Подробная карта Италии на русском языке. Карта городов, областей и островов на интерактивной карте Италии. Показать на карте Италию.

Где находится Италия на карте мира?

Италия, красавица Средиземноморского региона и королева европейской туристической индустрии, расположена в самом центре Средиземноморья в Южной Европе.

Где находится Италия на карте Европы?

Страна занимает весь Апеннинский полуостров, а также небольшую часть Балканского полуострова, Паданскую равнину и южные склоны Альпийских гор. Кроме этого, Италии принадлежат крупные острова Сицилия и Сардиния, ровно как и ряд небольших островов.

Интерактивная карта Италии с городами

В относительно небольшой Италии находится более 8 тысяч населенных пунктов городского типа, среди них много таких, без посещения которых не обойтись. В первую очередь это древний Рим с шедеврами средневековой и византийской культуры, Салерно с его неповторимыми археологическими парками, Сиракузы и его древнегреческие памятники, Флоренция и ее крупнейшая в Италии коллекция живописи, Венеция - город на воде, Милан, и вечно романтичная Верона.

Острова Италии на карте

Островной туризм в Италии весьма популярен, при этом он имеет несколько разновидностей. Среди итальянских островов встречаются как целые острова-регионы (Сицилия или Сардиния), так и классические небольшие острова (Эльба, Пантеллерия, Капри, Искья, Горгона, Капрайя, Пианоза, Монтекристо и некоторые другие). Есть в Италии и иные виды островов как, например, озерные острова (Борромейские острова) или даже городские (остров Тиберина в Риме).

Области и провинции Италии на карте

Италия поделена на двадцать областей: Валле-д’Аоста, Ломбардия, Трентино-Альто Адидже, Пьемонт, Лигурия, Фриули-Венеция Джулия, Венеция, Тоскана, Молизе, Базиликата, Кампания, Калабрия, Эмилия-Романья, Марке, Абруццо, Лацио, Умбрия, Аппулия, Сардиня и Сицилия, которые в свою очередь включают в виде административно-территориальных единиц сто десять провинций.

Географическое положение Италии

Географическое положение Италии довольно выгодно со всех точек зрения - она находится на большом перекрестке между Западом и Востоком. На севере по суше Италия граничит сразу с несколькими странами: Францией, Швейцарией, Австрией и Югославией. На юге совсем недалеко от страны располагается Африканский материк. Италия омывается четырьмя морями: Ионическим морем на юге, Адриатическим на востоке, Лигурийским и Тирренским на западе. География Италии весьма разнообразна. Здесь и величественные Альпы, которые ограждают страну от холодных северных ветров, и Паданская долина с ее практически русскими осенними пейзажами и печальными туманами, и Апеннинские горы, напоминающие предгорья Кавказа, и великолепные итальянские острова, с белоснежными пляжами и живописными видами. Географические координаты Италии: 42°50′ с.ш. и 12°50′ в.д.

Июнь 4, 2016

Официальная часть.
Итальянская Республика — La Repubblica Italiana
Столица — la capitale.
Государство — lo stato / gli stati
Регион, область — la regione / le regioni. В Италии , некоторые имеют особый статус (это отражается в большей административной независимости), в некоторых есть, помимо итальянского, свои официальные языки.
Провинция — la provincia / le province. Регионы делятся на районы, которые и называются провинциями. Единственный регион, не имеющий провинций - .
Административный центр (региона, провинции) — il capoluogo (di regione, di provincia).
Коммуна — il comune / i comuni. Коммунами называют любой город или городок, кроме столичного.
Столичный город — la città metropolitana / le città metropolitane. Несколько крупных итальянских городов имеют особое название и статус.
Деревня — il villaggio / i villaggi. Сельская местность — la campagna / le campagne.

Сельскохозяйственное предприятие — l’azienda agricola. Деревень как таковых нет, аграрный сектор экономики - это, как правило, поля, сады, виноградники и домик или несколько домиков, а хозяин может жить как рядом со своими растениями, так и в каком-нибудь другом месте. Кстати, в Италии не так много крупных предприятий в этой области и привлечение иностранных работников не распространено.

⊂⊃ ⊂⊃ ⊂⊃

Не административные названия:
город (большой) — la città / le città
городок — la cittadina / le cittadine
город (маленький) — il paese / i paesi
местечко, маленький городок — il borgo / i borghi

⊂⊃ ⊂⊃ ⊂⊃

Кроме этого, Италия делится на несколько макрорегионов, объединённых по географическому признаку:

Северо-Западная Италия /// l’Italia nord-occidentale
Регионы (Le regioni):
Лигурия (Генуя) /// la Liguria (Genova)
Ломбардия (Милан) /// la Lombardia (Milano)
Пьемонт (Турин) /// il Piemonte (Torino)
Валле-д’Аоста (Аоста) /// la Valle d’Aosta (Aosta)
⊂⊃ ⊂⊃ ⊂⊃
Северо-Восточная Италия /// l’Italia nord-orientale
Регионы (Le regioni):
Эмилия-Романья (Болонья) /// l’Emilia-Romagna (Bologna)
Фриули - Венеция-Джулия (Триест) /// il Friuli-Venezia Giulia (Trieste)
Трентино - Альто-Адидже (Тренто) /// il Trentino-Alto Adige (Trento)
Венето или Венеция (Венеция) /// il Veneto (Venezia)
⊂⊃ ⊂⊃ ⊂⊃
Центральная Италия /// l’Italia centrale
Регионы (le regioni):
Лацио (Рим) /// il Lazio (Roma)
Марке (Анкона) /// le Marche (Ancona)
Тоскана (Флоренция) /// la Toscana (Firenze)
Умбрия (Перуджа) /// l’Umbria (Perugia)
⊂⊃ ⊂⊃ ⊂⊃
Южная Италия /// l’Italia meridionale
Регионы (le regioni):
Абруццо (Л’Акуила) /// l’Abruzzo (L’Aquila)
Апулия (Бари) /// la Puglia (Bari)
Базиликата /// la Basilicata (Potenza)
Калабрия (Катандзаро) /// la Calabria (Catanzaro)
Кампания (Неаполь) /// la Campania (Napoli)
Молизе (Кампобассо) /// il Molise (Campobasso)
⊂⊃ ⊂⊃ ⊂⊃
Островная Италия /// l’Italia insulare
Сардиния (Кальяри) /// la Sardegna (Cagliari)
Сицилия (Палермо) /// la Sicilia (Palermo)

⊂⊃ ⊂⊃ ⊂⊃

Также деление на север и юг носит несколько названий:

Северная Италия — Italia settentrionale , Settentrione, Alta Italia или Alt’Italia, Nord Italia или Norditalia, или просто Nord.

Южная Италия — Italia meridionale , Meridione, Bassa Italia, Sud Italia, Suditalia, или просто Sud

© Lara Leto (Ci Siciliano), 2016

© Италия и итальянский язык. Путешествуй красиво, учись легко, 2016

Ядерная физика, раздел физики, посвященный изучению структуры атомного ядра, процессов радиоактивного распада и механизма ядерных реакций. Придавая этому термину более общий смысл, к Я. ф. часто относят также физику элементарных частиц. Иногда разделами Я. ф. продолжают считать направления исследований, ставшие самостоятельными ветвями техники, например ускорительную технику (см. Ускорители заряженных частиц), ядерную энергетику. Исторически Я. ф. возникла ещё до установления факта существования ядра атомного. Возраст Я. ф. можно исчислять со времени открытия радиоактивности.
Канонизированного деления современной Я. ф. на более узкие области и направления не существует. Обычно различают Я. ф. низких, промежуточных и высоких энергий. К Я. ф. низких энергий относят проблемы строения ядра, изучение радиоактивного распада ядер, а также исследования ядерных реакций, вызываемых частицами с энергией до 200 Мэв. Энергии от 200 Мэв до 1 Гэв называются промежуточными, а свыше 1 Гэв - высокими. Это разграничение в значительной мере условно (особенно деление на промежуточные и высокие энергии) и сложилось в соответствии с историей развития ускорительной техники. В современной Я. ф. структуру ядра исследуют с помощью частиц высоких энергий, а фундаментальные свойства элементарных частиц устанавливают в результате исследования радиоактивного распада ядер.
Обширной составной частью Я. ф. низких энергии является нейтронная физика, охватывающая исследования взаимодействия медленных нейтронов с веществом и ядерные реакции под действием нейтронов (см. Нейтронная спектроскопия). Молодой областью Я. ф. является изучение ядерных реакций под действием многозарядных ионов. Эти реакции используются как для поиска новых тяжёлых ядер (см. Трансурановые элементы), так и для изучения механизма взаимодействия сложных ядер друг с другом. Отдельное направление Я. ф. - изучение взаимодействия ядер с электронами и фотонами (см. Фотоядерные реакции). Все эти разделы Я. ф. тесно переплетаются друг с другом и связаны общими целями.
В Я. ф. (как и во всей современной физике) существует резкое разделение эксперимента и теории. Арсенал экспериментальных средств Я. ф. разнообразен и технически сложен. Его основу составляют ускорители заряженных частиц (от электронов до многозарядных ионов), ядерные реакторы, служащие мощными источниками нейтронов, и детекторы ядерных излучений, регистрирующие продукты ядерных реакций. Для современного ядерного эксперимента характерны большие интенсивности потоков ускоренных заряженных частиц или нейтронов, позволяющие исследовать редкие ядерные процессы и явления, и одновременная регистрация нескольких частиц, испускаемых в одном акте ядерного столкновения. Множество данных, получаемых в одном опыте, требует использования ЭВМ, сопрягаемых непосредственно с регистрирующей аппаратурой (см. Ядерная спектроскопия). Сложность и трудоёмкость эксперимента приводит к тому, что его выполнение часто оказывается посильным лишь большим коллективам специалистов.
Для теоретической Я. ф. характерна необходимость использования аппаратов разнообразных разделов теоретической физики: классической электродинамики, теории сплошных сред, квантовой механики, статистической физики, квантовой теории поля. Центральная проблема теоретической Я. ф. - квантовая задача о движении многих тел, сильно взаимодействующих друг с другом. Теорией ядра и элементарных частиц были рождены и развиты новые направления теоретической физики (например, в теории сверхпроводимости, в теории химической реакции), получившие впоследствии применение в других областях физики и положившие начало новым математическим исследованиям (обратная задача теории рассеяния и её применения к решению нелинейных уравнений в частных производных) и др. Развитие теоретических и экспериментальных ядерных исследований взаимозависимо и тематически связано. Стоящие перед Я. ф. проблемы слишком сложны и лишь в немногих случаях могут быть решены чисто теоретическим или эмпирическим путём. Я. ф. оказала большое влияние на развитие ряда других областей физики (в частности, астрофизики и физики твёрдого тела) и других наук (химии, биологии, биофизики).
Прикладное значение Я. ф. в жизни современного общества огромно, её практические приложения фантастически разнообразны - от ядерного оружия и ядерной энергетики до диагностики и терапии в медицине (см. Радиология). Вместе с тем (и это является специфической особенностью Я. ф.) она остаётся той фундаментальной наукой, от прогресса которой можно ожидать выяснения глубоких свойств строения материи и открытия новых общих законов природы.

Специальная теория относительности (СТО) базируется на двух постулатах:

  1. Принцип относительности: в любых инерциальных системах отсчета все физические явления при одних и тех же исходных условиях протекают одинаково, т.е. никакими опытами, проведенными в замкнутой системе тел, нельзя обнаружить покоится ли тело или движется равномерно и прямолинейно.
  2. Принцип постоянства скорости света: во всех инерциальных системах отсчета скорость света в вакууме одинакова и не зависит от скорости движущегося источника света.

Равное с постулатами СТО имеет значение положение СТО о предельном характере скорости света в вакууме: скорость любого сигнала в природе не может превосходить скорость света в вакууме: c = 3∙10 8 м/с. При движении объектов со скоростью сопоставимой со скоростью света, наблюдаются различные эффекты, описанные далее.

1. Релятивистское сокращение длины.

Длина тела в системе отсчета, где оно покоится, называется собственной длиной L 0 . Тогда длина тела движущегося со скоростью V в инерциальной системе отсчета уменьшается в направлении движения до длины:

где: c – скорость света в вакууме, L 0 – длина тела в неподвижной системе отсчета (длина покоящегося тела), L – длина тела в системе отсчета, движущейся со скоростью V (длина тела, движущегося со скоростью V ). Таким образом, длина тела является относительной. Сокращение тел заметно, только при скоростях, сопоставимых со скоростью света.

2. Релятивистское удлинение времени события.

Длительность явления, происходящего в некоторой точке пространства, будет наименьшей в той инерциальной системе отсчета, относительно которой эта точка неподвижна. Это означает, что часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают больший промежуток времени между событиями. Релятивистское замедление времени становится заметным лишь при скоростях сопоставимых со скоростью света, и выражается формулой:

Время τ 0 , замеренное по часам, покоящимся относительно тела, называется собственным временем события.

3. Релятивистский закон сложения скоростей.

Закон сложения скоростей в механике Ньютона противоречит постулатам СТО и заменяется новым релятивистским законом сложения скоростей. Если два тела движутся навстречу друг другу, то их скорость сближения выражается формулой:

где: V 1 и V 2 – скорости движения тел относительно неподвижной системы отсчета. Если же тела движутся в одном направлении, то их относительная скорость:

4. Релятивистское увеличение массы.

Масса движущегося тела m больше, чем масса покоя тела m 0:

5. Связь энергии и массы тела.

С точки зрения теории относительности масса тела и энергия тела – это практически одно и то же. Таким образом, только факт существования тела означает, что у тела есть энергия. Наименьшей энергией Е 0 тело обладает в инерциальной системе отсчета относительно которой оно покоится и называется собственной энергией тела (энергия покоя тела) :

Любое изменение энергии тела означает изменение массы тела и наоборот:

где: ∆E – изменение энергии тела, ∆m – соответствующее изменение массы. Полная энергия тела:

где: m – масса тела. Полная энергия тела Е пропорциональна релятивистской массе и зависит от скорости движущегося тела, в этом смысле важны следующие соотношения:

Кстати кинетическую энергию тела, движущегося с релятивистской скоростью, можно считать только по формуле:

С точки зрения теории относительности закон сохранения масс покоя несправедлив. Например, масса покоя атомного ядра меньше суммы масс покоя частиц, входящих в ядро. Однако, масса покоя частицы способной к самопроизвольному распаду больше суммы собственных масс составляющих ее.

Это не означает нарушения закона сохранения массы. В теории относительности справедлив закон сохранения релятивистской массы, так как в изолированной системе тел сохраняется полная энергия, а значит и релятивистская масса, что следует из формулы Эйнштейна, таким образом можно говорить о едином законе сохранения массы и энергии. Это не означает возможность перехода массы в энергию и наоборот.

Между полной энергией тела, энергией покоя и импульсом существует зависимость:

Фотон и его свойства

Свет – это поток квантов электромагнитного излучения, называемых фотонами. Фотон – это частица, переносящая энергию света. Он не может находиться в покое, а всегда движется со скоростью, равной скорости света. Фотон обладает следующими характеристиками:

1. Энергия фотонов равна:

где: h = 6,63∙10 –34 Дж∙с = 4,14∙10 –15 эВ∙с – постоянная Планка, ν – частота света, λ – длина волны света, c – скорость света в вакууме. Энергия фотона в Джоулях очень мала, поэтому для математического удобства ее часто измеряют во внесистемной единице – электрон-вольтах:

1 эВ = 1,6∙10 –19 Дж.

2. Фотон движется в вакууме со скоростью света c .

3. Фотон обладает импульсом:

4. Фотон не обладает массой в привычном для нас смысле (той массой, которую можно измерить на весах, рассчитать по второму закону Ньютона и так далее), но в соответствии с теорией относительности Эйнштейна, обладает массой как мерой энергии (E = mc 2). Действительно, любое тело, имеющее некоторую энергию, имеет и массу. Если учесть, что фотон обладает энергией, то он обладает и массой, которую можно найти как:

5. Фотон не обладает электрическим зарядом.

Свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма .

Внешний фотоэффект

Фотоэлектрический эффект – явление, заключающееся в появлении фототока в вакуумном баллоне при освещении катода монохроматическим светом некоторой длины волны λ .

Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Измеряя данное задерживающее напряжение при котором исчезает фототок, можно определить максимальную кинетическую энергию фотоэлектронов вырываемых из катода:

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта :

  1. Фотоэффект безынерционен. Это значит, что электроны начинают вылетать из металла сразу же после начала облучения светом.
  2. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  3. Для каждого вещества существует так называемая красная граница фотоэффекта , то есть наименьшая частота ν min (или наибольшая длина волны λ max) при которой еще возможен внешний фотоэффект.
  4. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

При взаимодействии с веществом фотон целиком передает всю свою энергию E = одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A вых, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, в таком случае, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для внешнего фотоэффекта . С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Для красной границы фотоэффекта , согласно формуле Эйнштейна, можно получить выражение:

Постулаты Бора

Первый постулат Бора (постулат стационарных состояний): атомная система может находится только в особых стационарных или квантовых состояниях, каждому из которых соответствует определенная номер n и энергия E n . В стационарных состояниях атом не излучает и не поглощает энергию.

Состоянию с наименьшей энергией присваивается номер «1». Оно называется основным . Всем остальным состояниям присваиваются последовательные номера «2», «3» и так далее. Они называются возбужденными . В основном состоянии атом может находиться бесконечно долго. В возбужденном состоянии атом живет некоторое время (порядка 10 нс) и переходит в основное состояние.

Согласно первому постулату Бора, атом характеризуется системой энергетических уровней, каждый из которых соответствует определенному стационарному состоянию. Механическая энергия электрона, движущегося по замкнутой траектории вокруг положительно заряженного ядра, отрицательна. Поэтому всем стационарным состояниям соответствуют значения энергии E n < 0. При E n ≥ 0 электрон удаляется от ядра (происходит ионизация). Величина |E 1 | называется энергией ионизации . Состояние с энергией E 1 называется основным состоянием атома.

Второй постулат Бора (правило частот): при переходе атома из одного стационарного состояния с энергией E n в другое стационарное состояние с энергией E m излучается или поглощается квант, энергия которого равна разности энергий стационарных состояний:

Атом водорода

Простейший из атомов – атом водорода. Он содержит единственный электрон. Ядром атома является протон – положительно заряженная частица, заряд которой равен по модулю заряду электрона. Обычно электрон находится на первом (основном, невозбужденном) энергетическом уровне (электрон, как и любая другая система, стремится к состоянию с минимумом энергии). В этом состоянии его энергия равна E 1 = –13,6 эВ. В атоме водорода выполняются следующие соотношения, связывающие радиус траектории вращающегося вокруг ядра электрона, его скорость и энергию на первой орбите с аналогичными характеристиками на остальных орбитах:

На любой орбите в атоме водорода кинетическая (К ) и потенциальная (П ) энергии электрона связаны с полной энергией (Е ) следующими формулами:

Атомное ядро

В настоящее время твердо установлено, что атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов, которые принято называть нуклонами. Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева). Число нейтронов обозначают символом N. Общее число нуклонов (то есть протонов и нейтронов) называют массовым числом A, для которого можно записать следующую формулу:

Энергия связи. Дефект массы

Важнейшую роль в ядерной физике играет понятие энергии связи ядра . Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. Такие измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов: M я < Zm p + Nm n . При этом разность этих масс называется дефектом масс , и вычисляется по формуле:

По дефекту массы можно определить с помощью формулы Эйнштейна E = mc 2 энергию, выделившуюся при образовании данного ядра, то есть энергию связи ядра E св:

Но удобнее рассчитывать энергию связи по другой формуле (здесь массы берутся в атомных единицах, а энергия связи получается в МэВ):

Радиоактивность. Закон радиоактивного распада

Почти 90% из известных атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью .

Альфа-распад. Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α -частица – ядро атома гелия 4 2 He. Общая схема альфа-распада:

Бета-распад. При бета-распаде из ядра вылетает электрон (0 –1 e). Схема бета-распада:

Гамма-распад. В отличие от α - и β -радиоактивности γ -радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α -, так и при β -распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ -квантов, энергия которых может достигать нескольких МэВ.

Закон радиоактивного распада. В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N (t ) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада. Закон радиоактивного распада имеет вид:

Величина T называется периодом полураспада , N 0 – начальное число радиоактивных ядер при t = 0. Период полураспада – основная величина, характеризующая скорость радиоактивного распада. Чем меньше период полураспада, тем интенсивнее протекает распад.

При α - и β -радиоактивном распаде дочернее ядро также может оказаться нестабильным. Поэтому возможны серии последовательных радиоактивных распадов, которые заканчиваются образованием стабильных ядер.

Ядерные реакции

Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ -квантов. В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.

При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (то есть числа нуклонов – протонов и нейтронов). Например, в реакции общего вида:

Выполняются следующие условия (общее число нуклонов до и после реакции остается неизменным):

Энергетический выход ядерной реакции

Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина:

где: M A и M B – массы исходных продуктов, M C и M D – массы конечных продуктов реакции. Величина ΔM называется дефектом масс . Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q < 0). Во втором случае первоначальная кинетическая энергия исходных продуктов должна превышать величину |Q |, которая называется порогом реакции .

Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина ΔM

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    В ядерной физике исследуется субатомная структура вещества . Характерные размеры этой структуры малы не только в сравнении с макроскопическими расстояниями, но и в сравнении с размерами ядра. Физические явления, которые происходят на таких малых расстояниях, возможно изучать только при столкновении распаде атомных ядер и элементарных частиц. Изучение этих процессов имеет важное значение для ядерной физики, поскольку полученная информация представляет собой основной источник знаний о составе, строении и свойствах атомных ядер та элементарных частиц.

    Основными составляющими любого эксперимента в ядерной физике являются источники частиц, мишени и детекторы. Источниками частиц могут быть радиоактивные препараты, космические лучи, ядерные реакторы и ускорители. Радиоактивные препараты могут быть естественными и искусственными. Последние получают облучение некоторых мишеней пучками частиц от ядерных реакторов и ускорителей. Радиоактивные препараты излучают частицы с энергией в несколько мегаэлектрон-вольт (МэВ), которой недостаточно для исследования большинства ядерных процессов. По этой причине излучение радиоактивных препаратов, в основном, используется для изучения самого явления радиоактивности и у прикладных науках.

    Замечание 1

    Почти к $50$-м годам $XX$ века основным источником высоких энергий было космическое излучение. Поверхность Земли достигает вторичное космическое излучение, которое возникает в последствии преобразований первичных космических частиц при взаимодействии с атмосферой. Космическое излучение состоит, в основном, с протонов и $\alpha$ – частиц. Энергетический спектр первичного космического излучения чрезвычайно широк. Он охватывает энергии от десятков мегаэлектрон-вольт до очень высоких энергий. Средняя энергия космических частиц $10^{10}$ эВ (зарегистрированы события, обусловлены первичными космическими частицами порядка $10^{20}$ эВ). До создания ускорителей именно в космическом излучении были открыты новые элементарные частицы: позитроны, мюоны, пионы и др. Космическое излучение, как источник частиц высокой энергии, имеет ряд существенных недостатков – невозможность контролировать события с участием частиц со сверхвысокой энергией и чрезвычайно высокая стоимость экспериментов.

    Ядерные реакторы , как источники частиц высоких энергий, представляют собой мощные источники нейтронов, энергии которых создают непрерывный спектр от сотых электрон-вольта до десятков мегаэлектрон-вольт. Ядерные реакторы могут использоваться как источники антинейтрино.

    Ускорители заряженных частиц

    В ядерных исследованиях основными источниками энергии является ускорители. Увеличение энергии заряженных частиц в ускорителях происходит следствии действия на них электрического поля. Ускорители частиц не должны испытывать столкновения с молекулами воздуха. С этой целью их ускоряют у вакууме, а по этому все ускорители являются вакуумными установками. По способу разгона частиц ускорители могут быть нерезонансными и резонансными. По форме траектории движения ускоренных частиц ускорители делят на линейные и циклические.

    Ускорители – очень сложные установки. По оборудованию и принципу действия они относятся к физической электронике и радиотехнике сверхвысоких частот. Поскольку роль ускорителей у ядерной физике и физике элементарных частиц ключевая, то остановимся на рассмотрении основных принципов их работы. Кроме физики ускорители используются в химии, биологии, геофизике, медицине и др.

    В зависимости от ускоряемых частиц разработано разные типы ускорителей. Например, ускорители для протонов, $\alpha$ – частиц, тяжелых ионов непригодны для ускорения электронов. Энергия ускоренных частиц меняется в пределах от нескольких МэВ до сотен ГэВ. Верхняя граница определяется не принципиальными затруднениями, а уровнем развития техники.

    Замечание 2

    Первым ускорителем, который еще с начала $30$-х годов $XX$ века имел практическое применение в физике, является электростатический генератор Ван-де-Граафа. Обычные генераторы Ван-дер-Граафа дают возможность получить напряжение до $2-5$МВ, а модифицированные – до $15-20$ МВ. Преимуществом генератора Ван-де-Граафа является возможность получать значительные токи в пучку при высоких КПД (ток достигает нескольких сотен микроампер). Недостатком генератора является жесткое ограничение энергии пучка сверху, но он обеспечивает самую высокую степень монохроматичности пучка по сравнению с другими ускорителями.

    Линейные ускорители принадлежат к резонансным ускорителям, поскольку в них для ускорения используются высокочастотные поля, частота которых строго согласуется со скоростью ускоренной частицы. Самым простым с таких ускорителей является ускоритель Видероэ, в котором трубчатые электроды расположены один за одним у вакуумном цилиндре. Трубчатые электроны через один соединенные с одним полюсом генератора переменного напряжения, другие – с другим полюсом. Ускоритель является импульсным, т.е. не создает непрерывный поток частиц.

    Рисунок 1.

    Будем считать, что ускоренными частицами являются протоны, которые влетают слева и движутся внутри первой дрейфовой трубки (рис. а). При движении протона в промежутке между электродами $1$ и $2$ происходит его ускорение. Поток ускоренных частиц движется внутри второй дрейфовой трубки. Пролетая в ней на протоны не действуют никакие силы, т.к. электрическое поле внутри трубки отсутствует. Продолжая свое движение, протоны попадают у промежуток между $2$ и $3$. За время, на протяжении которого частицы пролетают вторую дрейфовую трубку, потенциалы на электродах меняются так, что направление электрического поля потенциалы определяются нижним знаком (рис. б). Идея этого метода лежит в том что напряжение меняется за то время, пока протоны находятся внутри той или иной трубки. По этой причине этот метод называется резонансным. Длина дрейфовых трубок с ростом их номера увеличивается. Поскольку частицы движутся в каждой дрейфовой трубке с увеличением скорости, то они должны пролетать все трубки за одно и то же врем, которое равно половине периоду изменения ускорительного напряжения.

    Проект линейного резонансного ускорителя, в котором дрейфовые трубки не соединены с генератором высокого напряжения предложил и применил Л. Альверс . Его ускоритель представляет собой цилиндрическую трубку (объемный резонатор), в которой возбуждается стоячая электромагнитная волна, в которой вектор напряженности электрического поля параллельный оси трубки. Электрическое поле в таком резонаторе меняется по закону $E=A(r)cosKx cos\omega t$, где координата x отсчитывается вдоль трубы, амплитуда $A(r)$ зависит от расстояния $r$ до оси резонатора. Частота $\omega$ должна удовлетворять условия, при которых в трубке можно возбудить стоящие волны с определенными характеристиками. Такого ограничения на частоту не было в ускорителях Видероэ, в узлах $1, 2, 3…$ напряженность электрического поля равна нулю. Через каждый полупериод направление вектора напряженности электрического поля меняется на противоположный.

    Рисунок 2.

    Пусть в таком поле протон движется с постоянной скоростью $\nu$ и находится в точке $A$ у тот момент времени, когда напряженность электрического поля максимальна. Тогда частица будет ускорятся, а ее энергия будет увеличиваться. Предположим, что через четверть периода она окажется в узле $1$, где $E=0$. В этот момент электрическое поле меняет напряжение на противоположное и ускоряет частицу между узлами $1$ и $2$. К узлу $2$ частица должна подходить в момент времени, когда снова происходит изменение напряженности электрического поля. При реальном движении частица должна проходить и через ускорительные и через замедляющие участки. Для преодоления этого на замедляющие участки поместил дрейфовой трубки. Дрейфовые трубки не присоединялись к источнику высокого напряжения, они заряжались переменным электромагнитным полем.

    Для ускорения частиц можно использовать только одну сопутствующую волну, убрав вред от встречной волны. Такой ускоритель назван ускорителем с бегущей волной. Самый больший ускоритель с бегущей волной для ускорения электронов до $22,3$ ГэВ построен в Стэнфорде (США), его длина $3,05$ км. На основе этого ускорителя созданы установки для встречных электрон-позитронных пучков. Электроны и позитроны ускоряются в линейном ускорителе, после чего их траектории разводятся по разным кругам, в местах их пересечения происходят встречные столкновения.

    Несмотря на то, что линейные ускорители не могут давать частицам такие большие энергии, которые используются в ядерной физике, они пока что остаются важными установками для ядерных исследований, по той причине, что заряженные частицы в них меньше теряют энергии на излучение. В циклических ускорителях используется совместное действие на заряженную частицу электрического и магнитного полей. Электрическое поле ускоряет частицы, а магнитное удерживает их на определенной траектории и многократно возвращает в ускорительное поле.

    Наблюдение и регистрация микрочастиц

    Детекторами микрочастиц являются приборы, с помощью которых их находят и изучают характеристики. Основной сложностью определения микрочастиц находится в том, что их действие на детективное вещество очень мало. Чтоб определить это действие необходимо значительное усиление микроскопического эффекта в макроскопический сигнал. Действие детекторов базируется на ионизации или возбуждении атомов вещества детектора ускоренными заряженными частицами. Незаряженные частицы (γ-кванты, нейтроны, нейтрино и т.д.) не ионизируют атомов вещества и проявляют себя через вторично заряженные частицы, которые возникают при взаимодействии нейтральных частиц с веществом. Все детекторы можно поделить на три группы:

    • масс-анализаторы;
    • счетчики или электронные детекторы;
    • трековые детекторы и годоскопические камеры.

    Масс-анализаторы используют для измерения масс атомных ядер (масс-спектрографы), для изучения изотопного состава элементов (масс-спектрометры), разделения изотопов по массах (масс-сепараторы).

    В трековых счетчиках регистрируется след, оставленный заряженной частицей. К трековым детекторам принадлежат камера Вильсона, пузырьковая камера, толстошаровые фотоэмульсии, пропорциональные, стримерные и дрейфовые камеры.

    Детекторы характеризируются эффективностью, пространственным распределением, раздельным временем и временем восстановления.