Газовый состав атмосферного воздуха

Газовый состав воздуха, которым мы дышим, выглядит так: 78% составляет азот, 21 % - кислород и 1% приходится на другие газы. Но в атмосфере крупных промышленных городов это соотношение часто нарушено. Значительную долю составляют вредные примеси, обусловленные выбросами предприятий и автотранспорта. Автотранспорт привносит в атмосферу многие примеси: углеводороды неизвестного состава, бенз(а)пирен, углекислый газ, соединения серы и азота, свинец, угарный газ.

Атмосфера состоит из смеси ряда газов - воздуха, в котором взвешены коллоидные примеси - пыль, капельки, кристаллы и пр. С высотой состав атмосферного воздуха меняется мало. Однако начиная с высоты около 100 км, наряду с молекулярным кислородом и азотом появляется и атомарный в результате диссоциации молекул, и начинается гравитационное разделение газов. Выше 300 км в атмосфере преобладает атомарный кислород, выше 1000 км - гелий и затем атомарный водород. Давление и плотность атмосферы убывают с высотой; около половины всей массы атмосферы сосредоточено в нижних 5 км, 9/10 - в нижних 20 км и 99,5% - в нижних 80 км. На высотах около 750 км плотность воздуха падает до 10-10 г/м3 (тогда как у земной поверхности она порядка 103 г/м3), но и такая малая плотность еще достаточна для возникновения полярных сияний. Резкой верхней границы атмосфера не имеет; плотность составляющих ее газов

В состав атмосферного воздуха, которым дышит каждый из нас, входят несколько газов, основными из которых являются: азот(78.09%), кислород(20.95%), водород(0.01%) двуокись углерода (углекислый газ)(0.03%) и инертные газы(0.93%). Кроме того, в воздухе всегда находится некоторое кол-во водяных паров, кол-во которых всегда изменяется с переменой температуры: чем выше температура, тем содержание пара больше и наоборот. Вследствие колебания кол-ва водяных паров в воздухе процентное содержание в нем газов также непостоянно. Все газы, входящие в состав воздуха, бесцветны и не имеют запаха. Вес воздуха изменяется в зависимости не только от температуры, но и от содержания в нем водяных паров. При одинаковой температуре вес сухого воздуха больше, чем влажного, т.к. водяные пары значительно легче паров воздуха.

В таблице приведен газовый состав атмосферы в объемном массовом отношении, а также время жизни основных компонентов:

Компонент % объемные % массовые
N 2 78,09 75,50
O 2 20,95 23,15
Ar 0,933 1,292
CO 2 0,03 0,046
Ne 1,8 10 -3 1,4 10 -3
He 4,6 10 -4 6,4 10 -5
CH 4 1,52 10 -4 8,4 10 -5
Kr 1,14 10 -4 3 10 -4
H 2 5 10 -5 8 10 -5
N 2 O 5 10 -5 8 10 -5
Xe 8,6 10 -6 4 10 -5
O 3 3 10 -7 - 3 10 -6 5 10 -7 - 5 10 -6
Rn 6 10 -18 4,5 10 -17

Свойства газов, входящих в состав атмосферного воздуха под давлением меняются.

К примеру: кислород под давлением более 2-х атмосфер оказывает ядовитое действие на организм.

Азот под давлением свыше 5 атмосфер оказывает наркотическое действие (азотное опьянение). Быстрый подъем из глубины вызывает кессонную болезнь из-за бурного выделения пузырьков азота из крови, как бы вспенивая ее.

Повышение углекислого газа более 3% в дыхательной смеси вызывает смерть.

Каждый компонент, входящий в состав воздуха, с повышением давления до определенных границ становится ядом, способным отравить организм.

Исследования газового состава атмосферы. Атмосферная химия

Для истории бурного развития сравнительно молодой отрасли науки, именуемой атмосферной химией, более всего подходит термин “спурт” (бросок), применяемый в высокоскоростных видах спорта. Выстрелом же из стартового пистолета, пожалуй, послужили две статьи, опубликованные в начале 1970-х годов. Речь в них шла о возможном разрушении стратосферного озона оксидами азота - NO и NO 2 . Первая принадлежала будущему нобелевскому лауреату, а тогда сотруднику Стокгольмского университета П. Крутцену, который посчитал вероятным источником оксидов азота в стратосфере распадающуюся под действием солнечного света закись азота N 2 O естественного происхождения. Автор второй статьи, химик из Калифорнийского университета в Беркли Г.Джонстон предположил, что оксиды азота появляются в стратосфере в результате человеческой деятельности, а именно - при выбросах продуктов сгорания реактивных двигателей высотных самолетов.

Конечно, вышеупомянутые гипотезы возникли не на пустом месте. Соотношение по крайней мере основных компонент в атмосферном воздухе - молекул азота, кислорода, водяного пара и др. - было известно намного раньше. Уже во второй половине XIX в. в Европе производились измерения концентрации озона в приземном воздухе. В 1930-е годы английский ученый С.Чепмен открыл механизм формирования озона в чисто кислородной атмосфере, указав набор взаимодействий атомов и молекул кислорода, а также озона в отсутствие каких-либо других составляющих воздуха. Однако в конце 50-х годов измерения с помощью метеорологических ракет показали, что озона в стратосфере гораздо меньше, чем его должно быть согласно циклу реакций Чепмена. Хотя этот механизм и по сей день остается основополагающим, стало ясно, что существуют какие-то иные процессы, также активно участвующие в формировании атмосферного озона.

Нелишне упомянуть, что знания в области атмосферной химии к началу 70-х годов в основном были получены благодаря усилиям отдельных ученых, чьи исследования не были объединены какой-либо общественно значимой концепцией и носили чаще всего чисто академический характер. Иное дело - работа Джонстона: согласно его расчетам, 500 самолетов, летая по 7 ч в день, могли сократить количество стратосферного озона не меньше чем на 10%! И если бы эти оценки были справедливы, то проблема сразу становилась социально-экономической, так как в этом случае все программы развития сверхзвуковой транспортной авиации и сопутствующей инфраструктуры должны были подвергнуться существенной корректировке, а может быть, и закрытию. К тому же тогда впервые реально встал вопрос о том, что антропогенная деятельность может стать причиной не локального, но глобального катаклизма. Естественно, в сложившейся ситуации теория нуждалась в очень жесткой и в то же время оперативной проверке.

Напомним, что суть вышеупомянутой гипотезы состояла в том, что оксид азота вступает в реакцию с озоном NO + O 3 ® ® NO 2 + O 2 , затем образовавшийся в этой реакции диоксид азота реагирует с атомом кислорода NO 2 + O ® NO + O 2 , тем самым восстанавливая присутствие NO в атмосфере, в то время как молекула озона утрачивается безвозвратно. При этом такая пара реакций, составляющая азотный каталитический цикл разрушения озона, повторяется до тех пор, пока какие-либо химические или физические процессы не приведут к удалению оксидов азота из атмосферы. Так, например, NO 2 окисляется до азотной кислоты HNO 3 , хорошо растворимой в воде, и потому удаляется из атмосферы облаками и осадками. Азотный каталитический цикл весьма эффективен: одна молекула NO за время своего пребывания в атмосфере успевает уничтожить десятки тысяч молекул озона.

Но, как известно, беда не приходит одна. Вскоре специалисты из университетов США - Мичигана (Р.Столярски и Р.Цицероне) и Гарварда (С.Вофси и М. Макэлрой) - обнаружили, что у озона может быть еще более беспощадный враг - соединения хлора. Хлорный каталитический цикл разрушения озона (реакции Cl + O 3 ® ClO + O 2 и ClO + O ® Cl + O 2), по их оценкам, был в несколько раз эффективнее азотного. Сдержанный оптимизм вызывало лишь то, что количество хлора естественного происхождения в атмосфере сравнительно невелико, а значит, суммарный эффект его воздействия на озон может оказаться не слишком сильным. Однако ситуация кардинально изменилась, когда в 1974 г. сотрудники Калифорнийского университета в Ирвине Ш. Роуленд и М. Молина установили, что источником хлора в стратосфере являются хлорфторуглеводородные соединения (ХФУ), массово используемые в холодильных установках, аэрозольных упаковках и т.д. Будучи негорючими, нетоксичными и химически пассивными, эти вещества медленно переносятся восходящими воздушными потоками от земной поверхности в стратосферу, где их молекулы разрушаются солнечным светом, в результате чего выделяются свободные атомы хлора. Промышленное производство ХФУ, начавшееся в 30-е годы, и их выбросы в атмосферу постоянно наращивались во все последующие годы, особенно в 70-е и 80-е. Таким образом, в течение очень короткого промежутка времени теоретики обозначили две проблемы атмосферной химии, обусловленные интенсивным антропогенным загрязнением.

Однако чтобы проверить состоятельность выдвинутых гипотез, необходимо было выполнить немало задач.

Во-первых, расширить лабораторные исследования, в ходе которых можно было бы определить или уточнить скорости протекания фотохимических реакций между различными компонентами атмосферного воздуха. Надо сказать, что существовавшие в то время весьма скудные данные об этих скоростях к тому же имели изрядную (до нескольких сот процентов) погрешность. Кроме того, условия, в которых производились измерения, как правило, мало соответствовали реалиям атмосферы, что серьезно усугубляло ошибку, поскольку интенсивность большинства реакций зависела от температуры, а иногда от давления или плотности атмосферного воздуха.

Во-вторых, усиленно изучать радиационно-оптические свойства ряда малых газов атмосферы в лабораторных условиях. Молекулы значительного числа составляющих атмосферного воздуха разрушаются ультрафиолетовым излучением Солнца (в реакциях фотолиза), среди них не только упомянутые выше ХФУ, но также молекулярный кислород, озон, оксиды азота и многие другие. Поэтому оценки параметров каждой реакции фотолиза были столь же необходимы и важны для правильного воспроизведения атмосферных химических процессов, как и скорости реакций между различными молекулами.

Кандидат химических наук О. БЕЛОКОНЕВА.

Как часто после утомительного рабочего дня нас вдруг охватывает непреодолимая усталость, голова становится тяжелой, мысли путаются, наваливается сонливость… Такое недомогание болезнью не считается, но тем не менее очень мешает нормально жить и работать. Многие спешат принять таблетку от головной боли и идут на кухню, чтобы заварить чашку крепкого кофе. А может быть, вам просто не хватает кислорода?

Получение воздуха, обогащенного кислородом.

Как известно, земная атмосфера на 78% состоит из химически нейтрального газа - азота, почти 21% составляет основа всего живого - кислород. Но так было не всегда. Как показывают современные исследования, 150 лет назад содержание кислорода в воздухе достигало 26%, а в доисторические времена динозавры дышали воздухом, в котором кислорода было больше трети. Сегодня все жители земного шара страдают от хронической нехватки кислорода - гипоксии. Особенно нелегко горожанам. Так, под землей (в метро, в переходах и подземных торговых центрах) концентрация кислорода в воздухе составляет 20,4%, в высотных зданиях - 20,3%, а в битком набитом вагоне наземного транспорта - всего лишь 20,2%.

Давно известно, что повышение концентрации кислорода во вдыхаемом воздухе до уровня, установленного природой (около 30%), благотворно сказывается на здоровье человека. Не зря космонавты на Международной космической станции дышат воздухом, содержащим 33% кислорода.

Как уберечься от гипоксии? В Японии у жителей больших городов недавно стали популярными так называемые "кислородные бары". Это своего рода кафе - каждый желающий может заглянуть в них и за небольшую плату в течение 20 минут подышать воздухом, обогащенным кислородом. Клиентов у "кислородных баров" - хоть отбавляй, и их число продолжает расти. Среди них много молодых женщин, но есть и пожилые люди.

До последнего времени у россиян не было возможности побывать в роли посетителя японского кислородного бара. Но в 2004 году на российский рынок выходит японский прибор для обогащения воздуха кислородом "Oxycool-32" фирмы "YMUP/Yamaha Motors group". Поскольку технология, использованная при создании прибора, действительно нова и уникальна (сейчас на нее оформляется международный патент), читателям наверняка интересно узнать о ней подробнее.

В основе работы нового японского прибора лежит принцип мембранного разделения газов. Атмосферный воздух при обычном давлении подается на полимерную мембрану. Толщина газоразделительного слоя - 0,1 микрометра. Мембрана сделана из высокомолекулярного материала: при высоком давлении она адсорбирует молекулы газов, а при низком - выделяет. Молекулы газов проникают в промежутки между полимерными цепочками. "Медленный газ" азот проникает через мембрану с меньшей скоростью, чем "быстрый" кислород. Величина "запаздывания" азота зависит от разницы парциальных давлений на внешней и внутренней поверхностях мембраны и скорости воздушного потока. На внутренней стороне мембраны давление понижено: 560 мм рт. ст. Соотношение давлений и скорость потока подобраны таким образом, что концентрация азота и кислорода на выходе составляет 69% и 30% соответственно. Обогащенный кислородом воздух выходит со скоростью 3 л/мин.

Газоразделительная мембрана улавливает микроорганизмы и цветочную пыльцу в воздухе. Кроме того, воздушный поток можно пропустить через раствор ароматической эссенции, так что человек будет дышать воздухом не только очищенным от бактерий, вирусов и пыльцы, но и имеющим приятный мягкий аромат.

В прибор "Oxycool-32" встроен ионизатор воздуха, похожий на широко известную в России "люстру Чижевского". Под действием ультрафиолетового излучения происходит эмиссия электронов с титанового наконечника. Электроны ионизуют молекулы кислорода, образуя отрицательно заряженные "аэроионы" в количестве 30 000-50 000 ионов на кубический сантиметр. "Аэроионы" нормализуют потенциал клеточной мембраны, оказывая тем самым на организм общеукрепляющее действие. Кроме того, они заряжают пыль и грязь, взвешенную в городском воздухе в виде мелкодисперсного аэрозоля. В результате пыль оседает, и воздух в помещении становится намного чище.

Кстати, этот малогабаритный прибор можно подключить и к автомобильному источнику питания, что позволит водителю наслаждаться свежим воздухом, даже стоя в многокилометровой "пробке" на московском Садовом кольце.

Основной переносчик кислорода в организме - гемоглобин, который находится в красных кровяных клетках - эритроцитах. Чем больше кислорода эритроциты "доставляют" клеткам организма, тем интенсивнее идет обмен веществ в целом: "сгорают" жиры, а также вещества, вредные для организма; окисляется молочная кислота, накопление которой в мышцах вызывает симптомы усталости; в клетках кожи синтезируется новый коллаген; улучшаются кровообращение и дыхание. Поэтому повышение концентрации кислорода во вдыхаемом воздухе снимает усталость, сонливость и головокружение, ослабляет боль в мышцах и пояснице, стабилизирует кровяное давление, уменьшает одышку, улучшает память и внимательность, налаживает сон, снимает синдром похмелья. Регулярное использование прибора поможет сбросить лишний вес и омолодить кожу. Кислородная терапия также пригодится астматикам, больным, страдающим хроническим бронхитом, тяжелыми формами пневмонии.

Регулярное вдыхание воздуха, обогащенного кислородом, позволит предотвратить гипертонию, атеросклероз, инсульт, импотенцию, а у пожилых людей - остановку дыхания во сне, которая иногда приводит к смертельному исходу. Дополнительный кислород сослужит хорошую службу и больным диабетом - даст возможность уменьшить количество ежедневных инъекций инсулина.

"Oxycool-32", несомненно, найдет применение в спортивных клубах, гостиницах, косметических салонах, офисах, развлекательных комплексах. Но это вовсе не означает, что новый прибор не пригоден для индивидуального применения. Совсем наоборот: в домашних условиях его могут использовать даже дети и пожилые люди. Врачебный контроль при такой восстанавливающей кислородной терапии необязателен. Очень полезно подышать кислородом до или после занятий физкультурой и спортом, после тяжелого рабочего дня или просто для восстановления сил и поддержания тонуса: 15-30 минут утром и 30-45 - вечером.

"Oxycool-32" повышает концентрацию кислорода во вдыхаемом воздухе до уровня, установленного природой. Поэтому прибор безопасен для здоровья. Но, если вы страдаете каким-либо тяжелым хроническим заболеванием, перед началом процедур все же стоит посоветоваться с лечащим врачом.

Воздух – это естественная смесь различных газов. Больше всего в нем содержатся такие элементы, как азот (около 77%) и кислород, менее 2% составляют аргон, углекислый газ и прочие инертные газы.

Кислород, или О2 – второй элемент периодической таблицы и важнейший компонент, без которого вряд ли бы существовала жизнь на планете. Он участвует в разнообразных процессах , от которых зависит жизнедеятельность всего живого.

Вконтакте

Состав воздуха

О2 выполняет функцию окислительных процессов в человеческом теле , которые позволяют выделить энергию для нормальной жизнедеятельности. В состоянии покоя человеческий организм требует около 350 миллилитров кислорода , при тяжелых физических нагрузках это значение возрастает в три-четыре раза.

Сколько процентов кислорода в воздухе, которым мы дышим? Норма равна 20,95% . Выдыхаемый воздух содержит меньшее количество О2 – 15,5-16% . Состав выдыхаемого воздуха также включает углекислый газ, азот и другие вещества. Последующее понижение процентного содержания кислорода приводит к нарушению работы, а критическое значение 7-8% вызывает летальный исход .

Из таблица можно понять, например, что в выдыхаемом воздухе содержится очень много азота и дополнительных элементов, а вот О2 всего 16,3% . Содержание кислорода во вдыхаемом воздухе примерно составляет 20,95%.

Важно понять, что представляет собой такой элемент, как кислород. О2– наиболее распространенный на земле химический элемент , который не имеет цвета, запаха и вкуса. Он выполняет важнейшую функцию окисления в .

Без восьмого элемента периодической таблицы нельзя добыть огонь . Сухой кислород позволяет улучшить электрические и защитные свойства пленок, уменьшать их объемный заряд.

Содержится этот элемент в следующих соединениях:

  1. Силикаты – в них присутствует примерно 48% О2.
  2. (морская и пресная) – 89%.
  3. Воздух – 21%.
  4. Другие соединения в земной коре.

Воздух содержит в себе не только газообразные вещества, но и пары и аэрозоли , а также различные загрязняющие примеси. Это может быть пыль, грязь, другой различный мелкий мусор. В нем содержатся микробы , которые могут вызывать различные заболевания. Грипп, корь, коклюш, аллергены и прочие болезни – это лишь малый список негативных последствий, которые появляются при ухудшении качества воздуха и повышении уровня болезнетворных бактерий.

Процентное соотношение воздуха – это количество всех элементов, которые входят в его состав. Показать наглядно, из чего состоит воздух, а также процент кислорода в воздухе удобнее на диаграмме.

Диаграмма отображает, какого газа содержится больше в воздухе. Значения, приведенные на ней, будут немного отличаться для вдыхаемого и выдыхаемого воздуха.

Диаграмма — соотношение воздуха.

Выделяют несколько источников, из которых образуется кислород:

  1. Растения. Еще из школьного курса биологии известно, что растения выделяют кислород при поглощении углекислого газа.
  2. Фотохимическое разложение водяных паров. Процесс наблюдается под действием солнечного излучения в верхнем слое атмосферы.
  3. Перемешивание потоков воздуха в нижних атмосферных слоях.

Функции кислорода в атмосфере и для организма

Для человека огромное значение имеет так называемое парциальное давление , которое мог бы производить газ, если бы занимал весь занимаемый объем смеси. Нормальное парциальное давление на высоте 0 метров над уровнем моря составляет 160 миллиметров ртутного столба . Увеличение высоты вызывает уменьшение парциального давления. Этот показатель важен, так как от него зависит поступление кислорода во все важные органы и в .

Кислород нередко используется для лечения различных заболеваний . Кислородные баллоны, ингаляторы помогают органам человека нормально функционировать при наличии кислородного голодания.

Важно! На состав воздуха влияют многие факторы, соответственно, может меняться процент кислорода. Негативная экологическая ситуация приводит к ухудшению качества воздуха. В мегаполисах и крупных городских поселениях пропорция углекислого газа (СО2) будет больше, чем в небольших поселениях или на лесных и заповедных территориях. Большое влияние оказывает и высота – процентное содержание кислорода будет меньше в горах. Можно рассмотреть следующий пример – на горе Эверест, которая достигает высоты 8,8 км, концентрация кислорода в воздухе будет ниже в 3 раза, чем в низине. Для безопасного пребывания на высокогорных вершинах требуется использовать кислородные маски.

Состав воздуха изменялся с течением лет. Эволюционные процессы, природные катаклизмы привели к изменениям в , поэтому уменьшился процент кислорода , необходимый для нормальной работы биоорганизмов. Можно рассмотреть несколько исторических этапов:

  1. Доисторическая эпоха. В это время концентрация кислорода в атмосфере составляла около 36% .
  2. 150 лет назад О2 занимал 26% от общего воздушного состава.
  3. В настоящее время концентрация кислорода в воздухе составляет чуть менее 21% .

Последующее развитие окружающего мира может привести к дальнейшему изменению состава воздуха. На ближайшее время маловероятно, что концентрация О2 может быть ниже 14%, так как это вызовет нарушение работы организма .

К чему приводит недостаток кислорода

Малое поступление чаще всего наблюдается в душном транспорте, плохо проветриваемом помещении или на высоте. Понижение уровня содержания кислорода в воздухе может вызвать негативное влияние на организм . Происходит истощение механизмов, наибольшему влиянию подвергается нервная система. Причин, по которым организм страдает от гипоксии, можно выделить несколько:

  1. Кровяная нехватка. Вызывается при отравлении угарным газом . Подобная ситуация понижает кислородную составляющую крови. Это опасно тем, что кровь прекращает доставить кислород к гемоглобину.
  2. Циркуляторная нехватка. Она возможна при диабете, сердечной недостаточности . В такой ситуации ухудшается или становится невозможным транспорт крови.
  3. Гистотоксические факторы, влияющие на организм, могут вызвать потерю способности поглощать кислород. Возникает при отравлении ядами или из-за воздействия тяжелых .

По ряду симптомов можно понять, что организму требуется О2. В первую очередь повышается частота дыхания . Также увеличивается частота сердечных сокращений. Эти защитные функции призваны поставить кислород в легкие и обеспечить им кровь и ткани.

Недостаток кислорода вызывает головные боли, повышенную сонливость , ухудшение концентрации. Единичные случаи не так страшны, их довольно просто подкорректировать. Для нормализации дыхательной недостаточности врач выписывает бронхорасширяющие лекарства и другие средства. Если же гипоксия принимает тяжелые формы, такие как потеря координации человека или даже коматозное состояние , то лечение усложняется.

Если обнаружены симптомы гипоксии, важно незамедлительно обратиться к доктору и не заниматься самолечением, так как применение того или иного лекарственного средства зависит от причин нарушения. Для легких случаев помогает лечение кислородными масками и подушками, кровяная гипоксия требует переливания крови, а корректировка циркулярных причин возможна только при операции на сердце или сосуды.

Невероятное путешествие кислорода по нашему организму

Заключение

Кислород – важнейшая составляющая воздуха , без которой невозможно осуществление многих процессов на Земле. Воздушный состав менялся в течение десятков тысяч лет из-за эволюционных процессов, но в настоящее время количество кислорода в атмосфере достигло значения в 21% . Качество воздуха, которым дышит человек, влияет на его здоровье, поэтому необходимо следить за его чистотой в помещении и постараться сократить загрязнение окружающей среды.

На страницах блога мы много рассказываем о самых разных химических веществах и смесях, но у нас еще не было рассказа об одном из важнейших сложных веществ — о воздухе. Исправим это и расскажем о воздухе. В первой статье: немного истории изучения воздуха, его химический состав и основные факты о нем.

Немного истории изучения воздуха

В настоящее время под воздухом понимают смесь газов, образующих атмосферу нашей планеты. Но так было не всегда: долгое время ученые думали, что воздух — это простое вещество, целостная субстанция. И хотя многие ученые высказывали гипотезы о сложном составе воздуха, дальше догадок дело не шло до XVIII века. Кроме того, воздуху придавали философское значение. В Древней Греции воздух считался одной из основополагающих космических стихий, наряду с землей, огнем, землей и водой образующих все сущее. Аристотель относил воздух к подлунным легким элементам, олицетворяющим влажность и тепло. Ницше в своих трудах писал о воздухе, как о символе свободы, как о наивысшей и самой тонкой форме материи, для которой не существует преград.

В XVII веке было доказано, что воздух — это материальная сущность, вещество, свойства которого, например, плотность и вес, можно измерить.

В XVIII веке ученые проводили в запаянных химических сосудах реакции воздуха с различными веществами. Так было установлено, что поглощается примерно пятая часть объема воздуха, а оставшаяся часть горения и дыхания не поддерживают. В результате был сделан вывод, что воздух вещество сложное, состоящее из двух составляющих, одна из которых, кислород — поддерживает горение, а вторая — азот, «испорченный воздух», не поддерживает горение и дыхание. Так был открыт кислород. Чуть позднее получен в чистом виде азот. И только в самом конце XIX века были открыты аргон, гелий, криптон, ксенон, радон и неон, тоже имеющиеся в составе воздуха.

Химический состав

Воздух состоит из смеси примерно двадцати семи различных газов. Примерно на 99% — это смесь кислорода и азота. В составе оставшегося процента: водяной пар, углекислый газ, метан, водород, озон, инертные газы (аргон, ксенон, неон, гелий, криптон) и другие. Например, в воздухе часто можно обнаружить сероводород, угарный газ, йод , оксиды азота, аммиак .

Считается, что в чистом воздухе при нормальных условиях содержится 78,1% азота и 20,93% кислорода. Однако в зависимости от географического положения и высоты над уровнем моря состав воздуха может различаться.

Существует еще такое понятие, как загрязненный воздух, то есть воздух, состав которого отличается от природного атмосферного за счет наличия загрязняющих веществ. Эти вещества бывают:
. естественного происхождения (вулканические газы и пыль, морская соль, дымы и газы от природных пожаров, растительная пыльца, пыль от эрозии почв и т.п.).
. антропогенного происхождения — возникшие в результате промышленной и бытовой деятельностью человека (выбросы соединений углерода, серы, азота; угольной и другой пыли от горнодобычи и промышленных предприятий; отходы сельскохозяйственного производства, промышленные и бытовые свалки, аварийные разливы нефти и других опасных для окружающей среды веществ; газовые выхлопы транспортных средств и т.п.).

Свойства

Чистый атмосферный воздух не имеет цвета и запаха, он невидим, хотя его можно ощутить. Физические параметры воздуха определяются следующими характеристиками:

Массой;
. температурой;
. плотностью;
. атмосферным давлением;
. влажностью;
. теплоемкостью;
. теплопроводностью;
. вязкостью.

Большая часть параметров воздуха зависят от его температуры, поэтому существует множество таблиц параметров воздуха для различных температур. Температуру воздуха измеряют с помощью метеорологического термометра , а влажность — с помощью гигрометра .

Воздух проявляет окислительные свойства (за счет большого содержания кислорода), поддерживает горение и дыхание; плохо проводит тепло, хорошо растворяется в воде. Его плотность уменьшается по мере увеличения температуры, а вязкость увеличивается.

Из следующей статьи вы узнаете о несколько несколько интересных фактов о воздухе и его применении.

Воздушная среда, составляющая земную атмосферу, представляет собой смесь газов. Сухой атмосферный воздух содержит: кислорода 20,95%, азота 78,09%, диоксида углерода 0,03%. Кроме того, в атмосферном воздухе содержатся аргон, гелий, неон, криптон, водород, ксенон и другие газы. В небольшом количестве в атмосферном воздухе присутствует озон, оксид азота, йод, метан, водяные пары.

Кроме постоянных составных частей атмосферы, в ней содержатся разнообразные загрязнения, вносимые в атмосферу производственной деятельностью человека.

1. Важной составной частью атмосферного воздуха является кислород , количество которого в земной атмосфере составляет 1,18 · 10 15 т. Постоянное содержание кислорода поддерживается за счет непрерывных процессов обмена его в природе. С одной стороны, кислород потребляется при дыхании человека и животных, расходуется на поддержание процессов горения и окисления, с другой – поступает в атмосферу за счет процессов фотосинтеза растений. Наземные растения и фитопланктон океанов полностью восстанавливают естественную убыль кислорода. При падении парциального давления кислорода могут развиваться явления кислородного голодания, что наблюдается при подъеме на высоту. Критическим уровнем является парциальное давление кислорода ниже 110 мм рт. ст. Снижение парциального давления кислорода до 50-60 мм рт. ст. обычно несовместимо с жизнью. Под влиянием коротковолнового УФ-излучения с длиной волны менее 200 нм молекулы кислорода диссоциируют с образованием атомного кислорода. Вновь образованные атомы кислорода присоединяются к нейтральной формуле кислорода, образуя озон . Одновременно с образованием озона происходит его распад. Общебиологическое значение озона велико: он поглощает коротковолновое УФ-излучение, оказывающее губительное действие на биологические объекты. Одновременно озон поглощает ИК-излучение, исходящее от Земли, и тем самым, предотвращает чрезмерное охлаждение ее поверхности. Концентрации озона неравномерно распределяются по высоте. Наибольшее его количество отмечается на уровне 20-30 км от поверхности Земли.

2. Азот по количественному содержанию является наиболее существенной составной частью атмосферного воздуха, он принадлежит к инертным газам. В атмосфере азота невозможна жизнь. Азот воздуха усваивается некоторыми видами бактерий почвы (азотфиксирующими бактериями), а также сине-зелеными водорослями; под влиянием электрических разрядов превращается в оксиды азота, которые, выпадая с атмосферными осадками, обогащают почву солями азотистой и азотной кислот. Под влиянием почвенных бактерий соли азотистой кислоты превращаются в соли азотной кислоты, которые в свою очередь усваиваются растениями и служат для синтеза белка. Наряду с усвоением азота в природе происходит его выделение в атмосферу. Свободный азот образуется при процессах горения древесины, угля, нефти; небольшое количество его образуется при разложении органических соединений. Таким образом, в природе происходит непрерывный круговорот, в результате которого азот атмосферы превращается в органические соединения, восстанавливается и поступает в атмосферу, затем вновь связывается биологическими объектами.


Азот необходим как разбавитель кислорода, поскольку дыхание чистым кислородом приводит к необратимым изменениям в организме.

Однако повышенное содержание азота во вдыхаемом воздухе способствует наступлению гипоксии вследствие снижения парциального давления кислорода. При увеличении содержания азота в воздухе до 93% наступает смерть.

Кроме азота, к инертным газам воздуха относятся аргон, неон, гелий, криптон и ксенон. В химическом отношении эти газы инертны, в жидкостях организма растворяются в зависимости от парциального давления, абсолютное количество этих газов в крови и тканях организма ничтожно.

3. Важным составным элементом атмосферного воздуха является диоксид углерода (углекислый газ, углекислота,). В природе диоксид углерода находится в свободном и связанном состояниях в количестве 146 млрд т, из них в атмосферном воздухе содержится лишь 1,8% от его общего количества. Основная масса его (до 70%) находится в растворённом состоянии в воде морей и океанов. В состав некоторых минеральных соединений, известняков и доломитов входит около 22% общего количества диоксида и углерода. Остальное количество приходится на животный и растительный мир, каменный уголь, нефть и гумус.

В природных условиях происходят непрерывные процессы выделения и поглощения диоксида углерода. В атмосферу он выделяется за счёт дыхания человека и животных, процессов горения, гниения и брожения, при промышленном обжиге известняков и доломитов и т.д. Одновременно в природе идут процессы ассимиляции диоксида углерода, который поглощается растениями в процессе фотосинтеза.

Диоксид углерода играет большую роль в жизнедеятельности животных и человека, являясь физиологическим возбудителем дыхательного центра.

При вдыхании больших концентраций диоксида углерода происходит нарушение окислительно-восстановительных процессов в организме. При увеличении содержания его во вдыхаемом воздухе до 4% отмечаются головные боли, шум в ушах, сердцебиение, возбуждённое состояние; при 8% наступает смерть.

В гигиеническом отношении содержание диоксида углерода является важным показателем, по которому судят о степени чистоты воздуха в жилых и общественных зданиях. Скопление больших его количеств в воздухе закрытых помещений указывает на санитарное неблагополучие (скученность, плохая вентиляция).

В обычных условиях при естественной вентиляции помещения и инфильтрации наружного воздуха через поры строительных материалов содержание диоксида углерода в воздухе жилых помещений не превышает 0,2%. При повышении концентрации его в помещении могут отмечаться ухудшение самочувствия человека, снижение работоспособности. Это объясняется тем, что одновременно с увеличением количества диоксида углерода в воздухе жилых и общественных зданий ухудшаются другие свойства воздуха: повышаются его температура и влажность, появляются газообразные продукты жизнедеятельности человека, так называемые антропотоксины (меркаптан, индол, сероводород, аммиак).

С увеличением содержания СО 2 в воздухе и ухудшением метеорологических условий в жилых и общественных зданиях происходит изменение ионизационного режима воздуха (увеличение числа тяжёлых и уменьшение количества лёгких ионов), что объясняется поглощением лёгких ионов в процессе дыхания и контакта с кожей, а также поступлением тяжёлых ионов с выдыхаемым воздухом.

Предельно допустимой концентрацией диоксида углерода в воздухе лечебных учреждений следует считать 0,07%, в воздухе жилых и общественных зданий – 0,1%. Последняя величина принята в качестве расчётной при определении эффективности вентиляции в жилых и общественных зданиях.

4. Кроме основных составных частей, в атмосферном воздухе содержатся газы, выделяющиеся в результате естественных процессов, происходящих на поверхности Земли и в атмосфере.

Водород содержится в воздухе в количестве 0,00005%. Он образуется в высоких слоях атмосферы за счёт фотохимического разложения молекул воды на кислород и водород. Водород не поддерживает дыхание, в свободном состоянии он не усваивается и не выделяется биологическими объектами. Кроме водорода, в атмосферном воздухе содержится незначительное количество метана; обычно концентрация метана в воздухе не превышает 0, 00022%. Метан выделяется при анаэробном гниении органических соединений. Как составная часть входит в состав природного газа и газа нефтяных скважин. При вдыхании воздуха, содержащего метан в больших концентрациях возможно наступление смерти от асфиксии.

Как продукт разложения органических веществ в атмосферном воздухе присутствуют небольшие количества аммиака. Его концентрации зависят от степени загрязнения данной территории нечистотами и органическими выбросами. Зимой вследствие замедления процессов гниения концентрация аммиака несколько ниже, чем летом. При анаэробных процессах разложения серосодержащих органических веществ возможно образование сероводорода, который уже в малых концентрациях придаёт воздуху неприятный запах. В атмосферном воздухе могут находиться в небольших концентрациях йод и перекись водорода. Йод попадает в атмосферный воздух за счёт присутствия мельчайших капелек морской воды и морских водорослей. За счёт взаимодействия УФ-лучей с молекулами воздуха образуется перекись водорода; вместе с озоном она способствует окислению органических веществ в атмосфере.

В атмосферном воздухе находятся взвешенные вещества, которые представлены пылью естественного и искусственного происхождения. В состав природной пыли входит космическая, вулканическая, наземная, морская пыль и пыль, образующаяся при лесных пожарах.

Большую роль в освобождении атмосферы от взвешенных веществ играют естественные процессы самоочищения, среди которых существенное значение имеет разбавление загрязнений конвекционными потоками воздуха у поверхности Земли. Существенным элементом самоочищения атмосферы является выпадение из воздуха крупных частиц пыли и сажи (седиментация). С подъёмом на высоту количество пыли уменьшается; на высоте 7 – 8 км от поверхности Земли пыль земного происхождения отсутствует. Значительную роль в процессах самоочищения играют атмосферные осадки, увеличивающие количество осевшей сажи и пыли. На содержание пыли в атмосферном воздухе влияют метеорологические условия и дисперсность аэрозоля. Крупнодисперсная пыль с диаметром частиц более 10 мкм быстро выпадает, мелкодисперсная пыль с диаметром частиц менее 0,1 мкм практически не выпадает и находится во взвешенном состоянии.