Практическое занятие

Тема: Вычисление определителей.

Цели: закрепить понятия определителей и их свойств, сформировать и закрепить умения и навыки вычислять определители 2-го и 3-го порядков; развивать умения обобщать полученные знания, проводить анализ и сравнения, способствовать развитию логического мышления; воспитывать у обучающихся сознательное отношение к процессу обучения.

I. Общие теоретические положения

Определителем второго порядка называют число

Определителем третьего порядка называют число

Свойства определителей

Свойство 1.
Определитель не изменится, если все строки заменить соответствующими столбцами и наоборот.

Свойство 2.
При перестановке двух каких-либо строк или столбцов местами определитель изменяет знак.

Свойство 3.
Определитель равен нулю, если он имеет две равные строки (столбца).

Свойство 4.
Множитель, общий для всех элементов строки или столбца, можно выносить за знак определителя.

Свойство 5.
Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, то определитель не изменится.

Следствие из свойств 4 и 5: Если к элементам какой-либо строки или столбца прибавить соответствующие элементы другой строки или столбца, умноженные на некоторое число, то определитель не изменится.

Контрольные вопросы:

1.Дать определение матрицы.
2. Что означает символ ?
3. Какая матрица называется транспонированной по отношению к матрице А?
4. Какую матрицу называют квадратной порядка n?
5. Дать определение определителя 2-го порядка.

6. Дать определение определителя 3-го порядка.

7. Чему равен определитель транспонированной матрицы?

8. Как изменится величина определителя, если в матрице поменять местами 2 строки (столбца)?

9. Можно ли вынести за знак определителя общий множитель строки или столбца?

10.Чему равен определитель, если все элементы некоторой строки (столбца) равны 0?

11.Чему равен определитель, если он имеет две одинаковых строки (столбца)?

12. Сформулируйте правило вычисления определителя 2-го порядка.

13. Сформулируйте правило вычисления определителя 3-го порядка.

II . Формирование умений и навыков.

Пример 1. Вы числить определитель: а) по правилу треугольника б) по правилу Саррюса;

в) методом разложения по элементам первой строки

Решение:

б) припишем два первых столбца и вычислим произведения из трех элементов по главной диагонали и параллельно к ней со знаком (+), а затем по побочной диагонали и параллельно к ней со знаком (-):


получаем:

Пример 2. Вычислить определитель двумя способами: с помощью разложения по первой строке и по правилу треугольника.

Решение:

Пример 3 . Вычислить определитель, используя свойства:

III .Закрепление изученного материала.

№1. Вычислить определители:

2. Решить уравнения:

№ 4. Вычислить определители, используя свойства:

1 .
. 2.
. 3.
. 4 .
.

Литература

1. Письменный, Д. Т. Конспект лекций по высшей математике: полный курс Д. Т. Письменный. – 9-е изд. – М.: Айрис-пресс, 2009. 608 с.: ил. – (Высшее образование).

2. Лунгу, К. Н. Сборник задач по высшей математике. 1 курс / К. Н. Лунгу, Д. Т. Письменный, С. Н. Федин, Ю. А. Шевченко. – 7-е изд. – М.: Айрис-пресс, 2008. 576 с.: – (Высшее образование).

Определение 6 . Определителем третьего порядка, соответствующим матрице системы (1.4), назовем число D , равное

Для того, чтобы вычислить определитель третьего порядка применяют две вычислительные схемы, позволяющие вычислять определители третьего порядка без особых хлопот. Эти схемы известны как " правило треугольника " (или "правило звездочки") и " правило Саррюса ".

По правилу треугольника сначала перемножаются и складываются элементы, соединенными на схеме линиями


т.е. получаем сумму произведений: a 11 a 22 a 33 +a 12 a 23 a 31 +a 21 a 13 a 32 .

Обратите внимание, что перемножаются элементы, соединенные одной линией, прямой или ломанной, а потом полученные произведения складываются.

Затем перемножаются и складываются элементы, соединенные на схеме


т.е. получаем другую сумму произведений a 13 a 22 a 31 +a 12 a 21 a 33 +a 11 a 23 a 32 . И, наконец, чтобы вычислить определитель , из первой суммы вычитают вторую. Тогда окончательно получаем формулу вычисления определителя третьего порядка:

D=(a 11 a 22 a 33 +a 12 a 23 a 31 +a 21 a 13 a 32)-(a 13 a 22 a 31 +a 12 a 21 a 33 +a 11 a 23 a 32).

По правилу Саррюса к определителю справа дописывают два первых столбца, а затем считают сумму произведений элементов определителя в одном направлении и из нее вычитают сумму произведений элементов в другом направлении (см. схему):


Можно убедиться, что результат будет таким же, что и при вычислении определителя по правилу треугольника.

Пример . Вычислить определитель

Решение . Вычислим определитель по правилу звездочки

И по правилу Саррюса

Т.е. получаем одинаковый результат для обеих вычислительных схем, как и ожидалось.

Заметим, что все свойства, сформулированные для определителей второго порядка, справедливы для определителей третьего порядка, в чем можно убедиться самостоятельно. На основании этих свойств сформулируем общие свойства для определителей любого порядка.

Определителем квадратной матрицы называется число, которое вычисляется следующим образом:

а) Если порядок квадратной матрицы равен 1, т.е. она состоит из 1 числа, то определитель равен этому числу;

б)Если порядок квадратной матрицы равен 2, т.е. она состоит из 4 чисел, то определитель равен разности произведения элементов главной диагонали и произведения элементов побочной диагонали;

в)Если порядок квадратной матрицы равен 3, т.е. она состоит из 9 чисел, то определитель равен сумме произведений элементов главной диагонали и двух треугольников параллельных этой диагонали, из которой вычли сумму произведений элементов побочной диагонали и двух треугольников параллельных этой диагонали.

Примеры

Свойства определителей

1. Определитель не изменится, если строки заменить столбцами, а столбцы – строками

  1. Определитель, имеющий 2 одинаковых ряда, равен нулю
  2. Общий множитель какого – либо ряда (строки или столбца) определителя можно вынести за знак определителя

4. При перестановке двух параллельных рядов определитель меняет знак на противоположный

5. Если элементы какого-либо ряда определителя представляют собой суммы двух слагаемых, то определитель может быть разложен на сумму двух соответствующих определителей

6. Определитель не изменится, если к элементам одного ряда прибавить соответствующие элементы параллельного ряда, умноженные на любое число

Минор элемента определителя и его алгебраическое дополнение

Минором элемента a IJ определителя n-го порядка называется определитель n-1 порядка, полученный из исходного с помощью вычеркивания i-той строки и j-того столбца

Алгебраическое дополнение элемента a IJ определителя – это его минор, умноженный на (-1) i+ j

Пример

Обратная матрица

Матрица называется невырожденной , если ее определитель не равен нулю, в противном случае, матрицу называют вырожденной

Матрица называется союзной , если она состоит из соответствующих алгебраических дополнений и транспонирована

Матрица называется обратной к данной матрице, если их произведение равно единичной матрице того же порядка, что и данная матрица

Теорема о существовании обратной матрицы

Любая невырожденная матрица имеет обратную, равную союзной матрице, деленной на определитель данной матрицы

Алгоритм нахождения обратной матрицы А

  1. Вычислить определитель
  1. Транспонировать матрицу
  1. Составить союзную матрицу, вычислить все алгебраические дополнения транспонированной матрицы
  1. Воспользоваться формулой:

Минором матрицы называется определитель, состоящий из элементов, находящихся на пересечении выделенных k строк и k столбцов данной матрицы размера mxn

Рангом матрицы называется наибольший порядок того минора матрицы, который отличен от нуля

Обозначение r(A), rangA

Ранг равен количеству ненулевых строк ступенчатой матрицы.

Пример

Системы линейных уравнений.

Системой линейных уравнений, содержащей m уравнений и n неизвестных, называется система вида

где числа a IJ - коэффициенты системы,числа b i - свободные члены

Матричная форма записи системы линейных уравнений


Решением системы называются n значений неизвестных c 1 , c 2 ,…, c n , при подстановке которых в систему все уравнения системы обращаются в верные равенства. Решение системы можно записать в виде вектор – столбца.

Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если решений не имеет.

Теорема Кронекера – Капелли

Система ЛУ совместна тогда и только тогда, когда ранг основной матрицы равен рангу расширенной

Методы решения системы ЛУ

1. Метод Гаусса (расширенную матрицу с помощью элементарных преобразований свести к ступенчатой, а потом к канонической)

К элементарным преобразованиям относятся:

Перестановка строк (столбцов)

Прибавление к одной строке (столбцу) другой, умноженной на число, отличное от 0.

Составим расширенную матрицу:

Выберем ведущий элемент, стоящий в первом столбце и первой строке, элемент 1., назовем его ведущим. Строка, в которой находится ведущий элемент меняться не будет. Обнулим элементы под главной диагональю. Для этого прибавим ко второй строке первую, умноженную на (-2). Прибавим к третьей строке первую, умноженную на (-1), получим:

Поменяем вторую и третью строки местами. Мысленно вычеркиваем первый столбец и первую строку и продолжаем алгоритм для оставшейся матрицы. К третьей строке прибавляем 2-ю, умноженную на 5.

Привели расширенную матрицу к ступенчатому виду. Возвращаясь к уравнениям системы, начиная с последней строки и двигаясь вверх, поочередно определяем неизвестные.

2. Матричный метод (AX=B, A -1 AX=A -1 B, X=A -1 B; матрицу, обратную к основной матрице умножить на столбец свободных членов)

3. Метод Крамера.

Решение системы находится по формуле:

Где -определитель измененной основной матрицы, в которой i-й столбец изменен на столбец свободных членов, а - главный определитель, состоящий из коэффициентов при неизвестных.

Векторы.

Вектор – это направленный отрезок

Любой вектор задается длиной (модулем) и направлением.

Обозначение: или

где А – начало вектора, В – конец вектора, – длина вектора.

Классификация векторов

Нулевой вектор – это вектор, длина которого равна нулю

Единичный вектор – это вектор, длина которого равна единице

Равные векторы – это два вектора, у которых совпадают длина и направление

Противоположные векторы – это два вектора, у которых длины равны, а направления – противоположные

Коллинеарные векторы – это два вектора, которые лежат на одной прямой или на параллельных прямых

Сонаправленные векторы – это два коллинеарных вектора с одинаковым направлением

Противоположно направленные векторы– это два коллинеарных вектора с противоположным направлением

Компланарные векторы – это три вектора, которые лежат в одной плоскости или на параллельных плоскостях

Прямоугольная система координат на плоскости – это две взаимно перпендикулярные прямые с выбранным направлением и началом отсчета, при этом горизонтальная прямая называется осью абсцисс, а вертикальная – осью ординат

Каждой точке в прямоугольной системе координат поставим в соответствие два числа: абсциссу и ординату

Прямоугольная система координат в пространстве – это три взаимно перпендикулярные прямые с выбранным направлением и началом отсчета, при этом горизонтальная прямая, направленная на нас, называется осью абсцисс, горизонтальная прямая, направленная вправо от нас - осью ординат, а вертикальная прямая, направленная вверх – осью аппликат

Каждой точке в прямоугольной системе координат поставим в соответствие три числа: абсциссу, ординату и аппликату

КОНСПЕКТ 2

2.1 ОПРЕДЕЛИТЕЛИ ВТОРОГО ПОРЯДКА

Определителем второго порядка (соответствующим данной матрице

) называется число

Пример1 : Вычислим определитель матрицы

Пример 2. Вычислить определители второго порядка:

2(-4) - 5(-3) = -8 + 15 = 7

=

2.2 ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА

Пусть дана квадратная матрица третьего порядка:

А =

Определителем (или детерминантом) третьего порядка , соответствующим данной матрице, называют число

det A = =

Пример 3

Первый способ решения:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок». Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:

Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс». Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример 3

Второй способ решения:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Пример 4

Вычислить определитель третьего порядка:

Пример 5

Вычислить определитель третьего порядка

ПРАКТИКУМ 2

ЗАДАНИЕ N 1 , то…

Решение:

то

По условию, тогда

ЗАДАНИЕ N 2 Тема: Определители второго порядка Если определитель второго порядка

, то…

Решение:

В нашем случае имеем

По условию, тогда

ЗАДАНИЕ N 3

Тема: Определители второго порядка Если определитель второго порядка

, то…

Решение: Так как определитель второго порядка равен числу, которое получают по правилу:

то

По условию, тогда

ЗАДАНИЕ N 4 Тема: Определители второго порядка Если определитель второго порядка, то…

Решение: Напоминаем, что определитель второго порядка равен числу, которое получают по правилу:

В нашем случае имеем

По условию, тогда

ЗАДАНИЕ N 5 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках.Тогда определительравен …

Решение:

ЗАДАНИЕ N 6

Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках.Тогда определительравен …

Решение: Определитель третьего порядка равен сумме шести слагаемых, из которых три берутся со знаком «+» и три – со знаком «−». Правило вычисления слагаемых со знаком «+» схематически указано на рис. 1. Одно из слагаемых равно произведению элементов определителя, лежащих на главной диагонали. Каждое из двух других находится как произведение элементов, лежащих на параллели к этой диагонали, с добавлением третьего множителя из противоположного угла определителя. Слагаемые со знаком «−» получаются таким же образом, но относительно второй диагонали (рис. 2). Тогда

САМОСТОЯТЕЛЬНАЯ РАБОТА 2

ЗАДАНИЕ N 1 Тема: Определители второго порядка Если определитель второго порядка, то…