5, то полигон близок к симметричному). При малых p полигон существенно асимметричен, и наивероятнейшими явля-ются частоты, близкие к нулю. На рисунке 2.2 изображен полигон распределения для p = 0,2 при числе испытаний n = 6. При больших p , близких к 1, наиболее вероятны максимальные значения. На рис. 2.3 показан полигон распределения, для p = 0,8 и n = 6.

Рис. 2.3.