Вашего многоугольника . Например, если вам нужно найти углы правильного многоугольника с 15 сторонами, подставьте n=15 в уравнение. У вас получится S=180⁰(15-2), S=180⁰х13, S=2340⁰.

Далее разделите полученную сумму внутренних углов на их количество. Например, в с многоугольником количество углов количеству сторон, то есть 15. Таким образом, вы получите, что угол равен 2340⁰/15=156⁰. Каждый внутренний угол многоугольника равен 156⁰.

Если вам удобнее рассчитать углы многоугольника в радианах, действуйте следующим образом. Вычтите из количества сторон число 2 и умножьте полученную разность на число П (Пи). Затем разделите произведение на количество углов в многоугольнике. Например, если вам нужно рассчитать углы правильного 15-угольника, действуйте так: П*(15-2)/15=13/15П, или 0,87П, или 2,72 (но, как , число П остается в неизменном виде). Либо просто разделите размер угла в градусах на 57,3 - именно столько содержится в одном радиане.

Также можете попробовать рассчитать углы правильного многоугольника в градах. Для этого вычтите из количества сторон число 2, разделите полученное число на количество сторон и умножьте результат на 200. Эта углов почти не используется, но если вы решили углы в градах, не забудьте, что град разбивается на метрические секунды и минуты (по 100 секунд ).

Возможно, вам необходимо рассчитать внешний угол правильного многоугольника , в этом случае поступайте так. Вычтите из 180⁰ внутренний угол – в результате вы получите значение смежного, то есть внешнего угла. Он может от -180⁰ до +180⁰.

Полезный совет

Если вам удалось узнать углы правильного многоугольника – вы сможете легко его построить. Начертите одну сторону определенной длины и от нее при помощи транспортира отложите нужный угол. Отмерьте точно такое же расстояние (все стороны правильного многоугольник равны) и снова отложите нужный угол. Продолжайте, пока стороны не сомкнутся.

Источники:

  • угол в правильном многоугольнике

Многоугольник состоит из нескольких отрезков, соединенных между собой и образующих замкнутую линию. Все фигуры этого класса делятся на простые и сложные. К простым относятся треугольник и четырехугольник, а к сложным - многоугольники с большим количеством сторон , а также звездчатые многоугольники.

Инструкция

Наиболее часто в задачах встречается правильный треугольник со сторон ой a. Поскольку многоугольник является правильным, то все три его сторон ы равны. Следовательно, зная медиану и высоту треугольника, можно найти все его сторон ы. Для этого используйте способ нахождения сторон ы :a=x/cosα.Так как сторон ы , т.е. a=b=c=a, a=b=c=x/cosα, где x - высота, медиана или биссектриса.Аналогичным образом находите все три неизвестные сторон ы в равнобедренном треугольнике, но при одном условии - заданной высоте. Она должна проецироваться на основание треугольника. Зная высоту основания x, найдите сторон у a:a=x/cosα.Поскольку a=b, так как треугольник равнобедренный, найдите его сторон ы следующим образом:a=b=x/cosα.После того как вы нашли боковые сторон ы треугольника, вычислите длину основания треугольника, применяя теорему Пифагора для нахождения половины основания:c/2=√(x/cosα)^2-(x^2)=√x^2 (1-cos^2α)/ cos^2α=xtgα.Отсюда найдите основание:c=2xtgα.

Квадрат представляет собой , сторон ы которого вычисляются несколькими способами. Ниже рассмотрен каждый из них.Первый способ предлагает нахождение сторон ы квадрата. Поскольку все углы у квадрата прямые, данная их пополам таким образом, что образуются два прямоугольных треугольника с углами 45 градусов при . Соответственно, сторон а квадрата равна:a=b=c=f=d*cosα=d√2/2, где d - квадрата.Если квадрат вписан в окружность, то зная радиус этой окружности, найдите его сторон у:a4=R√2, где R - радиус окружности.

Теорема 1 . Около любого правильного многоугольника можно описать окружность.

Пусть ABCDEF (рис. 419) - правильный многоугольник; надо доказать, что около него можно описать окружность.

Мы знаем, что всегда можно провести окружность через три точки, не лежащие на одной прямой; значит, всегда можно провести окружность, которая пройдёт через три любые вершины правильного многоугольника, например через вершины Е, D и С. Пусть точка О - центр этой окружности.

Докажем, что эта окружность пройдёт и через четвёртую вершину многоугольника, например через вершину В.

Отрезки ОЕ, OD и ОС равны между собой, и каждый равен радиусу окружности. Проведём ещё отрезок ОВ; про этот отрезок сразу нельзя сказать, что он также равен радиусу окружности, это надо доказать. Рассмотрим треугольники OED и ODC, они равнобедренные и равные, следовательно, ∠1 = ∠2 = ∠3 = ∠4.

Если внутренний угол данного многоугольника равен α , то ∠1 = ∠2 = ∠3 = ∠4 = α / 2 ; но если ∠4= α / 2 , то и ∠5 = α / 2 , т.е. ∠4 = ∠5.

Отсюда заключаем, что (Delta)ОСD = (Delta)ОСВ и, значит, ОВ = ОС, т. е. отрезок ОВ равен радиусу проведённой окружности. Из этого следует, что окружность пройдёт и через вершину В правильного многоугольника.

Таким же приёмом докажем,что построенная окружность пройдёт и через все остальные вершины многоугольника. Значит, эта окружность будет описанной около данного правильного многоугольника. Теорема доказана.


Теорема 2 . В любой правильный многоугольник можно вписать окружность.

Пусть ABCDEF - правильный многоугольник (рис. 420), надо доказать, что в него можно вписать окружность.

Из предыдущей теоремы известно, что около правильного многоугольника можно описать окружность. Пусть точка О - центр этой окружности.

Соединим точку Oс вершинами многоугольника. Полученные треугольники OED, ODC и т д. равны между собой, значит, равны и их высоты, проведённые из точки О, т. е. OK = OL = ОМ = ON = OP = OQ.

Поэтому окружность, описанная из точки О как из центра радиусом, равным отрезку ОК, пройдёт через точки К, L, M, N, Р и Q, и высоты треугольников будут радиусами окружности. Стороны многоугольника перпендикулярны к радиусам в этих точках, поэтому они являются касательными к этой окружности. А это значит, что построенная окружность вписана в данный правильный многоугольник.

Такое же построение можно выполнить для любого правильного многоугольника, следовательно, вписать окружность можно в любой правильный многоугольник.

Следствие. Окружности, описанная около правильного многоугольника и вписанная в него, имеют общий центр.

Определения .

1. Центром правильного многоугольника называется общий центр окружностей, описанной около этого многоугольника и вписанной в него.

2. Перпендикуляр, опущенный из центра правильного многоугольника на его сторону, называется апофемой правильного многоугольника.

Выражение сторон правильных многоугольников через радиус описанной окружности

С помощью тригонометрических функций можно выразить сторону любого правильного многоугольника через радиус описанной около него окружности.

Пусть АВ - сторона правильного n -угольника, вписанного в круг радиуса ОА = R (рис).

Проведём апофему OD правильного многоугольника и рассмотрим прямоугольный треугольник AOD. В этом треугольнике

∠AOD = 1 / 2 ∠AOB = 1 / 2 360° / n = 180° / n

AD = AO sin ∠AOD = R sin 180° / n ;

но AB = 2AD и потому АВ = 2R sin 180° / n .

Длина стороны правильного n -угольника, вписанного в круг, обозначается обычно а n , поэтому полученную формулу можно записать так:

а n = 2R sin 180° / n .

Следствия:

1. Длина стороны правильного шестиугольника, вписанного в круг радиуса R, выражается формулой а 6 = R , так как

а 6 = 2R sin 180° / 6 = 2R sin 30° = 2R 1 / 2 = R.

2. Длина стороны правильного четырёхугольника (квадрата), вписанного в круг радиуса R, выражается формулой а 4 = R √ 2 , так как

а 4 = 2R sin 180° / 4 = 2R sin 45° = 2R √ 2 / 2 = R√2

3. Длина стороны правильного треугольника, вписанного в круг радиуса R, выражается формулой а 3 = R √ 3 , так как.

а 3 = 2R sin 180° / 3 = 2R sin 60° = 2R √ 3 / 2 = R√3

Площадь правильного многоугольника

Пусть дан правильный n -угольник (рис). Требуется определить его площадь. Обозначим сторону многоугольника через а и центр через О. Соединим отрезками центр с концами какой-либо стороны многоугольника, получим треугольник, в котором проведём апофему многоугольника.

Площадь этого треугольника равна ah / 2 . Чтобы определить площадь всего многоугольника нужно площадь одного треугольника умножить на число треугольников, т. е. на n . Получим: S = ah / 2 n = ahn / 2 , но аn равняется периметру многоугольника. Обозначим его через Р.

Окончательно получаем: S = Ph / 2 . где S - площадь правильного многоугольника, Р - его периметр, h - апофема.

Площадь правильного многоугольника равна половине произведения его периметра на апофему.

Другие материалы

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Свойства выпуклый , вписанный , равносторонний , равноугольный , изотоксальный

Определение правильного многоугольника может зависеть от определения многоугольника : если он определён как плоская замкнутая ломаная, то появляется определение правильного звёздчатого многоугольника как невыпуклого многоугольника, у которого все стороны между собой равны и все углы между собой равны.

Свойства

Координаты

Пусть x C {\displaystyle x_{C}} и y C {\displaystyle y_{C}} - координаты центра, а R {\displaystyle R} - радиус окружности , ϕ 0 {\displaystyle {\phi }_{0}} - угловая координата первой вершины, тогда декартовы координаты вершин правильного n-угольника определяются формулами:

x i = x C + R cos ⁡ (ϕ 0 + 2 π i n) {\displaystyle x_{i}=x_{C}+R\cos \left({\phi }_{0}+{\frac {2\pi i}{n}}\right)} y i = y C + R sin ⁡ (ϕ 0 + 2 π i n) {\displaystyle y_{i}=y_{C}+R\sin \left({\phi }_{0}+{\frac {2\pi i}{n}}\right)}

где i = 0 … n − 1 {\displaystyle i=0\dots n-1}

Размеры

Пусть R {\displaystyle R} - радиус описанной вокруг правильного многоугольника окружности , тогда радиус вписанной окружности равен

r = R cos ⁡ π n {\displaystyle r=R\cos {\frac {\pi }{n}}} ,

а длина стороны многоугольника равна

a = 2 R sin ⁡ π n = 2 r t g π n {\displaystyle a=2R\sin {\frac {\pi }{n}}=2r\mathop {\mathrm {tg} } \,{\frac {\pi }{n}}}

Площадь

N {\displaystyle n} и длиной стороны a {\displaystyle a} составляет:

S = n 4 a 2 ctg ⁡ π n {\displaystyle S={\frac {n}{4}}\ a^{2}\mathop {\mathrm {} } \,\operatorname {ctg} {\frac {\pi }{n}}} .

Площадь правильного многоугольника с числом сторон n {\displaystyle n} , вписанного в окружность радиуса R {\displaystyle R} , составляет:

S = n 2 R 2 sin ⁡ 2 π n {\displaystyle S={\frac {n}{2}}R^{2}\sin {\frac {2\pi }{n}}} .

Площадь правильного многоугольника с числом сторон n {\displaystyle n} , описанного вокруг окружности радиуса r {\displaystyle r} , составляет:

S = n r 2 t g π n {\displaystyle S=nr^{2}\mathop {\mathrm {tg} } \,{\frac {\pi }{n}}} (площадь основания n-угольной правильной призмы)

Площадь правильного многоугольника с числом сторон n {\displaystyle n} равна

S = n r a 2 {\displaystyle S={\frac {nra}{2}}} ,

где r {\displaystyle r} - расстояние от середины стороны до центра, a {\displaystyle a} - длина стороны.

Площадь правильного многоугольника через периметр ( P {\displaystyle P} ) и радиус вписанной окружности ( r {\displaystyle r} ) составляет:

S = 1 2 P r {\displaystyle S={\frac {1}{2}}Pr} .

Периметр

Если нужно вычислить длину стороны правильного n-угольника, вписанного в окружность, зная длину окружности L {\displaystyle L} можно вычислить длину одной стороны многоугольника:

a n {\displaystyle a_{n}} - длина стороны правильного n-угольника. a n = sin ⁡ 180 n ⋅ L π {\displaystyle a_{n}=\sin {\frac {180}{n}}\cdot {\frac {L}{\pi }}}

Периметр P n {\displaystyle P_{n}} равен

P n = a n ⋅ n {\displaystyle P_{n}=a_{n}\cdot n}

где n {\displaystyle n} - число сторон многоугольника.

Применение

Правильными многоугольниками по определению являются грани правильных многогранников .

Древнегреческие математики (Антифонт , Брисон Гераклейский , Архимед и др.) использовали правильные многоугольники для вычисления числа . Они вычисляли площади вписанных в окружность и описанных вокруг неё многоугольников, постепенно увеличивая число их сторон и получая таким образом оценку площади круга.

История

Построение правильного многоугольника с n сторонами оставалось проблемой для математиков вплоть до XIX века . Такое построение идентично разделению окружности на n равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

С тех пор проблема считается полностью решённой.

Многоугольник называется правильным, если равны все его стороны и все углы. Среди треугольников правильным будет равносторонний треугольник и только он. Квадрат (и только квадрат) является правильным четырехугольником. Покажем, что существуют правильные многоугольники с любым числом сторон , где . Для этого приведем два способа построения таких многоугольников.

Способ 1. Возьмем произвольную окружность и разделим ее на равных частей. Такое построение далеко не при всяком осуществимо циркулем и линейкой, но мы будем здесь считать, что такое построение сделано. Примем точки деления в их последовательном положении на окружности за вершины -угольника, вписанного в эту окружность. Докажем, что построенный -угольник - правильный. Действительно, стороны нашего многоугольника (рис. 312) суть хорды, стягиваемые равными дугами, и потому они равны между собой.

Все углы опираются на равные дуги и потому также равны. Итак, многоугольник правильный.

Способ 2. Снова разделим окружность на равных частей и проведем в точках деления касательные к окружности; ограничим каждую из касательных точками ее пересечения с касательными, проведенными в соседних точках деления. Получим правильный многоугольник, описанный около окружности (рис. 313). В самом деле, углы его все равны, так как каждый из них, как угол между касательными, измеряется полуразностью дуг, из которых меньшая всегда равна части окружности, а большая - полной окружности минус часть. Равенство сторон видно хотя бы из равенства треугольников, образованных парами полукасательных и хордами (например, треугольники и т. д.). Все они равнобедренные, имеют равные углы при вершинах и равные основания.

Два правильных -угольника с одинаковым числом сторон подобны.

Действительно, стороны их заведомо находятся в постоянной отношении, равном отношению любой пары сторон. Кроме того, по теореме о сумме углов -угольника всякий правильный -угольник имеет одни и те же углы, равные 1. Условия признака п. 224 выполнены, и -угольники подобны.

Итак, для всякого правильные -угольники подобны. Отсюда непосредственно получаем ряд следствий:

1. Два правильных -угольника с равными сторонами равны.

2. Вокруг всякого правильного -угольника можно описать окружность.

Доказательство. Возьмем какой-либо правильный многоугольник с тем же числом сторон, что данный, построенный по первому способу, т. е. вписанный в окружность. Преобразуем его подобно так, чтобы он стал равен данному. Тогда окружность, описанная вокруг него, подобно преобразуется в окружность, описанную вокруг многоугольника, равного данному.

3. В каждый правильный многоугольник можно вписать окружность.

Доказательство аналогично. Полезно, однако, провести рассуждения и несколько иначе. Мы уже знаем, что вокруг данного многоугольника можно описать окружность. Возьмем ее центр. Стороны многоугольника служат ее хордами; будучи равны между собой, они должны одинаково отстоять от центра. Поэтому окружность с тем же центром и радиусом, равным расстоянию от центра до сторон многоугольника, будет касаться всех сторон многоугольника, т. е. будет вписанной окружностью.

Итак, вписанная и описанная окружности правильного многоугольника имеют общий центр. Он называется центром данного правильного многоугольника. Радиус описанной окружности называется радиусом многоугольника, радиус вписанной окружности его апофемой. Ясно, что апофема всегда меньше радиуса.