Важнейшими числовыми характеристиками случайной величины Х являются её математическое ожидание m x =M и дисперсия σ 2 x =D[x] = M[(X – m x) 2 ] = M – . Число m x является средним значением случайной величины, около которого разбросаны значения величин Х , мерой этого разброса являются дисперсия D[x] и среднеквадратическое отклонение:

s x = (1.11)

Мы будем в дальнейшем рассмотривать важную задачу для исследования наблюдаемой случайной величины. Пусть имеется некоторая выборка (будем обозначать её S ) случайной величины Х . Требуется по имеющейся выборке оценить неизвестные значения m x и .

Теория оценок различных параметров занимает в математической статистике значительное место. Поэтому рассмотрим сначала общую задачу. Пусть требуется оценить некоторый параметр a по выборке S . Каждая такая оценка a* является некоторой функцией a*=a*(S) от значений выборки. Значения выборки случайны, поэтому и сама оценка a* является случайной величиной. Можно построить множество различных оценок (то есть функций) a* , но при этом желательно иметь «хорошую» или даже «наилучшую», в некотором смысле, оценку. К оценкам обычно предъявляются следующие три естественных требования.

1. Несмещённость. Математическое ожидание оценки a* должно равняться точному значению параметра: M = a . Другими словами, оценка a* не должна иметь систематической ошибки.

2. Состоятельность. При бесконечном увеличении объёма выборки, оценка a* должна сходиться к точному значению, то есть при увеличении числа наблюдений ошибка оценки стремится к нулю.

3. Эффективность. Оценка a* называется эффективной, если она не смещена и имеет минимально возможную дисперсию ошибки. В этом случае минимален разброс оценки a* относительно точного значения и оценка в определённом смысле является «самой точной».

К сожалению, не всегда удаётся построить оценку, удовлетворяющую всем трём требованиям одновременно.

Для оценки математического ожидания чаще всего применяется оценка.

= , (1.12)

то есть среднее арифметическое по выборке. Если случайная величина X имеет конечные m x и s x , то оценка (1.12) не смещена и состоятельна. Эта оценка эффективна, например, если X имеет нормальное распределение (рис.п.1.4, приложение 1). Для других распределений она может оказаться неэффективной. Например, в случае равномерного распределения (рис.п.1.1, приложение 1) несмещённой, состоятельной оценкой будет

(1.13)

В то же время оценка (1.13) для нормального распределения не будет ни состоятельной, ни эффективной, и будет даже ухудшаться с ростом объёма выборки.

Таким образом, для каждого типа распределения случайной величины Х следовало бы использовать свою оценку математического ожидания. Однако в нашей ситуации тип распределения может быть известен лишь предположительно. Поэтому будем использовать оценку (1.12), которая достаточно проста и имеет наиболее важные свойства несмещённости и состоятельности.

Для оценки математического ожидания по группированной выборке используется следующая формула:

= , (1.14)

которую можно получить из предыдущей, если считать все m i значений выборки, попавших в i –й интервал, равными представителю z i этого интервала. Эта оценка, естественно, грубее, но требует значительно меньшего объёма вычислений, особенно при большом объёме выборки.

Для оценки дисперсии чаще всего используется оценка:

= , (1.15)

Эта оценка не смещена и состоятельна для любой случайной величины Х , имеющей конечные моменты до четвёртого порядка включительно.

В случае группированной выборки используется оценка:

= (1.16)

Оценки (1.14) и (1.16), как правило, смещены и несостоятельны, так как их математические ожидания и пределы, к которым они сходятся, отличны от m x и в силу замены всех значений выборки, попавших в i –й интервал, на представителя интервала z i .

Отметим, что при больших n, коэффициент n /(n – 1) в выражениях (1.15) и (1.16) близок к единице, поэтому его можно опустить.

Интервальные оценки.

Пусть точное значение некоторого параметра равно a и найдена его оценка a*(S) по выборке S . Оценке a* соответствует точка на числовой оси (рис.1.5), поэтому такая оценка называется точечной . Все оценки, рассмотренные в предыдущем параграфе, точечные. Практически всегда, в силу случайности

a* ¹ a , и мы можем надеяться только на то, что точка a* находится где–то вблизи a . Но насколько близко? Любая другая точечная оценка будет иметь тот же недостаток – отсутствие меры надёжности результата.


Рис.1.5. Точечная оценка параметра.

Более определённым в этом отношении являются интервальные оценки . Интервальные оценка представляет собой интервал I b = (a , b) , в котором точное значение оцениваемого параметра находится с заданной вероятностью b . Интервал I b называется доверительным интервалом , а вероятность b называется доверительной вероятностью и может рассматриваться как надёжность оценки .

Доверительный интервал состоится по имеющейся выборке S , он случаен в том смысле, что случайны его границы a(S) и b(S) , которые мы будем вычислять по (случайной) выборке. Поэтому b есть вероятность того, что случайный интервал I b накроет неслучайную точку a . На рис. 1.6. интервал I b накрыл точку a , а I b * - нет. Поэтому не совсем правильно говорить, что a « попадает» в интервал.

Если доверительная вероятность b велика (например, b = 0,999 ), то практически всегда точное значение a находится в построенном интервале.


Рис.1.6. Доверительные интервалы параметра a для различных выборок.

Рассмотрим метод построения доверительного интервала для математического ожидания случайной величины Х, основанный на центральной предельной теореме .

Пусть случайная величина Х имеет неизвестное математическое ожидание m x и известную дисперсию . Тогда, в силу центральной предельной теоремы, среднее арифметическое:

= , (1.17)

результатов n независимых испытаний величины Х является случайной величиной, распределение которой при больших n , близко к нормальному распределению со средним m x и среднеквадратическим отклонением . Поэтому случайная величина

(1.18)

имеет распределение вероятностей, которое можно считать стандартным нормальным с плотностью распределения j(t) , график которой изображён на рис.1.7 (а также на рис.п.1.4, приложение 1).



Рис.1.7. Плотность распределения вероятностей случайной величины t .

Пусть задана доверительная вероятность b и t b - число, удовлетворяющее уравнению

b = Ф 0 (t b) – Ф 0 (-t b) = 2 Ф 0 (t b), (1.19)

где - функция Лапласа . Тогда вероятность попадания в интервал (-t b , t b) будет равна заштрихованной на рис.1.7. площади, и, в силу выражения (1.19), равна b . Следовательно

b = P(-t b < < t b) = P( – t b < m x < + t b ) =

= P( – t b < m x < + t b ) . (1.20)

Таким образом, в качестве доверительного интервала можно взять интервал

I b = ( – t b ; + t b ) , (1.21)

так как выражение (1.20) означает, что неизвестное точное значение m x находится в I b с заданной доверительной вероятностью b . Для построения I b нужно по заданному b найтиt b из уравнения (1.19). Приведём несколько значений t b , необходимых в дальнейшем :

t 0,9 = 1,645; t 0,95 = 1,96; t 0,99 = 2,58; t 0,999 = 3,3.

При выводе выражения (1.21) предполагалось, что известно точное значение среднеквадратического отклонения s х . Однако оно известно далеко не всегда. Воспользуемся поэтому его оценкой (1.15) и получим:

I b = ( – t b ; + t b ) . (1.22)

Соответственно, оценки и , полученные по группированной выборке, дают следующую формулу для доверительного интервала:

I b = ( – t b ; + t b ) . (1.23)

Для того, чтобы статистические оценки давали хорошее приближение оцениваемых параметров, они должны быть несмещенные, эффективные и состоятельные.

Несмещенной называется статистическая оценка параметра, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки.

Смещенной называется статистическая оценка
параметра, математическое ожидание которой не равно оцениваемому параметру.

Эффективной называется статистическая оценка
параметра, которая при заданном объеме выборкиимеет наименьшую дисперсию.

Состоятельной называется статистическая оценка
параметра, которая при
стремится по вероятности к оцениваемому параметру.

т.е.для любого

.

Для выборок различного объема получаются различные значения среднего арифметического и статистической дисперсии. Поэтому среднее арифметическое и статистическая дисперсия являются случайными величинами, для которых существуют математическое ожидание и дисперсия.

Вычислим математическое ожидание среднего арифметического и дисперсии. Обозначим через математическое ожидание случайной величины

Здесь в качестве случайных величин рассматриваются: – С.В., значения которой равны первым значениям, полученным для различных выборок объемаиз генеральной совокупности,
–С.В., значения которой равны вторым значениям, полученным для различных выборок объемаиз генеральной совокупности, …,
– С.В., значения которой равны-м значениям, полученным для различных выборок объемаиз генеральной совокупности. Все эти случайные величины распределены по одному и тому же закону и имеют одно и то же математическое ожидание.

Из формулы (1) следует, что среднее арифметическое является несмещенной оценкой математического ожидания, так как математическое ожидание среднего арифметического равно математическому ожиданию случайной величины. Эта оценка является также состоятельной. Эффективность данной оценки зависит от вида распределения случайной величины
. Если, например,
распределена нормально, оценка математического ожидания с помощью среднего арифметического будет эффективной.

Найдем теперь статистическую оценку дисперсии.

Выражение для статистической дисперсии можно преобразовать следующим образом

(2)

Найдем теперь математическое ожидание статистической дисперсии

. (3)

Учитывая, что
(4)

получим из (3)-

Из формулы (6) видно, что математическое ожидание статистической дисперсии отличается множителем от дисперсии, т.е. является смещенной оценкой дисперсии генеральной совокупности. Это связано с тем, что вместо истинного значения
, которое неизвестно, в оценке дисперсии используется статистическое среднее.

Поэтому введем исправленную статистическую дисперсию

(7)

Тогда математическое ожидание исправленной статистической дисперсии равно

т.е. исправленная статистическая дисперсия является несмещенной оценкой дисперсии генеральной совокупности. Полученная оценка является также состоятельной.

Распределение случайной величины (распределение генеральной совокупности) характеризуется обычно рядом числовых характеристик:

  • для нормального распределения N(a, σ) - это математическое ожидание a и среднее квадратическое отклонение σ ;
  • для равномерного распределения R(a,b) - это границы интервала , в котором наблюдаются значения этой случайной величины.
Такие числовые характеристики, как правило, неизвестные, называются параметрами генеральной совокупности . Оценка параметра - соответствующая числовая характеристика, рассчитанная по выборке. Оценки параметров генеральной совокупности делятся на два класса: точечные и интервальные .

Когда оценка определяется одним числом, она называется точечной оценкой . Точечная оценка, как функция от выборки, является случайной величиной и меняется от выборки к выборке при повторном эксперименте.
К точечным оценкам предъявляют требования, которым они должны удовлетворять, чтобы хоть в каком-то смысле быть «доброкачественными». Это несмещённость , эффективность и состоятельность .

Интервальные оценки определяются двумя числами – концами интервала, который накрывает оцениваемый параметр. В отличие от точечных оценок, которые не дают представления о том, как далеко от них может находиться оцениваемый параметр, интервальные оценки позволяют установить точность и надёжность оценок.

В качестве точечных оценок математического ожидания, дисперсии и среднего квадратического отклонения используют выборочные характеристики соответственно выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение.

Свойство несмещенности оценки .
Желательным требованием к оценке является отсутствие систематической ошибки, т.е. при многократном использовании вместо параметра θ его оценки среднее значение ошибки приближения равно нулю - это свойство несмещенности оценки .

Определение . Оценка называется несмещенной , если ее математическое ожидание равно истинному значению оцениваемого параметра:

Выборочное среднее арифметическое является несмещенной оценкой математического ожидания, а выборочная дисперсия - смещенная оценка генеральной дисперсии D . Несмещенной оценкой генеральной дисперсии является оценка

Свойство состоятельности оценки .
Второе требование к оценке - ее состоятельность - означает улучшение оценки с увеличением объема выборки.

Определение . Оценка называется состоятельной , если она сходится по вероятности к оцениваемому параметру θ при n→∞.


Сходимость по вероятности означает, что при большом объеме выборки вероятность больших отклонений оценки от истинного значения мала.

Свойство эффективной оценки .
Третье требование позволяет выбрать лучшую оценку из нескольких оценок одного и того же параметра.

Определение . Несмещенная оценка является эффективной , если она имеет наименьшую среди всех несмещенных оценок дисперсию.

Это означает, что эффективная оценка обладает минимальным рассеиванием относительно истинного значения параметра. Заметим, что эффективная оценка существует не всегда, но из двух оценок обычно можно выбрать более эффективную, т.е. с меньшей дисперсией. Например, для неизвестного параметра a нормальной генеральной совокупности N(a,σ) в качестве несмещенной оценки можно взять и выборочное среднее арифметическое, и выборочную медиану. Но дисперсия выборочной медианы примерно в 1.6 раза больше, чем дисперсия среднего арифметического. Поэтому более эффективной оценкой является выборочное среднее арифметическое.

Пример №1 . Найдите несмещенную оценку дисперсии измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 13,15,17.
Решение. Таблица для расчета показателей.

x |x - x ср | (x - x ср) 2
13 2 4
15 0 0
17 2 4
45 4 8

Простая средняя арифметическая (несмещенная оценка математического ожидания)


Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего - смещенная оценка).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии (исправленная дисперсия).

Пример №2 . Найдите несмещенную оценку математического ожидания измерений некоторой случайной величины одним прибором (без систематических ошибок), результаты измерения которой (в мм): 4,5,8,9,11.
Решение. m = (4+5+8+9+11)/5 = 7.4

Пример №3 . Найдите исправленную дисперсию S 2 для выборки объема n=10, если выборочная диспресия равна D = 180.
Решение. S 2 = n*D/(n-1) = 10*180/(10-1) = 200

Основные свойства точечных оценок

Для того чтобы оценка имела практическую ценность, она должна обладать следующими свойствами.

1. Оценка параметра называется несмещенной, если ее математическое ожидание равно оцениваемому параметру, т.е.

Если равенство (22.1) не выполняется, то оценка может либо завышать значение (М>), либо занижать его (М <) . Естественно в качестве приближенного неизвестного параметра брать несмещенные оценки для того, чтобы не делать систематической ошибки в сторону завышения или занижения.

2. Оценка параметра называется состоятельной, если она подчиняется закону больших чисел, т.е. сходится по вероятности к оцениваемому параметру при неограниченном возрастании числа опытов (наблюдений) и, следовательно, выполняется следующее равенство:

где > 0 сколько угодно малое число.

Для выполнения (22.2) достаточно, чтобы дисперсия оценки стремилась к нулю при, т.е.

и кроме того, чтобы оценка была несмещенной. От формулы (22.3) легко перейти к (22.2) , если воспользоваться неравенством Чебышева.

Итак, состоятельность оценки означает, что при достаточно большом количестве опытов и со сколько угодно большой достоверностью отклонение оценки от истинного значения параметра меньше любой наперед заданной величины. Этим оправдано увеличение объема выборки.

Так как - случайная величина, значение которой изменяется от выборки к выборке, то меру ее рассеивания около математического ожидания будем характеризовать дисперсией D. Пусть и - две несмещенные оценки параметра, т.е. M = и M = , соответственно D и D и, если D < D , то в качестве оценки принимают.

3. Несмещенная оценка, которая имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра, вычисленных по выборкам одного и того же объема, называется эффективной оценкой.

На практике при оценке параметров не всегда удается удовлетворить одновременно требованиям 1, 2, 3. Однако выбору оценки всегда должно предшествовать ее критическое рассмотрение со всех точек зрения. При выборке практических методов обработки опытных данных необходимо руководствоваться сформулированными свойствами оценок.

Оценка математического ожидания и дисперсии по выборке

Наиболее важными характеристиками случайной величины являются математическое ожидание и дисперсия. Рассмотрим вопрос о том, какие выборочные характеристики лучше всего оценивают математическое ожидание и дисперсию в смысле несмещенности, эффективности и состоятельности.

Теорема 23.1. Арифметическая средняя, вычисленная по n независимым наблюдениям над случайной величиной, которая имеет математическое ожидание M = , является несмещенной оценкой этого параметра.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. По условию M = , а т.к. являются случайными величинами и имеют тот же закон распределения, то тогда. По определению средняя арифметическая

Рассмотрим математическое ожидание средней арифметической. Используя свойство математического ожидания, имеем:

т.е. . В силу (22.1) является несмещенной оценкой. ?

Теорема 23.2 . Арифметическая средняя, вычисленная по n независимым наблюдениям над случайной величиной, которая имеет M = и, является состоятельной оценкой этого параметра.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. Тогда в силу теоремы 23.1 имеем M = .

Для средней арифметической запишем неравенство Чебышева:

Используя свойства дисперсии 4,5 и (23.1), имеем:

т.к. по условию теоремы.

Следовательно,

Итак, дисперсия средней арифметической в n раз меньше дисперсии случайной величины. Тогда

а это значит, что является состоятельной оценкой.

Замечание : 1 . Примем без доказательства весьма важный для практики результат. Если N (a,), то несмещенная оценка математического ожидания a имеет минимальную дисперсию, равную, поэтому является эффективной оценкой параметра а. ?

Перейдем к оценке для дисперсии и проверим ее на состоятельность и несмещенность.

Теорема 23.3 . Если случайная выборка состоит из n независимых наблюдений над случайной величиной с

M = и D = , то выборочная дисперсия

не является несмещенной оценкой D - генеральной дисперсии.

Доказательство.

Пусть - n независимых наблюдений над случайной величиной. По условию и для всех. Преобразуем формулу (23.3) выборочной дисперсии:


Упростим выражение

Принимая во внимание (23.1), откуда

Пусть случайная выборка порождена наблюдаемой случайной величиной ξ, математическое ожидание и дисперсия которой неизвестны. В качестве оценок для этих характеристик было предложено использовать выборочное среднее

и выборочную дисперсию

. (3.14)

Рассмотрим некоторые свойства оценок математического ожидания и дисперсии.

1. Вычислим математическое ожидание выборочного среднего:

Следовательно, выборочное среднее является несмещенной оценкой для .

2. Напомним, что результаты наблюдений – независимые случайные величины, каждая из которых имеет такой же закон распределения, как и величина , а значит, , , . Будем предполагать, что дисперсия конечна. Тогда, согласно теореме Чебышева о законе больших чисел, для любого ε > 0 имеет место равенство ,

которое можно записать так: . (3.16) Сравнивая (3.16) с определением свойства состоятельности (3.11), видим, что оценка является состоятельной оценкой математического ожидания .

3. Найдем дисперсию выборочного среднего:

. (3.17)

Таким образом, дисперсия оценки математического ожидания уменьшается обратно пропорционально объему выборки.

Можно доказать, что если случайная величина ξ распределена нормально, то выборочное среднее является эффективной оценкой математического ожидания , то есть дисперсия принимает наименьшее значение по сравнению с любой другой оценкой математического ожидания. Для других законов распределения ξ это может быть и не так.

Выборочная дисперсия является смещенной оценкой дисперсии , так как . (3.18)

Действительно, используя свойства математического ожидания и формулу (3.17), найдем

.

Чтобы получить несмещенную оценку дисперсии, оценку (3.14) нужно исправить, то есть домножить на . Тогда получим несмещенную выборочную дисперсию

. (3.19)

Отметим, что формулы (3.14) и (3.19) отличаются лишь знаменателем, и при больших значениях выборочная и несмещенная дисперсии отличаются мало. Однако при малом объеме выборки следует пользоваться соотношением (3.19).

Для оценки среднего квадратического отклонения случайной величины используют так называемое “исправленное” среднее квадратическое отклонение, которое равно квадратному корню из несмещенной дисперсии: .

Интервальные оценки

В статистике имеются два подхода к оцениванию неизвестных параметров распределений: точечный и интервальный. В соответствии с точечным оцениванием, которое рассмотрено в предыдущем разделе, указывается лишь точка, около которой находится оцениваемый параметр. Желательно, однако, знать, как далеко может отстоять в действительности этот параметр от возможных реализаций оценок в разных сериях наблюдений.

Ответ на этот вопрос – тоже приближенный – дает другой способ оценивания параметров – интервальный. В соответствии с этим способом оценивания находят интервал, который с вероятностью, близкой к единице, накрывает неизвестное числовое значение параметра.

Понятие интервальной оценки

Точечная оценка является случайной величиной и для возможных реализаций выборки принимает значения лишь приближенно равные истинному значению параметра . Чем меньше разность , тем точнее оценка. Таким образом, положительное число , для которого , характеризует точность оценки и называется ошибкой оценки (или предельной ошибкой).

Доверительной вероятностью (или надежностью) называется вероятность β , с которой осуществляется неравенство , т. е.

. (3.20)

Заменив неравенство равносильным ему двойным неравенством , или , получим

Интервал , накрывающий с вероятностью β , , неизвестный параметр , называется доверительным интервалом (или интервальной оценкой), соответствующим доверительной вероятности β .

Случайной величиной является не только оценка , но и ошибка : ее значение зависит от вероятности β и, как правило, от выборки. Поэтому доверительный интервал случаен и выражение (3.21) следует читать так: “Интервал накроет параметр с вероятностью β ”, а не так: “Параметр попадет в интервал с вероятностью β ”.

Смысл доверительного интервала состоит в том, что при многократном повторении выборки объема в относительной доле случаев, равной β , доверительный интервал, соответствующий доверительной вероятности β , накрывает истинное значение оцениваемого параметра. Таким образом, доверительная вероятность β характеризует надежность доверительного оценивания: чем больше β , тем вероятнее, что реализация доверительного интервала содержит неизвестный параметр.